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ABSTRACT

Secondary structure of messenger RNA plays an im-
portant role in the bio-synthesis of proteins. Its
negative impact on translation can reduce the yield
of protein by slowing or blocking the initiation and
movement of ribosomes along the mRNA, becoming
a major factor in the regulation of gene expression.
Several algorithms can predict the formation of
secondary structures by calculating the minimum
free energy of RNA sequences, or perform the
inverse process of obtaining an RNA sequence
for a given structure. However, there is still no
approach to redesign an mRNA to achieve minimal
secondary structure without affecting the amino
acid sequence. Here we present the first strategy
to optimize mRNA secondary structures, to
increase (or decrease) the minimum free energy of
a nucleotide sequence, without changing its result-
ing polypeptide, in a time-efficient manner, through
a simplistic approximation to hairpin formation.
Our data show that this approach can efficiently
increase the minimum free energy by >40%,
strongly reducing the strength of secondary struc-
tures. Applications of this technique range from
multi-objective optimization of genes by controlling
minimum free energy together with CAI and other
gene expression variables, to optimization of
secondary structures at the genomic level.

INTRODUCTION

Among the many factors that influence gene translation,
the role of mRNA secondary structure has long been
shown to be of major importance (1–3). For instance,
regulation of gene expression is highly dependent on the
formation of stable structures by nucleotide pairing in the

mRNA strand. This is especially true when the structures
encompass translation initiation regions, hence hampering
the start of the decoding process (4,5).
The formation of stem–loops and more complex struc-

tures occurs on RNA folding on itself, causing secondary
and tertiary nucleotide interactions, the stability of which
is dependent on the nucleotides involved and the length of
the interacting domains. The strength of two paired bases is
largely determined by the number of hydrogen bonds that
connect the nucleotides: guanine–cytosine pairs share three
hydrogen bonds, and adenine–uracil pairs have only two;
the wobble base pair guanine–uracil also shares two
hydrogen bonds. Longer paired zones and stronger-
paired zones tend to be more stable, and therefore have
higher melting temperatures, preventing the ribosome
from breaking the pairing and proceeding translation (3,6).
Several recent studies have demonstrated that mani-

pulating RNA sequences to avoid secondary structures
has a substantial impact on gene expression. In the
study by Studer and Joseph (6), the authors changed
several mRNA sequences to control the presence and
strength of secondary structures near translation initiation
sites, and showed a significant negative correlation
between the strength of the structures and mRNA ease
of association with the ribosome. Moreover, sequences
with no secondary structures associated faster with the
30S ribosomal subunit, and therefore were more likely
to form stable initiation complexes, which are determinant
for translation efficiency. Analogous results were obtained
by studying the expression of human interleukin-10
and human interferon-a in Escherichia coli. Introducing
silent mutations to expose the start codon from secondary
structures effectively improved translation and heterol-
ogous expression of both proteins by 10-fold (5).
Similarly, a study showed how the L1 gene from
human papillomavirus type 16 was modified to avoid the
formation of secondary structures when expressed
in Saccharomyces cerevisiae, again yielding 4-fold higher
expression than the wild type (7).
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Assessment of RNA secondary structures and minimum
free energy (MFE) can be accomplished via numerous
algorithms and approaches to structure prediction
(8–11). The most sophisticated and well known is the
fast dynamic programming approach from Zuker and
Stiegler (12), which is based on a first approach from
Nussinov et al. (13), and served as a basis for recent
methods. Their algorithm attempts to find the structural
base-pair configuration of an RNA sequence that yields
the minimum possible free energy. Implementations of this
algorithm can be found in the mFold (11) or Vienna RNA
(14) software packages. Other applications focus on
performing inverse RNA folding, to produce nucleotide
configurations for a given secondary structure, regardless
of any gene, such as the RNAexinv (15), INFO-RNA (16)
and RNA-SSD (17) tools. However, no method can yet
perform the process of obtaining an mRNA sequence that
maintains the polypeptide primary structure and achieves
minimal secondary structure. This gap is likely due to the
difficulty in finding the codon-sequence configuration with
the highest MFE, requiring calculation of the MFE
numerous times, which is an unfeasible task time-wise.
Here we focus on the problem of avoiding stable sec-

ondary structures in mRNA molecules by means of
maximizing the MFE of the nucleotide sequences,
without changing the resulting amino acid sequence. For
this, we have developed an algorithm that divides in 2-
fold: a first part that uses a metaheuristic approach to
explore the space of possible synonymous codon se-
quences, and a second part where a fast algorithm calcu-
lates a metric that is linearly dependent on the MFE.
Thus, the core of our approach resides in computing a
pseudo-MFE using a fast method the results of which,
although not as accurate as current predictors, are
highly correlated with MFE. When searching for a syn-
onymous sequence using the metaheuristic approach, the
pseudo-MFE is used to look for configurations that offer
high values of MFE.
Results show that using our approach, the MFE of an

mRNA strand can be increased by >40%, strongly
reducing the strength of secondary structures, in only a
few seconds. Besides single gene optimization, this
strategy can also be used to perform large-scale studies
on secondary structures, and can be combined with
other optimization approaches, such as CAI, codon
context and GC content optimizations, to achieve
optimal gene configurations for improving yield and
quality of heterologous protein production.

