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On the possibility of using 
temperature to aid in thyroid 
nodule investigation
C. P. Damião1*, J. R. G. Montero2, M. B. H. Moran2, R. A. da Cruz Filho1, C. A. P. Fontes3, 
G. A. B. Lima1 & A. Conci2

Thyroid nodules are common, and their investigation is very important to exclude the possibility 
of cancer. The increase in blood vessels of malignant tumours may be related to local temperature 
augmentation detectable on the skin surface. The objective of this paper is to evaluate the feasibility 
of Infrared Thermography for cancer identification. For this purpose, two studies were performed. 
One used numerical modelling to simulate regional metabolic temperature propagation to evaluate 
whether a nodule is perceptible on the skin surface. A second study considered thyroid nodule 
identification by using convolutional neural networks (CNNs). First, variations in nodular size and 
fat thickness were investigated, showing that the fat layer has an important role in regional heat 
transfer. In the second study, the training process achieved accuracy of 96% for in-sample and 95% for 
validation. In the testing phase, 92% accuracy, 100% precision and 80% recall were achieved. Thus, 
the presented studies suggest the feasibility of using Infrared Thermography with the CNN Artificial 
Intelligence technique as additional information in the investigation of thyroid nodules for patients 
without a very thick subcutaneous fat layer.

Thyroid nodules (TN) are common in the general population. According to population studies conducted with 
adults living in iodine sufficient areas, approximately 4–7% of women and 1% of men have palpable thyroid 
nodules1. However, the prevalence of nodules estimated by ultrasound examination is higher, reaching up to 
68% of the population2.

Thyroid Nodules represent an increase in thyroid volume with overgrowth and structural or functional 
transformations of one or more areas of the thyroid gland3. The factors that increase the chance of developing 
thyroid cancer are history of childhood head and neck radiation therapy or ionizing radiation exposure; his-
tory of thyroid carcinoma in the family or in a first-degree relative; and rapid nodule growth or hoarseness4. 
Although the majority of TN are benign, malignancy exclusion is mandatory. Currently, fine needle aspiration 
biopsy (FNAB) is considered the gold standard diagnostic tool for TN. Despite specificity greater than 95%, 
indeterminate FNAB results occur in 15–30% of cases5 and put both patient and surgeon in a treatment dilemma. 
Therefore, the development of other preoperative diagnostic techniques in these cases may avoid unnecessary 
diagnostic surgery. In line with this problem, Infrared Thermography has emerged as a low-cost and noninvasive 
method for investigating TN6,7. However, few studies have seriously evaluated this approach specially going up 
to the use of new Artificial Intelligence techniques, as the convolutional neural networks (CNNs), to promote a 
final conclusion on this subject as the here presented one8.

Thyroid cancer represents 7–15% of all TN10. Angiogenesis, the formation of new blood vessels, plays a pivotal 
role in the development and progression of thyroid tumours12,13. The increase in vascularity may be accompanied 
by an increase in local temperature. Furthermore, the increase in nitric oxide levels produced by malignant cell 
proliferation results in local vasodilation, which subsequently leads to heat emission14. Considering this infor-
mation and the fact that the thyroid is a superficial gland15, the hypothesis that Infrared Thermography may be 
useful in the detection of malignant thyroid nodules is almost natural.

Among studies on the investigation of thyroid nodules by thermography, there was a report16 in 1972 of three 
nodules with histological diagnosis of malignancy. Two of them were described as “warm” on examination; how-
ever, the temperature of these tumours was not described16. In 1974, Galli et al. reported six cases of histologically 
confirmed malignant tumours that demonstrated an evidently increased cutaneous temperature by thermogram 
with values that were close to those recorded for hyperthyroidism; nevertheless, again, the temperature is not 
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available17. In 1982, using a dynamic AGA thermovision (model 680) telethermograph, Di Pietro et al. evalu-
ated 95 thyroid nodules that were operated on and concluded that there was no correlation between the thermal 
gradient and the diagnosis of malignancy18. Recently, Alves et al. performed a thermographic study with a digital 
(dynamic) thermography image and reported that 31 nodules suspected by thermography had malignancy con-
firmed in the intraoperative freezing examination, although the thermographic parameters were not described8.

