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Background
Pharmaceutical companies strive to select suitable targets and minimize attrition. This 
has driven more than two decades long efforts towards the identification and annotation 
of ‘druggable’ fractions of the genome [1–3]. A seminal study by Hopkins et al. evaluated 
proteins’ domain composition combined with their role in disease [2], proposing a ‘drug-
gable’ subset of the proteome comprised of 600–1500 proteins. The analysis of biologi-
cal signaling and/or protein interaction networks has provided an appealing orthogonal 
approach to the identification of potential drug target genes [4–12].
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Many naturally existing networks, including biological signaling networks, exhibit an 
approximate [13] scale-free organization characterized by a power law dependence of 
their node degree distribution [14–17]. In scale-free networks few hub nodes exhibit 
high connectivity relative to most nodes, as opposed to a normal node degree distri-
bution observed in random networks. Scale-free organization results in short across-
network distances and confers a network robustness to the perturbation of a limited 
number of its edges [18]. These characteristics are intuitively advantageous to biological 
signaling as they help fulfill the conflicting requirements of efficient response to external 
stimuli (short distance) while preserving homeostasis upon perturbation (robustness) 
[15]. Although each protein (node) has a specific function, hub proteins in signaling net-
works may play gateway roles at a higher hierarchical level [19].

The application of graph theory to the analysis of biological networks has been largely 
focused on the ‘architecture’ of biological signaling [20, 21]. Some studies investigated 
the signaling context of drug targets in network models to identify potential toxicity 
liabilities [22], drugs repurposing [23] or polypharmacology [24]. Others, closer to the 
scope of the current work, applied diverse analytical methods to a range of annotated 
networks with the general goal of investigating node characteristics that may discrimi-
nate specific drug targets from other proteins [4–12]. Some of these studies focused on 
distinctive features of drug target nodes [4, 8–10, 12]; others analyzed bipartite networks 
(composed of two separate sets of nodes that connect with each other [25]) of drugs and 
drug targets [5–7, 11].

These studies highlighted a few general trends and some contradictions. Depending 
on the analysis and networks [26–31] it was applied to, varying discriminants in network 
characteristics were detected between drug targets and other proteins. These ranged 
from rather complex local network features of drug target nodes [4, 11, 12] to simpler 
node centrality metrics (in primis node degree) [6, 8], with drug targets in general exhib-
iting higher centrality than other proteins. These results extensively demonstrated that 
certain classes of proteins are likelier drug targets than others yet featured limited inves-
tigation of which proteins within each class may be likelier drug targets [8, 12]. We rec-
ognized that the network centrality features detected for drug targets may be influenced 
by their biased protein class distribution relative to other proteins [3, 7] as proteins 
belonging to different functional classes may exhibit inherently different positioning and 
centrality metrics within network models.

As annotated biological signaling or protein interaction networks are influenced by 
their underlying data sources, annotation method, and completeness, so may be the out-
come of analyses applied to these networks. Recognition of this possible source of bias 
through cross comparison of different networks or generation of consensus networks 
was limited in previous studies [8, 12].

In the current study, we attempted to address discrepancies apparent from the com-
parison of previous studies and implement a broad evaluation of node centrality met-
rics along with parallel comparison of multiple source networks/databases. We reasoned 
that such comparative inspection would minimize any bias derived from their different 
annotation sources and assembly strategies. In our analysis we evaluated whether any 
network positioning and centrality features would discriminate ‘ideal’ target proteins, 
associated to selective marketed drugs not only from the entire proteome, but also from 
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other proteins of potential pharmaceutical interest. Additionally, we dissected compari-
sons between network characteristics of drug targets versus other proteins over their 
respective target classes to identify differences that would not merely arise from the 
biased target class composition of drug targets. Last, we evaluated the entanglement 
between protein nodes characteristics within annotated functional networks and their 
literature enrichment as a measure of the knowledge bias that may influence the out-
come of these analyses.

Results
Datasets selection and annotation

Previous studies demonstrated that drug target proteins in general exhibit higher cen-
trality within signaling networks than other proteins [4–12]. To investigate this find-
ing in more depth, here we identified a subset of proteins targeted by marketed, highly 
selective drugs (defined as ‘Phase4 targets’) and compared them to the complete set of 
exploratory or discovery targets (defined as ‘all targets’). These two sets were identified 
within the ChEMBL database [32] (version 27, 2020) respectively as individual protein 
targets of approved drugs reported to interact with four or less proteins (Phase4 targets, 
80 proteins) and as the entire set of proteins with at least 40 reported interacting small 
molecules, regardless of the compounds development stage (all targets, 1743 proteins). 
Only individual protein targets were considered, as targets annotated as protein families 
or complexes (i.e. composed of multiple nodes) would convolute the analysis. Proteins 
within each set were assigned to a broad ‘target class’ based on Gene Ontology (GO) [33] 
identifiers: channels and transporters, enzymes (excluding kinases), G-protein coupled 
receptors (GPCRs), kinases, nuclear receptors (Fig. 1a, b). Targets that did not belong 
to any of these classes were classified as ‘other’. Target classes were deliberately broad to 
ensure that each class would be sufficiently populated to allow a statistical evaluation of 
differences between their graph node parameters. The Phase4 targets set is limited, and 
by excluding targets of less selective compounds, it does not include all the targets of 
approved drugs, yet it represents a comprehensive spectrum of therapeutic areas (Addi-
tional file 1: Fig. S1). We focused on targets of selective drugs to avoid convolution with 
potential poly pharmacology effects and strive to identify properties of effective indi-
vidual protein targets.

Centrality analysis of target nodes in a protein signaling network

We first analyzed these sets of proteins by calculating their node parameters within the 
String database network [31, 34] (version 11.0, human proteins) mapped at a confidence 
cutoff of 0.7 (‘high’ confidence—‘String0.7’). The resulting network contained 17,161 
nodes (proteins) and 419,761 undirected edges. String is a meta-database sourced from 
most publicly available curated databases of protein interactions or protein functional 
connections, large datasets and automated keyword mining. String edges are thus broad 
descriptors of associations between proteins, not limited to physical interactions. Edges 
from un-curated sources are assigned a confidence score based on an estimated likeli-
hood of randomly identifying an association between two proteins (false positives). We 
chose String for this initial analysis specifically because of its broad, inclusive method 
of annotation which would minimize gaps in the network, at the cost of potentially 
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including incorrectly assigned edges (depending largely on the choice of confidence level 
cutoff; how this was addressed will be discussed later on). We calculated standard cen-
trality metrics [35, 36] measuring the extent of connections and local network character-
istics for all the nodes in this network. Table1 includes a brief description of each studied 
parameter, divided between scalar properties that depend on the network size versus 
normalized ones.