MATERIALS AND METHODS

We consider the problem of having a nucleotide sequence
with both coding and non-coding regions, and maximizing
the MFE resulting from possible folds, by altering nucleo-
tides in the coding region without altering the amino acid
sequence. We take advantage of the degeneracy of the
genetic code to search for a synonymous gene sequence
that maximizes an energy function highly related to the
strength of the secondary structure.

We split the methods in four parts: (i) the search for the
best codon combination, (ii) the development of a rapid
pseudo-MFE calculation function, (iii) the optimization of
that function to maximize its correlation with an accurate
MFE measure and (iv) a linear regression to transform the
pseudo-MFE values into more precise bounds.

Synonymous gene exploration

Finding an optimal synonymous sequence is a combina-
torial problem often impractical to solve in efficient time
given the volume of the search space (approximately 3N

for a sequence with N codons, using the standard genetic
code). As a consequence, it becomes attractive to resort to
metaheuristics, such as genetic algorithms and simulated
annealing, that facilitate the exploration of possible se-
quences, driving the search through regions of the
solution space of interest to the problem.

For the MFE maximization problem, we used
Kirkpatrick’s simulated annealing approach (18), which
was shown to behave quickly and achieve global
maxima results in codon optimization problems (19,20).
Thus, starting from the original coding sequence, a
number of codons are selected in each iteration to be
randomly changed for synonymous ones. The new
sequence, including the non-coding regions, is evaluated
by the pseudo-energy assessor (described in the following
section), which returns a value correlated with the MFE.
New sequences with larger values are accepted as the
current sequence for the next iteration. However, to
avoid local maxima, sequences with lower values might
also be accepted, according to a probability mimicking
the Boltzmann distribution, defined as:

exp
e� e0

kmax � 0:9k
ð1Þ

where e is the energy value of the current sequence, e0 the
energy of the new sequence, k the iteration number, kmax is
the maximum number of iterations and 0:9 is the cooling
schedule. The last two parameters were selected after a
heuristic assessment to ensure the resulting sequence is
near optimal. This formulation allows acceptance of
worse solutions at the beginning of the process, and
slowly decreasing the acceptance probability until only
better solutions are chosen as the algorithm approaches
the maximum number of iterations. The number of
codons that are changed in each step also decreases with
passing iterations, performing only targeted alterations
near the end to fine-tune results. The search ends when
the maximum number of iterations is reached.

Simplistic approximation to MFE estimation

Current tools for secondary structure estimation can ac-
curately measure the MFE that results from the fold of a
nucleotide strand. However, such accuracy is achieved by
thoroughly analysing possible secondary structures, and
this process takes up to several seconds, depending on
the size of the sequence. Although they are generally fast
enough for a single run, which is the normal use of these
tools, it becomes unfeasibly slow when there is the need
for multiple calls, which is the case if one is searching for
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an optimal configuration of codons and needs to con-
stantly re-evaluate the sequence. For instance, making
1500 calls to RNAfold to evolve an mRNA with
1000 codons (without non-coding regions) takes >6 h
(considering an average of 15 s for each call to
RNAfold, which is generally a lower bound in a modern
personal computer). To overcome this hurdle, we have
developed an evaluation function that is much faster at
analysing secondary structures, at the expense of less
accurate results, and which is highly correlated with the
real MFE energy. To reduce the time complexity from the
MFE estimation [OðN3Þ for RNAfold and MFold, for se-
quences of N nucleotides], we introduced a simplistic
approach with quadratic complexity, which considers all
possible single stem–loop conformations and averages
their interaction energy, as described in Algorithm 1.

function ESTIMATEENERGY( seq )
( )seqSize numNucleotides seq←

2iBlockSize ←  initial block size

/ 2fBlockSize seqSize←  final block size

3ls ←  minimum loop size

0cEnergy ←  Cumulative energy
 for two times do

b iBlockSize=
  while b fBlockSize< and 2*seqSize ls b≥ + do

1b b← +
1 (0, )subSeq sequence b←
2 ( , 2* )subSeq sequence ls b ls b← + +

( 1, 2)energy GetEnergy subSeq subSeq=
cEnergy cEnergy energy= +

  end while
  ( )sequence inverse sequence=
 end for
return /cEnergy seqSize−  Average energy
end function

function GETENERGY( 1seq , 2seq )
 0bondEnergy ←
 for 0i = to ( 1)numNucleotides seq do
  case ( 1( ), 2( )seq i seq i ) is