In a previous study19, we used static thermographic examination data from eighteen (18) patients with malig-
nant nodules; eighty-five (85) patients with benign nodules; and two (2) healthy patients (available in http://
visua​l.ic.uff.br/thyro​id/) to compare symmetrical neck parts. In this work, the minimum, maximum, average 
and median temperatures as well as the thermographic index11 and asymmetry parameter ( PA)20 were used to 
verify if the groups of patients could be differentiated by them in any combination. We calculated and tested 
hypotheses using two statistical tests: effect size21 and Wilcoxon–Mann–Whitney test22 with a confidence level 
of 95%. The results showed that the unique feature that can be consider is the PA . For this reason this feature is 
used since then to test possible nodule location in our studies.

Considering the development of numerical models, the study by Conceição et al. consisted of heat transfer 
analysis in two three-dimensional (3D) geometrical models of the frontal cervical region around the thyroid 
gland and whether it contained a tumour23. An experimental study by Bahramian and Mojra investigated the 
feasibility of using thermography in conjunction with artificial neural networks for the detection of thyroid 
tumours. A 3D model of a healthy human neck was constructed based on computed tomography images, and 
this model was used to analyse the bioheat transfer in the human neck. Dynamic thermal images were captured 
(following the international recommendations) from two groups, one with 10 healthy patients and three thyroid 
cancer cases showing a significant variation in heat measured between these two groups24.

Machine learning (ML) algorithms have shown interesting applicability in medical-related problems25. Deep-
learning methods, more specifically convolutional neural networks (CNNs), have achieved impressive results in 
medical image classification problems25 and can be investigated to help identify patterns in temperature maps 
related to the malignancy of thyroid nodules.

The main objective of the present study is to quantitatively evaluate the feasibility of using temperature for 
thyroid nodule identification. For this purpose, two studies are performed. In the first one, numerical models for 
thyroid simulation are developed to represent the metabolic process of temperature propagation and evaluate 
how much the presence of a nodule is perceptible through the temperature of external tissues, considering the 
nodular size and the presence of surrounding insulating tissues. Therefore, a theoretical assessment of whether 
the temperature of the thyroid surface can actually be used in the nodule identification process is needed. In the 
second study, the feasibility of using thermographic images in the identification of thyroid nodules with the help 
of image processing techniques, pattern recognition, and CNN is evaluated. In this way, from the union of both 
studies, this work addresses the problem of usability; that is, when the use of temperature measured by infrared 
cameras can help to identify the thyroid nodule malignancy.

Results
Study 1: bioheat transfer analysis.  This study presents the thyroid numerical models developed to 
simulate how temperature behaves in the thyroid region and how anatomical characteristics determine the tem-
perature transition to skin.

Variation in temperatures inside the neck.  Figure 1a shows the temperature variations in the numerical simula-
tion when considering a thickness of 1.2 cm for the fat tissue layer and elliptic malignant nodule with diameters 
of 1.0 × 1.57 cm. Temperature values of approximately 37.2 ◦C were obtained in the right thyroid lobe region (in 

Figure 1.   Temperature variations by the numerical simulation for elliptic malignant nodules of 1.0 × 1.57 cm 
and fat tissue layer thickness of 1.2 cm. (a) Temperatures on the cross section and along the skin surface of 
the neck, where the red number indicated the position on skin (i.e. arc length) beginning in the left end of the 
section. (b) Temperatures along the black line (semi circle radius) and center of the nodules (green triangle) 
showed in (a), the length (showed in the horizontal axis) begging in the center of the circle section.