Upon compilation of the Phase4 and all targets sets we observed a different dis-
tribution of target classes between the two sets (Fig.  1a, b). Additionally, the analy-
sis of centrality metrics showed that several node parameters exhibited significantly 
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Fig. 1  Datasets selection. Target class composition of Phase4 targets (a) and all targets (b) datasets. c 
Different degree distribution between target classes in the String network mapped at edge confidence 
level = 0.7

Table 1  Definitions of the centrality parameters considered in this analysis

Size dependent parameters

Average shortest path: average distance between an examined node and all other nodes

Degree: number of edges connected to an examined node

Eccentricity: largest number of edges between an examined node and any node in the network

Neighborhood connectivity: average number of edges of nodes neighboring an examined node

Stress: number of shortest paths between any two nodes passing through an examined node

Normalized parameters

Betweenness centrality: fraction of shortest paths between any two nodes passing through an examined node

Closeness centrality: normalized reciprocal distance between an examined node and any node

Clustering coefficient (local): observed fraction of all possible edges between nodes neighboring an examined 
node

Topological coefficient: fraction of nodes neighboring an examined node that are shared with other nodes
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different distribution ranges across different target classes (Fig.  1c, Additional file  1: 
Fig. S2, Table S1). These variations are likely related to the diverse broad functional con-
texts of each target class. Statistical differences between the entire Phase4 and all targets 
protein sets may depend in part on the different target class distribution between these 
two sets, however this bias is eliminated when comparing Phase4 and all target proteins 
within individual target classes. We therefore compared differences in centrality metrics 
between Phase4 and all targets within each target class (Table  2). These comparisons 
unavoidably attempt to interpret differences in complex underlying network structures 
through the simplified lens of statistical testing. Node centrality parameters in scale-free 
networks deviate from normality to varying extents (e.g., clustering coefficient exhib-
ited a quasi-normal distribution in String0.7, but degree exhibited a long-tailed distri-
bution—Additional file  1: Fig. S3). Non-parametric statistics are commonly used for 
the comparative analysis of these parameters [37, 38]. Conversely, there are literature 
precedents for the application of linear regression statistics to large non-normal samples 
based on the Central Limit Theorem [39, 40]. Furthermore, nodes exhibiting extreme 
values in centrality parameters are not merely outliers as these values reflect their true 
position within the network. We opted to evaluate statistical differences between Phase4 
and all targets over both linear regression (sample means) and non-parametric rank 
ordering. We corrected these raw probabilities for multiple testing over the number of 
centrality parameters and target classes examined. The difference probabilities between 
Phase4 and all targets for the various centrality parameters exhibited general agreement 
between statistical approaches with large deviations limited to stress and betweenness 
centrality (Table 2, Additional file 1: Fig. S4).

Several node parameters exhibited significantly different value ranges between 
Phase4 and all targets, according to either normality assumption or non-parametric 
testing, including a difference in degree as the simplest centrality metric (Table  2). In 
most class specific comparisons however Phase4 targets did not exhibit higher average 
or median degree than all targets (Fig.  2a). To identify which node parameters would 

Table 2  Null hypothesis probabilities for differences in centrality parameters between Phase4 
targets and all targets, corrected for multiple testing across both centrality metric and target classes 
(Benjamini–Hochberg method)

Cells are coded according to statistical significance (uncorrected α = 0.05; dark green: significant, light green: marginal 
significance, N.S.: not significant). Red fonts indicate lower average (t-test) or median (non-parametric) centrality observed 
for Phase4 targets, regardless of significance. Average probabilities are calculated over all pairwise comparisons between 
Phase4 and all targets (‘all’ and class specific, t test and non-parametric)
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Fig. 2  Different centrality metric distributions between Phase4 targets, all targets and proteome (left graphs) 
and between Phase4 targets and all targets across target classes (right graphs) identified from analysis of the 
String0.7 network. The plotted parameters are: degree (a), average shortest path (b), topological coefficient 
(c). Null hypothesis probabilities of differences between samples are marked as Pt for t-test and Pnp for 
non-parametric testing, respectively. These values indicate raw pairwise probabilities and are not corrected 
for multiple testing as in Table 2. Values above significance threshold are crossed out

better discriminate between Phase4 and all targets, we calculated for each parameter the 
average probability of increased centrality for Phase4 targets (t-test and non-parametric) 
across the entire dataset and class-specific comparisons (Table 2). Based on this assess-
ment, the following two centrality metrics exhibited the largest differences between 
drug targets and all targets, retained in most class specific comparisons: drug targets 
exhibited lower average shortest path (Fig. 2b, equally its normalized reciprocal, higher 
closeness centrality) and lower topological coefficient (Fig. 2c). Pairwise comparisons of 
the extent of these parameters differences across target classes indicated some correla-
tion between them, suggesting that they may be overall indicators of higher centrality of 
Phase4 targets relative to other target proteins (Additional file 1: Fig. S5).

A low topological coefficient may provide a simplified, approximate descriptor of 
‘good’ drug targets. The lower than average value of this parameter for Phase4 targets 
relative to all targets was observed across most target classes and it is not merely an 
artifact caused by differential class distribution between Phase4 and all targets. Addi-
tionally, this parameter exhibits limited variation between target classes, simplifying the 
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assignment of a single cutoff value indicative of a target’s fitness independent of its tar-
get class (Fig. 2c, Additional file 1: Table S1). For the current String0.7 network analy-
sis this value would be approximately 0.15 (contingency Chi square P < 10−4, Fig. 3a–c). 
More meaningful distinctions between Phase4 and all targets however may be identi-
fied through combination of values for multiple centrality parameters (e.g. Figure 3a–d), 
possibly with target-class specific patterns, as will be discussed later. A general inter-
pretation of this finding is that ‘good’ targets may be gateway proteins (low distance, 
high degree) to self-standing signaling networks (low topological coefficient). Modulat-
ing the function of such proteins may be less susceptible to network robustness, which 
could enable compensation of a drug effects through redundant or overlapping signaling 
mechanisms (Fig. 3e–f).

Assessing knowledge bias in node centrality metrics

We sought to address the critical prospect that this result could be a post factum con-
sequence of the circumstance that drug targets are extensively studied proteins. Such 
knowledge bias could inherently impart higher centrality measures to drug target nodes 
in annotated networks derived from literature sources. In order to evaluate the possibil-
ity and extent of this convolution, we performed the following additional analyses: (1) we 
repeated the above described evaluation of node descriptors from additional networks 
generated through diverse annotation strategies; (2) we compared differences in central-
ity between Phase4 and all targets (subdivided in their respective target classes) against 
their relative number of literature references (within each network and across networks); 
(3) we compared dataset-wide correlations between centrality metrics of individual 
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nodes and number of associated references to the probabilities of increased Phase4 tar-
gets centrality within each network.

First, we analyzed node centrality parameters for additional publicly available protein 
signaling networks (Table 3): String database at two additional confidence cutoffs (0.5 
and 0.9, respectively lower and higher than the original analysis at 0.7 confidence–at 
0.9 confidence String excludes any inferred, un-curated edges) hereby defined String0.5 
and String0.9; BioGRID [28] (a curated database of experimentally determined genetic 
dependencies and protein–protein interactions from multiple sources); HumanNet XN 
[41] (a combined network of annotated functional associations and ortholog inferred 
associations); Reactome [42] (a curated network focused on mapping of signaling path-
ways); InBioMap [43] (a protein interactions network integrating multiple sources to aid 
the interpretation of large genomic datasets).

This assessment indicated that differences in centrality between Phase4 and all tar-
gets identified in the String0.7 network were not completely robust to switch of pro-
tein functional network sources, partially reconciling the conflicting conclusions of 
earlier studies [5–7, 12], they were however largely retained across different networks 
(Table  4). Higher centrality of Phase4 targets was more robust across databases for 
nuclear receptors, kinases and GPCRs than enzymes, channels-transporters. Phase4 
channels and transporters exhibited either no difference or inverted (lower) trends in 
centrality relatively to comparable target proteins. Phase4 enzymes exhibited a lower 
average degree than other target enzymes in six of seven networks, but relatively low 
average topological coefficient in five of seven networks (significant in three). We 
have previously identified from analysis of the String0.7 network a low topological 
coefficient as a centrality indicator.