( , )G C or ( , )C G then 3e ←
( , )A U or ( , )U A then 2e ←

   ( , )G U or ( , )U G then 2e ←
   else 0e ←
  end

bondEnergy bondEnergy e← +
 end for
end function

Algorithm 1 Calculate estimation of MFE

The algorithm considers every possible conformation of
the mRNA secondary structure using only a single fold
(there are approximately N) and, for each conformation,
looking for nucleotide pairs that bind (Figure 1). The
energy of each fold is the number of hydrogen bonds
shared in the interaction regions. This method then
returns the average energy of all folds. This approxima-
tion does not consider more complex conformations of
multiple stem–loop structures or pseudo-knots, which
require more intricate formulations, nor does it intend to
yield an accurate energy value. However, it does assume
an abstract value representing the MFE can be obtained
from the primary folds of the molecule, and that consider-
ing all possible nucleotide interactions further specifies this
value to represent a global view of the structure strength.
As a result, the algorithm returns a value largely
associated with complex MFE predictions.

Fine-tuning nucleotide interactions

To further enhance the statistical dependence of our esti-
mation function with an accurate MFE measure, we chose
the output of RNAfold as a target for our function, which
offers the current highest performance (0.76 F1-measure)
among single-strand secondary structure predictors (9),
and the fastest calculation (see comparison in
Supplementary Material). The tuning was made by
changing the contribution of each binding pair
(‘getEnergy’ function in Algorithm 1) and assessing the
correlation between the approximation function and the
results from RNAfold. For that, we randomly selected 48
genes from six different species (Aquifex aeolicus, E. coli,
Homo sapiens, Mus musculus, Rattus norvegicus and
Drosophila melanogaster. Data sets and further details
are available in the Supplementary Material), with equal
length, As the length of the genes already has a large bias
(�97% Pearson correlation) to the MFE. To perform the
optimization, we also used a simulated annealing heuris-
tic. Thus, the contribution of GC, AU and GU pairs
was changed in each iteration, evaluating their perform-
ance by analysing the correlation between our MFE esti-
mation function and RNAfold’s output in the 48 genes.
Correlations were measured using Spearman’s rank cor-
relation coefficient, which focuses on measuring the
extent to which as our function increases the RNAfold
MFE also increases, using Formula 2.

� ¼ 1�
6
P
ðfi � riÞ

2

nðn2 � 1Þ
ð2Þ

Where fi is the rank of the value of our approximation
function, ri the rank of RNAfold’s output and n is the
number of sequences used (48 genes). This allows the
search algorithm to find binding-pair weights that
maximize the dependence to the target output.

Figure 1. Ilustration of the MFE estimation algorithm. All possible folds of a single stem–loop are considered, starting from the 30 end. In each fold,
the nucleotides close to the folding region are not considered to interact. The average of the nucleotide-pair contributions of all folds is the result.
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Using this method, we increased the initial correlation of
0.73 to 0.91, by changing the pair weights from (2, 2, 3) for
AU, GU and CG into (1, 1, 3.12). We further confirmed a
high linear dependence using Person’s product-moment
correlation coefficient, which also returned 0.91.

Linear regression

Given the large linear dependence that was created in the
previous step, we were able to easily transform the values
returned by the MFE estimation function to closely
resemble those of an accurate MFE. Although this step is
not necessary and does not change the final correlation nor
the optimization results, the transformed values become
visibly comparable with those of accurate measures,
allowing quick assessment and comparison ofMFE values.
Using ordinary least squares, we performed a simple

linear regression using the energy values of Algorithm 1
as the input variable and the MFE given by RNAfold as
the observed variable. To better predict MFE, we created
two regressions, the first for the wild-type genes and the
second for optimized genes (see Supplementary Material
for formulas and results).

RESULTS

To test and evaluate our correlated optimization
approach, we randomly selected 36 different genes from
the same species used in the previous section. By using a
different set of genes, we avoid biases that might have
been generated when tuning the estimation function.
To perform an initial assessment, we evaluated all genes
using both our approximation function and RNAfold,
and obtained a Pearson’s correlation of 0.99, indicating
a perfect statistical dependence between the two
approaches. The increase in correlation compared with
the results obtained during training is justified by the use
of a gene set with random lengths, as opposed to fixed
length, which limited the bias.
We proceeded to the evaluation of secondary structure

optimization by applying our method to the 36 genes and
then re-evaluating them with RNAfold to assess evolution
(Figure 2a). By analysing the difference between the
results of wild-type genes and optimized genes, we
measured an average of 46% increase in the MFE, with

a t-test probability of 3� 10�11. As an example, one of the
largest evolutions (67%) increased the MFE from �175 to
�58 kcal/mol, strongly diminishing the predicted second-
ary structures. In this optimization, the number of base
pairs of the resulting RNA was reduced by 54%, and par-
ticularly the number of GC pairs decreased by 60%, as
depicted in Figure 2b and c.