http://visual.ic.uff.br/thyroid/
http://visual.ic.uff.br/thyroid/
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the red square position), the region without a nodule, which corresponds to normal body internal temperature. 
Values of 38.4 ◦C were found in the central region of the nodule (in the green triangle position), which is the 
same as that shown in a previous study23. The red numbers in Fig. 1a indicate the longitude of the arc length at 
the skin surface, which measures approximately 19.7 cm when a thickness equal to 1.2 cm of the fat tissue layer 
is considered. No differences in temperature were found on the neck surface, i.e., the neck surface along the arc 
length or comparing the contralateral region of the nodular area. Figure 1b shows the temperature variations 
in the numerical simulation along a line crossing the nodule from the trachea to the skin. The temperature 
variation in the muscle layer (from the nodule to the skin, i.e., on the right of the nodule layer of Fig. 1b) was 
approximately equal to 0.5 ◦C (from 37.4 to 36.9 ◦C ), while the temperature variation in the fat layer was 1.8 ◦C 
(from 36.9 to 35.1 ◦C).

Analysis of the influence of the size of nodule and fat tissue thickness.  Four size of nodules are considered: 0.5 × 
0.78 cm, 1.0 × 1.57 cm, 1.5 × 2.36 cm, and 2.0 × 3.14 cm, as shown in Fig. 2. Moreover, various fat thicknesses are 
considered because neck surface temperature may be related to the thickness of the fat layer due to the insulation 
effect of the adipose tissue. The fat tissue layer varies among individuals, its thickness is related to the body mass 
index and can be measured by ultrasound (US) examinations26.

The curves in Fig. 3 show the thermal profiles obtained from the simulations of malignant nodules of Fig. 2 
on necks with 1.2 cm (Fig. 3a), 0.6 cm (Fig. 3b) and 0.1 cm (Fig. 3c) fat tissue layer thickness. As seen, there is a 
perceptible surface temperature variation just in front of the nodule (approximately 4.2 cm in the fourth graph) 
when compared to the contralateral region (approximately 12.8 cm) for the smaller fat layer considered.

Study 2: measurements of skin temperatures.  In this study, we evaluated thermographic images to 
analyse whether nodules can be identified in these images, considering the superficial skin temperatures meas-
ured by the infrared camera.

For this study, thermographies of 25 patients with nodules are considered. A pre-processing step extracts 
109 regions that present abnormal temperature behaviour. Twenty-six (26) of those regions are actually nodule 
related, and the remaining (83) are not nodule related. Different CNN models are considered for the classifica-
tion of these images as nodule related or not. Twenty-five (25) of the 109 regions are separated to be used in the 
testing phase, and the remaining (84) are used in the training phase. Sixteen (16) of the 84 regions are nodule 
related, and the remaining (68) are not nodule related. Due to the difference in the number of elements for each 
class, two data augmentation processes27 (detailed in the “Methods” section) are performed, one for the nodular 
regions and the other for non-nodular regions, generating 528 images, which are used for model training.

The algorithms used in this study are based on the ResNet28 architecture, which has previously achieved 
excellent results for classification problems involving medical images25,29. The models used in this work were 
previously pre-trained using the ImageNet dataset30 to achieve better initial weight values. The fine-tuning 
training process included 2000 steps. Three values (0.1, 0.01 and 0.001) were used as the initial learning rate to 
evaluate which of these parameters would be the most appropriate. Thus, three ResNet models were considered, 
one for each defined learning rate variation. A cross-validation approach was not used due to the limitations in 
the available hardware environment. Table 1 shows the values of accuracy and loss obtained for in-sample and 
validation after the training process for the three learning rates. As observed in Table 1, the model that presented 
the best results during the training process used 0.1 as the learning rate.

Therefore, the model that used 0.1 as the learning rate was evaluated considering the 25 regions that were 
originally separated for testing. The statistical measures used in the model evaluation are true negatives (cor-
rectly classified negative examples), true positives (correctly classified positive examples), false negatives (posi-
tive examples incorrectly classified as negative), and false positives (negative examples incorrectly classified as 
positive)31. Such values are in the confusion matrix presented in Table 2, where it is possible to see that the total 
of examples correctly classified (accuracy) is 92%.