We measured differences between Phase4 and all targets after degree ‘normaliza-
tion’ of the nodes’ topological coefficient [log (degree*topological coefficient), Table 5] 
and observed that this combined parameter was markedly lower (significantly or near 
significance) for Phase4 enzymes in networks where their degree but not their topo-
logical coefficient had been significantly lower than that of other enzymes (String0.9, 
Reactome), confirming that Phase4 enzymes broadly exhibit lower topological coef-
ficient than other target enzymes relative to the extent of their connections after 
this degree ‘normalization’. The log (degree*topological coefficient) of Phase4 targets 
was higher than that of comparable targets for other target classes (kinases, nuclear 

Table 3  General features of analyzed networks from annotated protein functional databases

* Full Uniprot, human, reviewed = 20,353

Nodes Edges Average degree Coding 
genome 
coverage*

String 0.7 17,161 419,761 48.92 0.84

String 0.9 12,272 252,558 41.16 0.60

String 0.5 19,147 685,939 71.65 0.94

BioGRID 20,858 453,890 43.52 1.02

HumanNet 17,926 525,537 58.63 0.88

Reactome 14,071 268,857 38.21 0.69

InBioMap 17,653 625,641 70.88 0.87
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receptors), indicating a higher degree as the dominant centrality metric for these tar-
get classes. This combined parameter exhibited generally minor differences between 
Phase4 and other GPCRs suggesting that the increased centrality of Phase4 GPCRs 
reflects with minimal deviation the reverse correlation between nodes degree and 
topological coefficient.

Comparisons between protein functional interaction networks

These analyses highlighted that differences in node parameters distributions between 
Phase4 and all targets depend on the different data sources and filters applied in the gen-
eration of each network. Trivially, these multiple annotation approaches result in var-
ying proteome coverage within each network. We compared the networks’ size to the 
coding human genome as annotated in UniProt [44]—20,353 proteins (Table  3). The 
average proteome coverage over the seven networks was 83%, with String0.7, Human-
Net XN and InBioMap falling close to this value; String0.5 (low confidence cutoff) and 
BioGRID exhibited a higher coverage while String0.9 (high confidence cutoff) and Reac-
tome exhibited incomplete proteome coverage (< 70%). The overlap between analyzed 
networks was more marked for the Phase4 and all targets protein sets (Additional file 1: 
Tables S2, S3). These observations do not account for fluctuations in centrality metrics 
between networks of comparable sizes, that depend on the specific connectivity between 
nodes. Pairwise comparisons between the node parameters of target proteins sets 
across networks evidenced similarities and differences among them (Additional file  1: 
Table S4). Correlations varied across parameters and were intuitively higher between the 
three String networks mapped at difference edge confidence levels. Conversely, BioGRID 
and HumanNet XN exhibited low node parameter correlation to other networks, but 
generally good correlation with each other.

Differences between networks generated using different methods raise the criti-
cal question of how much is a network biased by its data sources relative to the ‘true’ 
underlying biological system it attempts to describe. It is obviously not possible to fully 
address this question as our entire knowledge of human biology (and anything else) is 
but a model or representation, we lack therefore a control system representing a ‘true’ 

Table 4  Null hypothesis probabilities for differences in centrality parameters between Phase4 
targets and all targets tested in networks from different database sources, corrected for multiple 
testing across both centrality metric and target classes (Benjamini–Hochberg method)

Cells are coded according to statistical significance (uncorrected α = 0.05; dark green: significant, light green: marginal 
significance, N.S.: not significant). Red fonts indicate lower average (t-test) or median (non-parametric) centrality observed 
for Phase4 targets, regardless of significance



Page 10 of 29Viacava Follis ﻿BMC Bioinformatics          (2021) 22:527 

network, neat of any knowledge bias. We define ‘exclusive’ and ‘inclusive’ forms of 
knowledge bias: by exclusive knowledge bias we mean the preferential incorporation 
of curated data sources with a likely deficiency in interactions (edges) that have not 
been expressly investigated through dedicated peer reviewed studies (e.g. Reactome, 
String0.9). By ‘inclusive’ knowledge bias we mean inclusion of inferred, not curated con-
nections, some of which may be incorrectly assigned (e.g. String0.5, HumanNet XN). 
Less studied protein nodes would be inherently more susceptible to either form of bias 
than highly studied ones. We analyzed the networks’ node parameters distributions as 
one way to infer the extent and nature of their knowledge bias. A second key assessment 
consisted in evaluating relationships between centrality of protein nodes and extent of 
related literature.

Differences in parameters distributions between networks

The tested networks exhibited scale-free character with cumulative node-degree dis-
tribution exponential between − 2 and − 3, minimal low degree saturation (fewer than 
expected low degree nodes) and no high degree cutoff (lower than expected maximum 
degree, Additional file 1: Fig. S6a) [17]. Low degree saturation was more marked in net-
works enriched in inferred edges (String0.5, HumanNet XN). This may be indicative of 
incorrectly assigned edges to low connectivity nodes—inclusive bias. Three networks 
(BioGRID, Reactome, InBioNet) had lower than 2 exponentials in their node-degree dis-
tribution fit to the 100–1000-degree range. Such anomalous node-degree distribution 

Table 5  Null hypothesis probabilities for differences in the ‘degree-weighted’ parameter log 
(degree*topological coefficient) between Phase4 targets and all targets tested in networks from 
different database sources, corrected for multiple testing across target classes (Benjamini–Hochberg 
method)

Cells are color coded according to the relative difference between Phase4 and all targets. Green highlights lower values 
observed for Phase4 targets, indicating a dominant effect of differences in topological coefficient on the combined 
parameter. Blue highlights higher values observed for Phase4 targets, indicating a dominant effect of differences in degree 
on the combined parameter. Solid color boxes indicate statistically significant differences (uncorrected α = 0.05; dark 
shades: significant, light shades: marginal significance, N.S.: not significant)
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results from a disproportionate number of edges associated to high degree nodes. In the 
specific case of functional protein interaction networks this could be diagnostic of exclu-
sive bias and preferential inclusion of curated data related to highly studied proteins. 
Subtler variations in the relative populations of different degree ranges were observed 
between networks, suggesting additional, more convoluted compositional biases in their 
structure (Additional file 1: Fig. S7).

We next inspected correlations between degree and clustering coefficient for the ana-
lyzed networks (Additional file  1: Fig. S6b). Relative to the other networks, BioGRID 
exhibited a marked hierarchical organization (low clustering coefficient at high degree), 
and low overall clustering. This could be another manifestation of the exclusive bias 
hypothesized from the node-degree distribution of this network. In conclusion, the 
diverse annotation strategy underlying the assembly of each protein network is reflected 
in variations in their overall architecture and organization. The exact nature of an under-
lying ‘true’ network remains elusive. Networks from curated sources are necessarily 
incomplete, while more inclusive networks may contain several incorrectly assigned 
edges. In the absence of a single faultless network, we deem as likely correct observa-
tions that are robust across most networks regardless of their specific variations.

Influence of relative number of citations on node centrality metrics

We further assessed the extent of knowledge bias on networks composition, and conse-
quent differences in node centrality between Phase4 and all targets, by evaluating rela-
tionships between number of citations and nodes centrality. We counted the number of 
literature references listed in PubMed (https://​pubmed.​ncbi.​nlm.​nih.​gov) for each target 
(searched by their gene name abbreviations). We compared the relative abundance of 
Phase4 targets within each target class to the relative abundance of their citations and 
found that Phase4 targets have on average 2.5 fold more citations than all targets, with 
uneven distribution among target classes (ranging from a ratio of 0.5 for channels—
transporters to ~ 13 for kinases, Table  6, Additional file  1: Fig. S8). Across databases, 
modest correlations were observed between the number of PubMed records and cen-
trality metrics of each node with R2 values between 0.03 and 0.20 (Additional file 1: Fig. 
S9). Correlations were more marked in String0.5, followed by String0.7. This observation 
is in apparent conflict with the lower dependency of the String0.5 and String0.7 network 
structures on highly studied proteins with extensive curated data, due to the additional 
inclusion in these networks of inferred edges with confidence scores < 0.9. We hypoth-
esize that text-mining, used among other algorithms to define inferred edges, could be 
sensitive to the recurrence of highly studied protein keywords. In this scenario, one of 
the nodes of several inferred edges would be a highly studied protein, potentially intro-
ducing some correlation between node centrality and number of literature references.