To understand the algorithm bias relative to the amount
of guanine and cytosine in genes, which are the nucleotides
that produce the strongest pair, we have evaluated GC
content before and after optimization, measuring an
average of 24% decrease, although weakly correlated to
the MFE improvement of each gene. We then assessed the
role of GC content by adding a rule to our optimization
algorithm to evolve genes into configurations that
simultaneously increase MFE and maintain the same
percentage of GC as the wild type. Results show MFE
improvements averaging 28%, without any change in
GC content, which represents a 17% decrease in improve-
ment when compared with the original optimization. This
suggests that the main contributing factor to our algo-
rithm is codon configuration, although GC content also
has a significant role.

Furthermore, to control for GC content and assess its
impact on optimization, 36 genes with equal amount of
GC (50%) were randomly selected from the same species
(available in Supplementary Material), and optimized
using our approach. Improvements in MFE averaged
43% (t-test probability of 8� 10�11), with results still
showing a large correlation between values of RNAfold
and our approach (0:99). Also, by adding the previous rule
to maintain the same GC% amounts of the wild type, we
measured improvements in MFE averaging 29%, with a
t-test probability of 1� 10�10.

Considering that our MFE evaluation function is faster
but less accurate than RNAfold, we compared our
approach with that of optimizing a codon sequence using
the same strategy but with RNAfold as the MFE estima-
tion function instead of our correlated method, to deduce
the loss in accuracy and gain in time. For that, we used the
simulated annealing method with the same parameters,
replacing only the energy evaluation function by a call to
RNAfold.We then performed the optimization in the set of
36 genes (random GC% and length) and collected results

Minimum free energies before and after optimization. Wild type Optimized

(a) (b) (c)

Figure 2. Optimization results. In (a) the improvement for each gene is shown. In (b) and (c) the secondary structures of a Drosophila melanogaster
gene are shown for the wild type and optimized mRNAs.
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for comparison. All final results, from both approaches,
were measured afterwards using RNAfold, to build a
reliable comparable basis between methods. We found a
small gain of 2%, which is close to being statistically insig-
nificant (t-test probability of 0.003), with >35% of the
genes having similar or worse results than our approach.
Also, higher differences were only found in smaller genes
(for genes larger than 250 codons, the gain was null), sug-
gesting that as the problem becomes more complex, our
approach obtains equivalent results to using RNAfold.
However, being of quadratic time complexity, our
approach took only 34 min to optimize the 36 genes (<1
min per gene), whereas using RNAfold took>6 days (>4 h
per gene) (in a computer with Windows Server 2008,
2.67-GHz 4-core Intel Xeon and 4-GB RAM).
Parallelizing the process leads to bounding the problem
to the longest optimization, which was 4 min using our
approach and 22 h using RNAfold. Thus, having no sig-
nificant loss, and gains in time up to several hundred times,
our strategy becomes a feasible approach to optimizing
RNA secondary structure.

CONCLUSION

The study of RNA secondary structures is an important
area of research in computational molecular biology.
Specifically, structure prediction and MFE calculation
are prominent subjects in recent RNA literature. Being
able to predict the formation of structures has allowed
researchers to understand how RNA functions, whereas
reverse RNA folding has allowed building non-coding
RNAs that have a specific structure. However, considering
the impact of secondary structures on gene translation, a
strategy to redesign genes to produce less structured
mRNAs that would allow for improved or controlled
expression is important.

We presented the first approach to optimizing the
secondary structure of mRNA sequences using a fast
correlated MFE estimation method. Although the estima-
tion algorithm was not built for maximum accuracy,
results are closely associated with those of using
accurate methods, such as RNAfold, allowing for rapid
calculation of synonymous genes with improved struc-
tures. Overall, our tests indicate an average of >40%
improvement in MFE, as measured by RNAfold.

Besides allowing the optimization of mRNA sequences
alone, our method can be used in combination with other
factors that influence gene expression, such as codon
usage, harmonization and GC content, to optimize the
in silico engineering of recombinant genes for heterol-
ogous expression.

To promote the use of our approach, we produced a
software application that implements the optimization
process, which is available at http://bioinformatics.ua.pt/
software/mRNA-optimiser
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Supplementary Data are available at NAR Online:
Supplementary Material.
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