The recall and precision were computed to show the model’s performance. Precision is the fraction of true 
positives among the sum of true positives and false positives. Recall is the fraction of true positives among the 
sum of true positives and false negatives. As observed in Table 3, the values found for precision and recall are 
100% and 80%, respectively. The receiver operating characteristic (ROC) and precision and recall (PR) curves 
are shown in Fig. 4. They are fundamental for understanding and measuring relevance31. They present values of 
the area under the curve (AUC) of 0.14 and 0.33 (Table 3).

Figure 2.   Considered variations in the nodule size.
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Figure 3.   Thermal profiles on the neck surface for the four tumour sizes in Fig. 2 and the three fat tissue layers.

Table 1.   Results of the training process of each model in percentage.

Learning rate

Accuracy Loss

In-sample Validation In-sample Validation

0.1 96 95 14 8

0.01 94 90 16 29

0.001 92 87 18 25
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General discussion
The results of Study 1 show that heat transfer for the neck with malignant thyroid nodules depends on the nodule 
size and mainly on the thickness of the fat layer. That is, the results demonstrated that fat tissue has an important 
insulating effect and should be considered in modelling the heat transfer from the TN to the neck skin.

The results of Study 2 suggest that nodule temperature, represented by thermographic images, may indeed 
indicate the presence of thyroid nodular regions. This is initially noted by the accuracy achieved during the 
algorithm training process. Evaluating the results for the test set, it is possible to observe that the classification 
of possibly nodular regions is performed impressively, since 92% (32 + 60) of all cases were correctly classified, 
as seen in the confusion matrix in Table 2. Thus, if we analyse the classification as a binary decision task, the 
result presented by the CNN is considered adequate. However, analysing the probabilities for each class assigned 
in each evaluated case, which can be observed generally in the ROC and PR curves (Fig. 4), it appears that the 
model cannot unequivocally distinguish the classes. The AUC for both curves can be considered low, which 
identifies the weakness in the developed model.

Considering the results of both studies, there is evidence that temperature is an information to be considered; 
however, this is restricted to patients with a relatively thin fat layer. This was evident in the results of Study 1 and 
suggested by cases of success and error of the method proposed in Study 2. The value of 8% in Table 2 represents 
two cases in which the algorithm incorrectly classified a nodular region as non-nodular. These nodules are from 
the same patient: a female with degree II obesity (i.e., mass of 85 kg, 1.54 m tall and body mass index—BMI—of 
35.8 kg/m2 ), and the nodules are relatively small (2.0 × 0.8 × 1.0 cm and 2.0 × 1.0 × 0.6 cm). Thus, there is a per-
spective for the applicability of temperature to the identification of thyroid nodules. As future studies, it is very 
important to properly evaluate the neck fat layer of the patient before any consideration of the feasibility of using 
Infrared Thermography exams for TN investigation. For instance, this can be done by US thickness measurements 
of subcutaneous adipose tissue layer in the same US exam used to nodule size evaluation26.

Table 2.   Confusion matrix of the selected model.

Predicted

Nodular Not nodular

Actual

Nodular 32% 8%

Not nodular 0 60%

Table 3.   Model performance on the test dataset.

Precision Recall AUC-ROC AUC-PR

1.0 0.8 0.14 0.33

Figure 4.   CNN used model performance.
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Methods
This project was approved by the Research Ethics Committee of the Federal Fluminense University Medical 
School—CEP CMM/HUAP no 1.776.071. Patients were included in the study after previously receiving an 
explanation about the research, agreed to use their data and sign the informed consent form. All exams of the 
patients used in this work (for instance Bethesda, Chammas, TSH, histopathology nodule details, patient history, 
height and weight—for BMI computation), as well as their images acquired following the international recom-
mendations (as described in previous work9) are available under request.

Study 1: bioheat transfer analysis.  This section shows an analysis of the influence of the neck fat layer 
thickness and the size of a thyroid malignant nodule on heat distribution on the surface of the neck skin. For 
these purposes, Pennes’s bioheat transfer model32 was used. The various thermophysical properties linked to the 
metabolic heat generation of the tumour, the thermophysical properties of the tissues involved, and the various 
boundary and initial conditions are included in this heat transfer problem. The simulations used finite element 
analysis by the Comsol Multiphysics software version 5.2 , licence number: 1042008.