We compared the enrichment in citations of ‘Phase4’ targets relative to ‘all targets’ 
proteins to their difference in centrality in each target class, within individual networks 
and across networks. This analysis identified minimal association between class sorted 
Phase4 targets literature enrichment and their centrality, limited to the String0.5 net-
work (Table 7, Additional file 1: Fig. S10a–b). We then compared correlations between 
node centrality parameters and number of literature references within each network to 
the centrality of Phase4 targets across target classes. This analysis revealed significant 

https://pubmed.ncbi.nlm.nih.gov
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trends between the probability of Phase4 targets’ higher centrality in average shortest 
path; topological coefficient; degree and existing correlations between these parameter 
values and citations counts for individual nodes (Additional file 1: Figs. S9, S10c–e). As 
the combined parameter log (degree*topological coefficient) (Table  5) introduces reci-
procity between two centrality measures, its correlations with the number of PubMed 
records were largely abrogated in all networks (Table 8, Additional file 1: Fig. S11). Sig-
nificant differences in this parameter between Phase4 and all targets therefore ought to 
identify features of drug target nodes unbiased by their relative enrichment in literature 
citations. Cumulatively, these analyses evidenced some entanglement between network 
structures, extent of literature available for each of their component nodes, and out-
come of any analyses performed on these networks. In this ‘chicken and egg’ situation, 
it is impossible to ultimately discriminate whether certain proteins are highly studied 
because they are true biological hubs, or they appear as hubs in annotated networks 
because they are highly studied proteins. We will limit ourselves to the observations that 
correlations between each protein node centrality metric and number of citations were 
modest in all the analyzed networks. Differences in centrality between Phase4 and all 
targets did not exhibit significant associations with their relative literature enrichment 
across networks when sorted by target class, supporting that literature enrichment of 
Phase4 targets alone is insufficient to justify these observations. It is also evident how-
ever that literature bias may contribute to the extent of increased Phase4 targets central-
ity in some of the analyzed networks (especially String0.5).

Effect of network randomization on node centrality

We sought to evaluate the network structural features underlying the centrality metrics 
characteristic of Phase4 targets. We performed a series of network randomizations and 
analyzed their effect on the node centrality parameters identified as indicative of drug 
targets’ fitness. First, we performed a degree preserving randomization of the String0.7 
network. In this randomization, edges are randomly rearranged while the original 
degree of each node is retained. In the resulting synthetic network, we observed that the 
differences in other centrality measures (average shortest path, topological coefficient) 
between Phase4 and all targets were largely retained across target classes (Table  9). 
Additionally, the fluctuation in these differences after randomization exhibited some 
correlation with the extent of (unchanged) differences in degree (Additional file 1: Fig. 
S12). This suggests that differences in average shortest path and topological coefficient 

Table 6  Number of citations for Phase4 targets and all targets across target classes

All citations Phase4 citations Fraction Phase4 
citations

Relative abundance 
Phase4 citations in target 
class

All 1,781,808 208,785 0.12 2.5

Channel 65,138 2708 0.04 0.5

Enzyme 601,619 54,934 0.09 2.5

GPCR 59,071 6294 0.11 0.8

Kinase 471,280 107,867 0.23 13.1

NR 62,657 35,015 0.56 2.6
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between target sets are mostly projections of differences in degree, whose significance is 
amplified under given underlying network structures, independent of the specific con-
nectivity of individual nodes. We hypothesized that such amplification of differences in 
shortest path and topological coefficient between Phase4 and all targets relative to their 
differences in degree may depend on the scale-free characteristics of the biological sign-
aling network.

To test this hypothesis we generated a Barabasi-Albert (BA) scale-free random net-
work [45] with comparable number of nodes and edges as the String0.7 network and 
measured pairwise differences between random sets of nodes with degree distributions 
matching those of the nuclear receptors sets (Phase4 and all targets) in the original net-
work. This target class exhibited the most consistent differences in centrality parameters 
across the analyzed protein networks, providing a robust control for the resilience of 
such differences. We ‘projected’ the original degree distributions of nuclear receptor 
nodes (Fig. 4a) onto the BA network (Fig. 4b, refer to Methods for details). In the BA 
randomized network, differences in centrality parameters observed between the two 
sets of nodes in the original String0.7 network retained statistical significance (Table 10). 
This supports the hypothesis that the differences in centrality measures between Phase4 
and all targets depend on their hub position in a scale-free network structure.

As a reverse validation of this hypothesis, we projected the degree distributions of the 
nuclear receptors sets (Phase4 and all targets) onto the normal degree distribution of an 
Erdos–Renyi (ER) random network [46] of corresponding size as the String0.7 network. 
ER networks lack hubs, hierarchical organization and exhibit a narrow distributions of 
centrality metrics (Fig. 4c, Additional file 1: Table S5, refer to Methods for details). As 
the degree distribution of a random network is narrower than a scale-free network, the 
differences in centrality parameters were reduced and lost statistical significance after 
ER randomization (Table 10, Fig. 4c, Additional file 1: Fig. S13), further supporting the 
hypothesis that the differences in centrality measures between Phase4 and all targets 
depend on their hub role in a scale-free network structure.

Since BA and ER networks exhibit minimal clustering (Additional file 1: Fig. S14), we 
performed a last randomization test by generating a Watts-Strogatz (WS) random net-
work [47] of comparable number of nodes and edges as the String0.7 network. WS net-
works exhibit random features like ER networks but include a ring structure that results 
in higher clustering and ‘small world’ properties compared to a truly random network 
(Additional file 1: Fig. S14). The extent of clustering is controlled by a β parameter rang-
ing from 0 (lattice network) to 1 (random network). We projected the degree distri-
butions of the nuclear receptors sets (Phase4 and all targets) onto the narrow, normal 
degree distribution of a WS random network, generated with β = 0.25 (Fig.  4d). This 
network exhibited considerably higher clustering than both BA and ER randomizations 
(Additional file 1: Fig. S14). Once again, the differences in centrality parameters lost sig-
nificance relative to the original String0.7 and BA random networks (Table  10, Addi-
tional file 1: Figs. S13, S14), supporting that a highly connected hub position, rather than 
clustering, determine the centrality metrics discriminating targets of selective drugs 
from other related proteins. To further verify that the extent of differences between 
centrality metrics related to different degree distributions depend on a scale-free net-
work organization, we compared the ratios of shortest paths and topological coefficients 
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between nodes at determined degree distribution percentiles from networks with dif-
ferent structures. This comparison confirmed the intuitive observation that relative dif-
ferences are considerably larger in scale-free networks (truly scale-free—simulated, or 
approximately scale-free—real networks) compared to a random network (Additional 
file 1: Fig. S15).

To understand what determined the amplification of differences in topological coef-
ficient relative to differences in degree between node samples in scale free networks 
we inspected scatter plots of these parameters for the nuclear receptor and enzyme 
target nodes in String0.7 and randomized networks (Fig. 5). This analysis highlighted 
that, in the absence of clustering, scale free networks exhibit an inflexion of increasing 
topological coefficient at low degree (Fig. 5b, c), resulting in amplified differences in 
topological coefficient relative to differences in degree by linear regression statistics. 
Erdos Renyi randomization (Fig. 5d) exhibits a linear log–log correlation between the 
two parameters, resulting in equal significance of their differences between node sam-
ples. Clustering, present in the Watts Strogatz random network (Fig. 5e), disrupts the 
correlation between the two parameters with a random noise effect. The target class 
of enzymes (Fig. 5f ) is an example of synergistic effects of scale-free organization and 
non-random clustering amplifying the deficit in topological coefficient for Phase4 
targets even if this group of protein nodes exhibited a lower average degree than all 
targets in String0.7 and other networks. In this case the lower topological coefficient 
of Phase4 nodes was retained (t-test) after degree preserving randomization (inset) 
due to the low degree inflexion of this parameter. Additionally, the effect of clustering 
in String0.7 results in most Phase4 nodes falling below the trendline between degree 
and topological coefficient, exhibiting relatively low topological coefficient at equal 
degree. It is plausible that clustering of enzyme nodes in String0.7 might reflect some 
functional network characteristics rather than mere noise as in the Watts Strogatz 
randomization, resulting in such biased deviation for Phase4 nodes.

Generation of predictive models

With the analyses described so far, we produced qualitative assessments of connec-
tions relating individual node centrality parameters to a drug target’s fitness. We also 
addressed how entanglement between node features within annotated protein func-
tional networks and relative abundance of literature associated to individual proteins 
may influence or bias these assessments. Last, we used network randomization to 
gain insights into the relationships between node centrality features linked to drug 

Table 8  Correlation between enrichment in citations and probability of differences in the ‘degree-
normalized’ parameter log (degree*topological coefficient) between Phase4 targets and all targets in 
each target class (not corrected for multiple testing)

No significant correlation was observed

log (degree*topological coefficient)

Network String 0.7 String 0.9 String 0.5 BioGRID HumanNet XN Reactome InBioMap

Adjusted R − 0.09 0.11 0.31 − 0.12 0.04 − 0.28 0.15

P 0.49 0.27 0.15 0.53 0.33 0.74 0.24
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target proteins, identifying the number of connections (degree) of a node as their root 
centrality feature. This last analysis also suggested intricate relationships between 
centrality parameters (e.g. effect of clustering in enzymes’ degree/topological coef-
ficient correlation, Fig. 5f ). This observation indicates that underlying network char-
acteristics discriminating drug targets from other proteins could be better defined 
by complex combinations of different centrality parameters rather than individual 
parameters. Additionally, these combinations may vary between target classes due to 
the different biological roles broadly associated with different protein types. In order 
to identify combinations of network node features that may better help identify ‘good’ 
drug target proteins, we generated naïve Bayesian predictive models aimed at dis-
criminating between drug targets and other proteins based on their centrality param-
eters (Table 11).

This effort was challenged by the small number of Phase4 targets relative to other 
proteins, which led several tested predictive model algorithms to a high type II error 
rate (false negatives) for Phase4 targets due to the widely greater size of one train-
ing set (non-targets) over the other (drug targets). Additionally, a perfectly accurate 
predictive model would be useless as it would simply discriminate between proteins 
that already are targets of approved drugs and ones that are not, without any predic-
tive value for proteins that could become drug targets. We intended to deliberately 
generate models prone to a moderate extent of type I error for proteins not currently 
annotated as Phase4 targets. These ‘false positives’ would be predicted ‘good targets’ 
based on suitable combinations of their centrality parameters.

Table 9  Null hypothesis probabilities (not corrected for multiple testing) of difference in centrality 
parameters after degree-preserving randomization across target classes

Cells are color coded according to statistical significance (α = 0.05; dark green: significant, light green: marginal significance, 
pink: significant—lower centrality, N.S.: not significant)
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To generate such predictive models, we optimized the following performance met-
rics: recall (fraction of true positives that were correctly identified) for Phase4 targets, 
F1 measure (harmonic mean of recall and precision, precision being the fraction of true 
positives out of predicted positives) for other proteins, and overall accuracy (fraction of 
correct predictions for the total number of samples). Inclusion of Pfam [48] functional 
domain annotations as a non-graph feature slightly enhanced the models’ performance. 
Of all the analyzed networks, models generated from centrality features of String0.7 or 
Reactome networks performed the best (Table 11, Additional file 1: Table S6). In order 
to test the core hypothesis of this study that target class discrimination helps identify 
drug targets through deconvolution of inherent protein-class characteristics, we com-
pared predictive models trained over entire networks versus ones trained over individual 
target classes. The latter performed noticeably better using distinct sets of centrality fea-
tures for each target class (Table 11). As the large number of proteins that did not belong 
to any of the main identified target classes (classified as ‘other’) were negatively biased 
in these models, we empirically included a number of these proteins to our predictions 
by eliminating classification features from the entire network models and selecting high 
confidence drug target predictions for these non-class associated proteins. The final, tar-
get class specific, predictive models identified ~ 2000 proteins (~ 10% of the proteome) 
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as potential drug targets, with good agreement between source networks from the 
String0.7 and Proteome networks, respectively (2043 shared predicted targets for the 
entire network training, contingency probability < 10−4; 562 shared predicted targets for 
individual classes training, contingency probability < 10−4). As an orthogonal validation, 
we found that these four predictive models (String0.7 and Proteome, trained either over 
the entire database or in a class-specific fashion), correctly identified (with a median 
consensus of three out of four models) 406/503 (81%) of drug target proteins annotated 
in a recent study [3]. The cited analysis was performed without limitations on the speci-
ficity of drugs related to individual targets (hence the considerably larger size relative to 
our ‘Phase4’ set of targets of highly selective drugs); the study originally reported 667 
human protein targets, reduced to 503 after filtering for ‘single protein’ target annota-
tion in ChEMBL and entry existence in the predictive model databases. The Knime [49] 
workflows implemented to generate these models and resulting prediction tables are 
available as supplementary files to this article (Additional files 2 and 3).

Evaluation of additional non‑graph descriptors

Recent analyses evaluated network characteristics of drug targets combined with anno-
tated functional data in disease specific contexts [50, 51]. With the goal of identifying 
suitable drug targets in Pancreatic Ductal Adenocarcinoma, Yan et al. devised a ‘hybrid’ 
RNs score ranking that combined information from gene expression datasets with node 
centrality metrics (average shortest path length, degree) within a sub-network of the 
String database relevant to this disease [50]. Kim et al. identified a disease-relevant pro-
tein network (module) for Systemic Sclerosis and evaluated it with enrichment analy-
sis of Gene Ontology (GO) biological processes descriptors [51]. This analysis identified 

Table 10  Null hypothesis probabilities (not corrected for multiple testing) of difference in centrality 
parameters after projection of the String0.7 degree distribution for the Nuclear Receptors targets 
sets (Phase4 and all targets) onto the degree distribution of randomized networks of comparable 
size

Cells are color coded according to statistical significance (dark green: high significance, light green: marginal significance, 
white: not significant
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targets which could expose vulnerabilities of the disease module for improved clinical 
outcome. We evaluated whether protein features external to their network representa-
tions would aid our assessment of targets’ fitness. As our analysis aims at a genome-wide 
evaluation of potential drug targets irrelevant of specific disease contexts, we could not 
rely on disease-specific annotations as done in the cited studies. We considered instead 
the number of disease associations for each gene, for any disease context, from curated 
sources in two databases: DisGeNET [52] and Genetic Association Database [53]. We 
then evaluated the associations of recurring GO term descriptors to Phase4 versus all 
target protein sets collectively and for individual target classes. Last we tested the impact 
of these non-graph descriptors in predictive models of targets fitness. The number of 
disease associations for each protein, annotated in either DisGeNET or Genetic Asso-
ciation Database significantly discriminated between Phase4 and all targets sets in the 
String0.7 and Reactome networks (the two networks utilized in our graph-based pre-
dictive models; Table 12, Additional file 1: Fig. S16a, b). We noticed however a strong 
association between number of disease associations and number of literature citations 
for these protein sets (Additional file  1: Fig. S16c, d and Table  S7), possibly convolut-
ing the differences in disease associations between Phase4 and all targets with a con-
sequential rather than causal relationship to the fact that drug targets are extensively 
studied proteins, as discussed at length previously. We combined the percentile ranking 
of disease associations with graph centrality metrics, similarly to the cited RNs score 
[50] (with the difference that the original RNs score was derived from gene expression 
data rather than annotated disease associations) and with centrality metrics identified in 
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this study as possible discriminants between drug targets and other proteins: topological 
coefficient and log (degree*topological coefficient). These ‘hybrid’ metrics discriminated 
between Phase4 and all target sets with comparable statistical significance to the number 
of disease associations (Table 12) yet with weaker correlation to the number of literature 
references (Additional file 1: Table S7), thus reducing the possible bias of consequential 
rather than causal associations in the evaluation of targets fitness.