Mathematical model.  Heat transfer analysis often considers transient time and spatial variation thermal 
exchange, both on the surface of the skin and within biological organisms. This analysis also considers variations 
in blood flow rate, vascular architecture, and thermal properties33. Pennes considers the total energy balance 
and its storage, internal energy rate, heat conduction, convection inside and outside the body and environment, 
as well as local heat generation. Chemical and electrical effects are not considered in this equation. The body 
was approximated by an homogeneous solid biological medium with isotropic thermal properties. The energy 
balance assumes that blood flow within the tissue is nondirectional at the capillary level, i.e., the capillaries are 
assumed to be oriented concerning their arterial and venous connections. Pennes’s equation Eq. (1) consists of 
a modified transient heat conduction equation and two heat sources, both per unit of time and volume: a heat 
source due to the metabolic effect Qm and a heat source due to the energy exchange between tissue and blood 
Qb/t . In addition, this equation considers a source of external heat Qe , which is not included in the present study.

where p, c and k represent the specific mass, specific heat, and thermal conductivity of tissue, respectively. The 
Qb/t heat source Eq. (2) depends on blood perfusion wb (i.e., volumetric blood flow rate per unit volume of tis-
sue), the volumetric mass ρb (or density) and the specific heat cb of the blood, and the arterial blood temperature 
Tb at the capillary level.

The Qb/t heat source is characterized by the convective heat transfer effectuated by the blood through the capil-
lary vascularization present in living tissues, which is proportional to the temperature difference of the arterial 
blood entering the tissue and the temperature of the venous blood coming out of the tissue34.

Geometry and thermophysical parameters.  Based on the consensus image of an average human neck shown in 
Fig. 5a, the 2D simplified geometry of the cross section on Fig. 5b is used. This consensus image corresponds to 
a transverse section of the neck in the best view of the region, where entire thyroid gland can be represented in 
the transverse plane (CC axis)35. The simulated neck considers the main region components: skin, fat, muscle 
(and fascia) layers and thyroid gland with an elliptic malignant nodule inside it. The thicknesses of the skin and 
muscle tissue layers are 0.2 cm and 1.0 cm, respectively in Fig. 5b. The thickness of the fat layer and the nodule 
size vary in the simulation of this work for specific objectives. Primitive geometric elements (cylinders and ellip-
ses) plus logical operations (union and differential), available in the Comsol Multiphysics software, were used to 
create the geometry of the model.

(1)pc
δT

δt
= k∇∧

2T + Qb/t + Qm + Qe

(2)Qb/t = wbρccb(Tb − T)

Figure 5.   Relevant elements of the neck region in the best view of the thyroid gland and used numerical finite 
element model.
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Table 4 presents the values of thermophysical parameters for each tissue. The ρb and cb parameters are con-
sidered equal to the specific mass ( ρ ) and specific heat (c) of the respective tissue.

Boundary and initial conditions.  The simulations start from the initial conditions of air temperature of 20 ◦C . 
Thermal insulation was considered in the trachea surrounding region. On the remaining surfaces the tempera-
ture was assumed as 37 ◦C , even on the boundary at perpendicular axis that correspond to the internal human 
body temperature. At the skin surface, thermal convection with the environmental air had a convection coef-
ficient of 3.6 W/(m2 ◦C).

Study 2: identification of thyroid nodules by thermography.  The thyroid anatomy is very symmet-
rical horizontally, considering the cranial-caudal axis. It is also a superficial organ that may allow the detection 
of heat caused by the hypermetabolism of nodules. However, there are thyroid regions that are normally highly 
vascularized and therefore present higher temperatures. Such regions are usually present on both sides of the 
thyroid, almost symmetrically. If symmetry is considered in the temperature evaluation, normal variations due 
to the regional anatomy do not affect the results20. The asymmetry parameter ( PA ) is defined by the temperature 
difference of a region relative to its contralateral side20. Its values above 0.3 ◦C can indicate a dysfunction, and in 
general, if the value exceeds 1◦C , a more significant dysfunction may occur in the region20.