In analyzing the GO functional descriptors associated to each protein we observed 
enrichment or depletion in Phase4 versus all targets sets for some of the 25 most recur-
ring GO terms (covering 95% of all GO term associations for all nodes in the String07 
network), with specific enrichment or depletion patterns for different target classes 
(Table  13). At the high level of a genome-wide analysis, these variations in GO terms 
associations may indicate underlying functional contexts that define suitable targets 
within various protein classes. Consideration of these associations could thus comple-
ment an evaluation of proteins’ fitness as drug targets based on their graph-centrality.

We tested the performance of our naïve Bayesian predictive models after inclusion of 
these additional non-graph features: number of disease associations from the DisGeNET 
database and GO terms (Table 14, Additional file 1: Table S6). These additional descrip-
tors improved the performance statistics of both network-wide models based on the 
String0.7 and Reactome networks, and of most target class specific models without addi-
tional changes in the graph-based features selection (with the exception of the String0.7 
kinase model which required selection of a different set of graph centrality features after 
introduction of disease association metrics). The improved statistics of predictive mod-
els that included disease associations and GO terms largely resulted from a smaller num-
ber of false positives from proteins that did not belong to the Phase4 set, thus narrowing 
the range of hypothetical ‘predicted’ drug targets (compare Tables  11 and 14). When 
benchmarked against the 503 target proteins in the dataset reported by Santos et  al. 
[3], these more conservative predictions correctly identified 386 targets (~ 77%) with a 
median consensus of 2/4 models, a slightly lower recall ratio than that obtained with 
the models trained without disease association and GO terms features (~ 81%, median 

Table 11  Overview of training features and performance of naïve Bayesian predictive models 
created from the String0.7 and Reactome networks, utilizing network-wide and target class-specific 
training

The latter outperformed network-wide training in both databases. Centrality features were chosen for each model with the 
aid of the Knime forward feature selection workflow (blue boxes on the left hand of the table). The ‘radiality’ feature (marked 
with an asterisk* in the table), equivalent to average shortest path or closeness centrality, performed well in several models 
likely due to its narrow range relative to the model training parameters
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¾ models). When combined, predictions from models that included or excluded non-
graph parameters identified 428 targets (85%) with a median consensus of 5/8 models. 
While beyond the scope of this study, the lower number of predicted targets obtained 
after introduction of non-graph features brings us to speculate that their use could be 
fine-tuned (e.g. using selected subsets of GO terms or specific disease associations) to 
generate target predictions narrowly focused on specific biological and disease contexts.

Discussion
In the effort to identify novel potential drug targets, cognitive bias often drives to a 
‘linear’ interpretation of cellular signaling pathways neglectful of their true network-
embedded nature. A bias that could drive the simplistic identification of discovery tar-
gets based on a ‘roadblock’ conception of cell signaling interference. This might lead to 
underestimate the risk of encountering fault resistance (lack of efficacy) or propagation 
(toxicity) after perturbation of targets (‘nodes’) with unsuitable positioning within their 
signaling network. These potential pitfalls are especially dangerous in the instance of 
projects based on innovative, yet poorly validated targets (e.g. from conference posters, 
single publications), sometimes leading to proof of concept failures even in the presence 
of suitable chemical matter and verified target engagement.

In our study we followed previous analyses [4–12] that identified graph node central-
ity as a characteristic of drug target proteins and tried to clarify some discrepancies in 
results from these studies. In general, the higher centrality of drug targets relative to 
other proteins may be a consequence of the fact that certain protein classes with inher-
ently higher hub characteristics, or highly studied, are more likely drug targets than oth-
ers. Our main finding is that this higher centrality paradigm largely holds true for targets 
of selective drugs versus other discovery targets within their respective protein classes. 
Thus, high graph centrality may be a characteristic of ‘good’ drug targets relative to func-
tionally similar proteins, independent of any bias in graph descriptors that may derive 
from different protein class distributions between drug targets and other proteins. The 
higher node centrality of drug targets appears to be largely an inherent characteristic 
of their hub positioning within scale-free biological signaling network, independent of 
their specific local connections. However local network characteristics may also contrib-
ute to this effect, as observed for the ‘biased’ clustering of Phase4 enzymes, resulting in 
lower topological coefficient than nodes of comparable degree. The varying subsets of 
centrality features identified as predictors of drug target proteins for different protein 
classes further indicates that the node characteristics linked to ‘good’ drug targets in a 
network representation may vary between protein classes due to inherent differences in 
their biological functions.

Since drug targets are highly studied proteins, we evaluated the extent of knowledge bias 
to our observations. The outcome of this analysis is complex, indicating on one hand that 
networks where the higher centrality of Phase4 targets is more pronounced exhibit fewer 
‘structural’ indications of bias towards highly studied proteins (i.e. lesser bias towards large 
nodes in degree distribution, sizeable clustering), however they exhibit higher, albeit mod-
est, correlations between node centrality metrics and citation counts. We hypothesized 
that these correlations may arise in part from the implementation of text mining in the 
search for inferred edges included in some of the analyzed networks (i.e. String), which 
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might introduce a bias towards recurring protein keywords. When analyzing the central-
ity of Phase4 targets across networks in each target class, we did not identify correlations 
with their relative literature enrichment. We observed however associations between the 
probability of higher Phase4 target centrality in specific parameters (distance, degree, top-
ological coefficient, regardless of target classification) and the correlation between these 
parameters’ value and literature references within each network. A ‘combined’ parameter 
log (degree*topological coefficient), exhibiting differences between Phase4 and all targets 
in several target classes and networks, abrogated such association with the relative litera-
ture enrichment of target nodes. Our interpretation of these analyses is that the identified 
associations between literature enrichment and node centrality fail to demonstrate a direct 
causal relationship determining network centrality for certain proteins simply because they 
are highly studied. These correlations may be conversely interpreted as coincidental con-
sequences of the fact that highly studied proteins could indeed be hubs in biological net-
works. However, as novel therapeutic concepts may involve target proteins that have not 
been studied as extensively as targets of approved drugs, a careful evaluation of their spe-
cific network connections, source and literature references would be pertinent, in order to 
assess the relevance of their node parameters as indicators of their potential fitness as drug 
targets. Additionally, as some studies identified prominent node centrality in network rep-
resentations with essential proteins and possibility of toxic effects upon their targeting with 
pharmaceutics [22, 24], we would recommend an especially careful evaluation of toxicity 
liabilities for hypothetical targets which exhibit marked hub features.