Thermographic images show the discrete temperature distribution of the scene in the frame captured by the 
camera at the acquisition time using the international protocol9 . This temperature distribution is represented by 
integer numbers as image I (Fig. 6). The number of pixels of the I image is defined by the camera resolution and 
consequently by the number of infrared sensors of the camera model used. In the case of the camera model used 
in this research (FLIR T620sc), the resulting images have a resolution of 640 × 480. Such a generic image I can 
be represented by the function I(x, y) = i , being a false colour (Fig. 6a) or a grey level (Fig. 6b) that represents 
a temperature value19,36,37.

From the frame captured by the camera, a bi dimensional matrix of temperature composed of real numbers 
M (640 × 480) can be obtained using a tool developed in previous works of the group38. This matrix can be rep-
resented by the function M(x, y) = m , which returns a temperature value in degrees Celsius given a position 
(x, y), where x ∈ [1, 640] and y ∈ [1, 480]. In other words, both I and M have the same number of elements19,36.

I and M are processed to define a region of interest (ROI) that considers only the area of the patient’s neck 
(Fig. 7). In the ROI image, the points have their values mapped to [1, 255] in a grey-scale range, and the other 
points have their intensity values defined as 0, becoming part of the background region (in black colour).

Table 4.   Thermophysical parameters for tissues.

Parameter Symbol Skin Fat Muscle Thyroid Nodule Units

Thermal conductivity k 0.37 0.21 0.49 0.52 0.89 W/(mK)

Specific mass ρ 1109 911 1090 1050 1050 kg/m3

Specific heat c 3391 2348 3421 3609 3770 J/(kgK)

Blood art. temp. Tb 37.0 37.0 37.0 37.0 37.0 ◦C

Blood perfusion wb 0.00196 0.000501 0.000708 0.098 0.465 1/s

Metabolic heat Qmet 1829.85 464.61 1046 91455 2455386.6 W/m3

Figure 6.   Thyroid thermography.
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For practical purposes, in this work, the term ROIp refers to the set of points belonging to the ROI area, dis-
regarding the background (black area). That is, ROIp consists of the set of points for which I(x, y)  = 0.

Considering the ROIp of each patient, the vertical axis used to calculate the asymmetry parameter, PA , was 
based on ROIp geometric centre O, defined in relation to the beginning of the ROI, i.e point (0, 0), by the coor-
dinates (ox , oy):

where Nx and Ny are the ROIp limits and Np denotes the cardinality of the set ROIp (or the total number of pixels 
of the ROIp ). Therefore, the symmetric axis e(y) considered is defined by the horizontal coordinate of O, i.e. : 
e(y) = ox

The PA of each point (x, y) ∈ ROIp can be described as the difference of temperature between (x, y) and its 
contralateral ((2 ∗ ox − x), y) position in relation to the e(y) axis on the same vertical height. Therefore PA of a 
point (x, y) is given by:

where (x, y) is the coordinate any point ∈ ROIp . Note that the position of nodule candidate must be indicates 
by the hottest side. So, if the value of Eq. (4) is positive, nodule possible position is defined by the coordinates 
(x, y), because this is the hottest side. If the value of Eq. (4) is negative then ((2 ∗ ox − x), y) is the hottest point 
and ((2 ∗ ox − x), y) is the position to be considered as possible nodule. Only points belonging to ROIp are 
considered in this evaluation.

Thus, for each ROIp , the vertical axis e is defined, and the PA values for that ROIp were calculated. After that, 
the following segmentation was performed: the ROIp points with PA above a threshold l were considered as 
belonging to a possibly nodular region. However, among these regions, there was still considerable noise. To 
eliminate part of this noise, the opening morphological operation was applied19. This operation consists of the 
combination of erosion and dilation operations. After that, the remaining regions were only those with more 
rounded shapes and larger dimensions, which have an aspect more similar to real nodules19. To obtain the images 
that are used as input to the CNN algorithms, new images are created by cropping the ROI considering the limits 
of the bounding boxes that cover each of the remaining regions19.