To complete our analysis, we generated predictive models of ‘likely’ drug targets utilizing 
the node centrality features from two of the studied protein networks (String0.7 and Pro-
teome). These models, recognizing over 80% of ‘true’ selective drugs targets (Phase4 set), 
also identify a limited number of ‘false positives’ (~ 10% of the proteome, defined as non-
redundant human coding genome in Uniprot; Table 3). Which we interpret as likely ‘fit’ 
targets based on their centrality metrics. As our ‘true’ target training set was deliberately 
limited to protein targets of very selective drugs, these predictions encouragingly largely 

Table 12  Null hypothesis probabilities for differences between Phase4 targets and all targets in 
disease association counts (abbreviated D.A.s) and related ‘hybrid’ graph-D.A.s parameters

Disease association counts were extrapolated from DisGeNET or Genetic Association Database. Additional parameters 
combining the percentile ranking of disease associations with network centrality metrics were evaluated: RNs score 
(reported in Ref. [50]); ‘R top’ and ‘R top-degree’ each combining the disease associations percentile (R) with one centrality 
parameter identified here as discriminating between ‘Phase4’ and ‘all targets’ protein sets: topological coefficient and 
log(degree*topological coefficient) (see Table 5), respectively. This analysis was performed on the String07 and Reactome 
networks, corrected for multiple testing across both centrality metric and target classes (Benjamini–Hochberg method). 
Cells are colored in increasingly darker shades of green according to statistical significance (N.S.: not significant)
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overlap with known targets of drugs with less restrictive selectivity profiles. The inclusion 
of non-graph features such as disease associations or functional annotations may further 
enable predictive models fine tuned on specific biological or disease contexts.

Conclusions
‘Druggability’ evaluations of potential targets from a structural biology perspec-
tive [54] are routinely performed in the pharmaceutical industry. These evaluations 
assess the availability of structural information, presence of surface cavities or pock-
ets suitable for ligand binding and their physico-chemical properties. There are sev-
eral other criteria that inform the evaluation of a drug target candidate, often target 
and business specific. In some cases, the perceived accessibility of a ‘druggable’ tar-
get may overcome incomplete validation of its therapeutic rationale, based on the 
reasonable assumption that the swift development of ‘tool compounds’ could help 
bridge this gap during early discovery stages. Nevertheless, a dispersion of resources 
will occur whenever the therapeutic hypothesis is disproved once suitable tool com-
pounds are obtained. In the absence of a compelling proof of concept for the under-
lying therapeutic hypothesis, the assessment of a protein’s network centrality could 
provide an easily available additional piece of information that might aid in the deci-
sion of whether to pursue this protein as a discovery target or not, and consequent 
allocation of resources.

Methods
Datasets retrieval and assembly

The ‘Phase4 targets’ and ‘all targets’ protein sets were identified within the ChEMBL data-
base [32] (version 27, 2020; https://​www.​ebi.​ac.​uk/​chembl/). ‘Phase4 targets’ were identi-
fied as follows: the ‘compounds’ database was filtered for ‘type = small molecules’, ‘max 
phase = 4’ ‘targets ≤ 4’. The ‘browse drug mechanisms’ analysis was performed for the 
resulting set of 538 compounds including the following filters: ‘target organism = homo 

Table 13  Analysis of Gene Ontology (GO) terms enrichment in ‘Phase4’ versus ‘all targets’ protein 
sets

The most frequent GO terms (representing 95% of all GO associations for the proteins in the String07 database) were ranked 
based on total number of associations. GO terms that exhibit twofold higher or lower frequency within the Phase4 set 
compared to the ‘all targets’ set are highlighted in blue or red respectively. In the target class specific analysis (right side of 
the table), the normalized difference in frequency of each term is reported. Values with effect size resulting in > 0.8 statistical 
power (p = 0.05) for the sample size of each dataset are highlighted in bold fonts

https://www.ebi.ac.uk/chembl/
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sapiens’ and ‘target type = single protein’, leaving 80 unique proteins. ‘All targets’ were iden-
tified as follows: the ‘targets’ database was filtered as above for human, single protein tar-
gets. Additionally, to ensure analysis of bona fide investigational – discovery targets, only 
targets with ≥ 40 associated compounds were selected, leaving 1743 proteins (excluding 
overlapping Phase4 targets). ChEMBL target identifiers were translated to their matching 
Uniprot [44] identifiers using the ‘ChEMBL_uniprot_mapping.txt’ file downloaded from 
the ChEMBL web interface. Searches of the StringDB [34] (v11.0, 2020; https://​String-​
db.​org/) with the ChEMBL and Uniprot identifiers further retrieved the corresponding 
String identifiers. The functional classification of targets based on Gene Ontology [33] 
(GO) terms was performed using the StringDB GO-terms analysis tool applied to ‘molec-
ular function’ annotations, pooling proteins by the following logical combinations of iden-
tifiers: channel or transporter (class ‘channels and transporters); enzyme not kinase (class 
‘enzymes’); GPCR or G-protein coupled receptor (class ‘GPCRs’); kinase (class ‘kinases’); 
nuclear receptor (class ‘nuclear receptors’). The complete set of GO annotations for the 
Uniprot reference human proteome (goa file) was downloaded from the Gene Ontol-
ogy Consortium web page (http://​curre​nt.​geneo​ntolo​gy.​org/​produ​cts/​pages/​downl​oads.​
html) The number of citations for each target protein was retrieved from automated Pub-
Med searches (https://​pubmed.​ncbi.​nlm.​nih.​gov) using the proteins gene abbreviation as 
search term applying the filters: ‘human’, ‘journal article’ and ‘title-abstract’. Search auto-
mation was implemented using a Knime [49] ‘GET Request’ node workflow. Disease asso-
ciation annotations were downloaded from the DisGeNet web page (curated gene-disease 
associations) (https://​www.​disge​net.​org/​downl​oads#) and Genetic Association Database 
web page (https://​genet​icass​ociat​iondb.​nih.​gov/).

Functional protein interaction databases retrieval and network analysis

Network analysis was performed using Cytoscape v3.8 [55]. Networks were either 
downloaded separately and imported (String v11.0 [34], InBioMap v1 [43]) or directly 
imported using the NDEx web import function in Cytoscape (BioGRID v3.5 [28], 
HumanNet XN v2 [41], Reactome v71 [42]). The complete human (taxonomy ID = 9606) 

Table 14  Overview of training features and performance of naïve Bayesian predictive models 
created from the String0.7 and Reactome networks, utilizing network-wide and target class-specific 
training, as in Table 11, and including additional non-graph parameters: disease association counts 
extracted from the DisGeNet database and GO terms associated with each protein

The inclusion of these features slightly enhanced the models’ performance (higher true positive Phase4 recall, reduced 
number of false positive ‘predicted’ targets)

https://String-db.org/
https://String-db.org/
http://current.geneontology.org/products/pages/downloads.html
http://current.geneontology.org/products/pages/downloads.html
https://pubmed.ncbi.nlm.nih.gov
https://www.disgenet.org/downloads#
https://geneticassociationdb.nih.gov/
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String network was downloaded from the StringDB website and filtered for different edge 
confidence cutoffs using the ‘zgrep’ editing command (e.g., for generation of the network 
at 0.7 confidence cutoff: zgrep “^” 9606.protein.links.v11.0.txt.gz | awk ‘($3 > 700)’ > high-
conf_links.txt). String networks contain a duplicate number of undirected edges as each 
connection is listed twice in the network file (i.e. A–B and B–A), giving rise to a degree 
distribution in multiples of 2. While this does not affect the direct network analysis, it 
has consequences for network randomization as it implies reassignment of a duplicate 
number of edges. In the analysis descriptions and randomization tests within this study 
we considered the String network with single undirected edges between each node pair 
(i.e. A–B only). Analysis of node parameters was performed using the Cytoscape network 
analysis tool [35]. Nodes with topological coefficient = 0, were excluded from statistical 
analysis of this parameter, as this corresponds to nodes with a single edge (degree = 1), 
confounding the trend of decreasing topological coefficients at increasing node degree. 
The percentages of such excluded nodes in the various analyzed full networks were as 
follows: String0.7 = 9.8%; String0.9 = 14.8%; String0.5 = 1.1%; BioGRID = 16.8%; Human-
Net XN = 2.6%; Reactome = 11.5%; InBioMap = 6.6%.

Full networks parameters distribution analysis

To evaluate overall characteristics and differences between the analyzed functional pro-
tein interactions networks, we mainly focused on the analysis of node degree distribu-
tion. A simple evaluation of scale-free characteristics was performed by power law fitting 
of node count vs degree for a degree range k ≥ 100, ≤ 1000 (to eliminate bias in the fitting 
slope caused by low degree saturation). The above fitting procedure results in an imbal-
anced statistical weight of low degree versus high degree nodes. A more advanced fitting 
procedure was performed utilizing cumulative degree probabilities to avoid the uneven 
statistical weight at different degree ranges in simple scatter plots. The fitting equation 
(Eq. 4.48 in Ref  [17].) accounts for low degree saturation and high degree cutoff through 
limit ‘ksat’ and ‘kcut’ parameters, respectively. All networks fit well to this model with 
exponential restrained in the scale-free range, between 2 and 3. No high degree kcut cor-
rection was applied. The low degree ksat cutoff was considerably larger for the String0.5 
network and HumanNet XN than other networks, confirming the more pronounced 
low-degree saturation hypothesized from visual inspection of scatter plot distributions.

Statistical analysis and data visualization

Statistical analysis and data visualization were performed using Microsoft Excel®, includ-
ing the ‘Solver’[56] and ‘Real Statistics’[57] add-in packages (f test, t test, non-parametric 
test, least squares fitting, linear regressionα and ANOVA, Benjamini–Hochberg multiple 
sampling correction, 2D plots) or TIBCO Spotfire® (ANOVA, Spearman rank order R2, 
contingency tables χ2, box and whisker plots, 3D plots). The following statistical evalua-
tions were performed according to the listed scenarios. ANOVA was used for compari-
son of node descriptors ranges between multiple target classes and evaluation of linear 
regression between literature citations and differences in centrality parameters for various 
target classes. T test (one tailed), equivariant or unequal variance depending on differ-
ences in sample size and variance (verified with F test), and Mann Whitney non-paramet-
ric exact test [58] (to account for the asymmetric, non-normal distribution of analyzed 
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parameters) were used for pairwise comparisons between Phase4 target lists vs all targets 
lists (class sorted). Mann Whitney non-parametric test with randomized simulated data 
[59] (N = 1000) was used to evaluate the P value of low-degree saturation power law fits 
to the cumulative degree distribution probabilities of the analyzed networks. Benjamini–
Hochberg correction was applied by adjusting the raw probabilities to the ratio between 
correction factor and threshold α (0.05). Spearman rank order R2 was used to evaluate 
correlations between citation counts and node centrality parameters. Contingency table 
χ2 were calculated to evaluate categorical enrichments (i.e. in predictive models).

Network randomization

Network randomization was performed using the Cytoscape Network Randomizer 
application [60] (v 1.1.3). Random networks were generated based on the size of the 
String network at 0.7 confidence cutoff (17,161 nodes, 419,761 edges, average degree—
Kmean 48.92). Barabasi-Albert randomization was performed with N = 17,161 and 
m = m0 = 25, yielding a total of 427,825 edges (a ratio of 1.02 relative to the original 
String0.7 network), Kmean = 49.86), Erdos–Renyi randomization (n, M model) was per-
formed with N = 17,161 and M = 419,761 (consequently yielding equal Kmean to the orig-
inal String 0.7 network). Watts–Strogatz randomization was performed with N = 17,161, 
Kmean = 49 and β = 0.25, resulting in a network with 411,864 total edges (a ratio of 0.98 
relative to the original String0.7 network).

Projection of degree distributions from scale‑free to random networks

Projection of the original network degree distributions of the ‘nuclear receptors—
Phase4’ and ‘nuclear receptors—all targets’ protein sets onto the scale free BA network, 
which had a higher minimum degree (Kmin) than the String0.7 network, all the nodes 
with K(String) < Kmin (BA) were assigned value = Kmin (BA); additionally, due to the 
incomplete frequency of individual high degree values, missing K(String) values were 
transferred to the nearest value in the BA randomized network.

Projections of the original network degree distributions of the ‘nuclear receptors—
Phase4’ and ‘nuclear receptors—all targets’ protein sets onto the normal degree distribu-
tion of random networks were obtained by selecting in each random network two pairs 
of random sets of nodes of equal size as the nuclear receptors sets (Phase4, N = 7; all tar-
gets, N = 32). Each random set met the following criteria (see Additional file 1: Table S5 
for specific parameter values of each random sample):

standard deviation KNrandom ≈ (Kmaxrandom – Kminrandom) • standard deviation 
[log(KNString0.7)].

This procedure approximates a log scaling of the original String0.7 degree distribu-
tion but circumvents the variation in relative distributions after scaling caused by 
mean(logKN) < log(Kmean). Normality of the selected random sets was verified using the 
Shapiro–Wilk test.

Kmeanrandom ≈ Kminrandom+(Kmaxrandom−Kminrandom)·log
(

KmeanString0.7
)

/ log
(

KmaxString0.7
)

;
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Generation of predictive models

We designed Knime [49] workflows to evaluate network centrality features and integrate 
them in predictive models aimed at identifying likely drug targets from the ‘Phase4’ ver-
sus ‘all targets’ classification used through this study. We tested all the predictive models 
from the Knime ‘Analytics’ node repository (i.e. Probabilistic Neural Network, Decision 
Tree, Random Forest, Naïve Bayesian model). We observed that most tested algorithms, 
with the exception of the Naïve Bayesian method, were heavily biased by the larger size 
of the ‘all targets’ proteins set compared to the ‘Phase4’ set, resulting in nearly 100% type 
II error (false negatives) for Phase4 targets, regardless of adjustment of the prediction 
settings. We thus opted for the optimization of Naïve Bayesian models with the aid of 
‘forward feature selection’ and ‘backwards feature elimination’ meta-nodes to identify 
suitable centrality features. Datasets were randomly split in 70% training – 30% test sets 
using the ‘Partitioning’ node, ensuring proportionality between ‘Phase4’ and ‘all target’ 
sets. We tested predictive models for all the protein networks analyzed in this study, 
finding that only models derived from the String0.7 and Reactome networks performed 
satisfactorily according to our optimization metrics focused on Phase4 recall, all targets 
F1 parameter (harmonic mean of recall and precision) and overall accuracy. Models were 
trained over the entire networks or individual target classes, as summarized in Tables 11 
and 14. The Knime workflows implemented to generate these models and resulting pre-
diction tables are available as supplementary files to this article (Additional files 2 and 3).

GO term enrichment analysis

The full list of GO annotations for the human proteome (goa file) was uploaded in a 
Knime workflow where GO terms were ranked by frequency and filtered to include 
95% of all associations, resulting in 25 high frequency GO terms. Gene identifiers were 
matched to the String07 network and GO terms associations were enumerated by target 
status (phase4 and all targets sets) and protein class. Relative enrichment or depletion 
of terms between protein groups was assessed by evaluating the normalized ratios and 
differences between individual GO terms associated to different groups of proteins (e.g. 
‘protein binding’ for Phase4 enzymes vs. all targets enzymes). A statistical analysis of 
these differences was performed by assessing the statistical power of the observed effect 
sizes relative to the sample size of each group of proteins. Differences exhibiting > 0.8 sta-
tistical power with target P = 0.05 were noted as meaningful and highlighted in Table 13.
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