For each thermal exam, the result of this process was evaluated by a medical specialist, who compared the 
resultant regions with the data from ultrasound and other exams, indicating the regions that actually described 
nodules. This information was used as labels for CNN training and testing.

It should be noted that although these possibly abnormal regions have similar shapes, there are still some 
characteristics that can be used to classify them and indicate which regions refer to nodular regions. In this study, 
ResNet28 CNNs were used in the classification process (but AlexNet and GoogLeNet have been investigated in 
previous work36).

To be processed by the ResNet algorithms used here, the input images (crops of possibly abnormal areas) 
were resized to present the 224× 224× 3 format, i.e., to have 224 lines, 224 columns and three channels (RGB). 
Moreover, the intensity values, which were initially in the [0, 255] range, were normalized to the [0, 1] range.

A data augmentation process was used to increase the training set because a large quantity of training data is 
essential for the success of CNN31. For this, we have applied transformation techniques in the initial image set 
to generate new data31. Thyroid nodules present a similar appearance in both (the right and left) lobes; therefore, 
the horizontal flip operation is a transformation that was used. The change in pixel intensity is another applicable 

(3)O = (ox , oy) =





�Nx
x=1

�Ny

y=1 x ∗ ROIp(x, y)

Np
,

�Nx
x=1

�Ny

y=1 y ∗ ROIp(x, y)

Np





(4)PA(x, y) = M(x, y)−M((2 ∗ ox − x), y)

Figure 7.   ROI (all rectangular area), ROIp (points different of black), ROIp ’s geometric centre O and, its vertical 
and horizontal axis, defined by (ox , oy).
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transformation. However, the very used re-scale operations are not appropriate, since them modify nodule size 
with could change important information about the case in analysis. Consequently, the operations used in this 
work were only horizontal flipping and histogram stretching.

Finally, due to the difference in the number of elements in each class, we performed two different data aug-
mentation processes. The process for non-nodular regions consisted of one horizontal flipping and one histogram 
stretching. The process for nodular regions consists of one horizontal flipping and three histogram stretching. 
Each operation doubles the number of elements.

In this work, after the data augmentation process, we obtained 256 images for the nodule class and 272 images 
for the non-nodule class.

Ethical statement.  The study was approved by the Research Ethics Committee of the Federal Fluminense 
University (CAAE, registered at the Brazilian Ministry of Health under project number 57078516.8.0000.5243), 
and all the methods applied were carried out in accordance with relevant guidelines and regulation. Informed 
consent was obtained from all persons considered in this research.

Conclusions
Study 1 demonstrated that when using thermography for thyroid nodule identification, the thickness of the fat 
layer should be considered due to its insulating effect (and because it did not promoted difference measurable 
by the used camera in case of fat layer of 0.6 cm or more).

The results of Study 2 suggested that nodule temperature, defined from difference of temperature between 
points symmetrically located in relation to the neck vertical center and represented as visual characteristics on 
thermographic images, could indicate the presence of thyroid nodule regions.

Both studies support the possible applicability of temperature in the identification of thyroid nodules. How-
ever there are frailty: (1) patients with considerable fat layer in the neck area are not candidate to nodular detec-
tion by Infrared Thermography examinations: such examination is not indicated for obese and even overweight 
people; (2) the influence of the trachea, carotid arteries and jugular veins was not considered in the numerical 
simulation conducted by the research (study 1): they must be considered in future because such structures could 
be related to temperatures in the cervical region; and (3) in the CNN (study 2) the number of sample used must 
be increased in future works to support more grounded conclusions.

Finally, before any consideration on the use of Infrared Thermography for TN investigation, it is important a 
proper evaluation of the neck adipose tissue layer of the patient: thickness measurements can be done by using 
the same US examination recommended for nodule size evaluation, for instance.
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