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Abstract

AAA ATPases form a functionally diverse superfamily of proteins. Most members form homo-hexameric ring complexes, are
catalytically active only in the fully assembled state, and show co-operativity among the six subunits. The mutual
dependence among the subunits is clearly evidenced by the fact that incorporation of mutated, inactive subunits can
decrease the activity of the remaining wild type subunits. For the first time, we develop here models to describe this form of
allostery, evaluate them in a simulation study, and test them on experimental data. We show that it is important to consider
the assembly reactions in the kinetic model, and to define a formal inhibition scheme. We simulate three inhibition
scenarios explicitly, and demonstrate that they result in differing outcomes. Finally, we deduce fitting formulas, and test
them on real and simulated data. A non-competitive inhibition formula fitted experimental and simulated data best. To our
knowledge, our study is the first one that derives and tests formal allosteric schemes to explain the inhibitory effects of
mutant subunits on oligomeric enzymes.
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Introduction

Expression from Two Alleles
Enzymes often work in oligomeric assemblies with multiple,

interacting subunits. The blueprints for the primary structure of

enzymes lie in the genomes of organisms. Most eukaryotes are

diploid, meaning that two copies of the genome are present in each

cell, one from each parent. Hence, two different alleles of each

gene can be present. For most (but not all) human genes the

expression levels of the two alleles are similar, and no allele-specific

expression is found [1]. For this majority of cases, oligomeric

enzymes are composed of proteins expressed from different alleles.

In normal cases, this does not have any consequences for the

organism because both alleles are very similar and usually both

functional. However, in pathological cases defective genes can

have a dominant-negative effect on the intact allele of the gene.

Although there are several mechanisms that can lead to dominant-

negative inheritance among them haplo-insufficiency, aggregation

of the mutated gene product, complex genetic feedback circles we

focus here on cases where the gene products of the intact and the

defective allele co-assemble into a protein complex, and the

mutant gene product inhibits the proper function of the wild type

gene product.

Hereditary Spastic Paraplegia and Dominance of Spastin
Mutations

Our current study is inspired by the study of the microtubule-

severing enzyme spastin, which is encoded by the human SPAST

or SPG4 gene. SPG4 has been identified in families suffering

from hereditary spastic paraplegia (HSP), a disease that typically

manifests itself between the second to fourth life decade by

a progressive weakness of the lower limbs. The ‘Online Mendelian

Inheritance in Man’ database (http://omim.org/entry/604277?

search = spastin highlight = spastin) lists 22 disease-related allelic

variants of the SPG4 gene, among them at least ten that lead to

single amino acid changes. It is likely (and even has been shown in

some cases) that the disease-related variant is expressed along with

the wild type allele, suggesting that the dominant-negative effect of

these mutations emerges at the protein level. The same is true for

SPG10, another HSP gene that encodes the kinesin-1 type

microtubule motor protein KIF5A. Several SPG10 mutations

are known from HSP patient families that destroy the motor

function of KIF5A, suggesting that their dominant-negative effect

is imposed by an altered gene product. In vitro and in vivo studies

have supported this notion [2,3].

Combinatorics of Enzyme Oligomerization
To understand the way in which spastin and KIF5A mutations

invoke HSP in more detail, it is important to know that both

enzymes are functional as oligomers. KIF5A is active as a homo-

dimer, spastin as a homo-hexamer. As argued above, in

heterozygous patients both are likely to be composed of intact

and ‘defective’ subunits. Kinesin heavy chains form stable dimers

that do not exchange at an observable rate. Assuming equal

expression and protein production from both alleles, one can easily

calculate the probabilities of finding all combinations of wild type

and mutant subunits from a binomial probability distribution

(namely 1:2:1 (wt+wt : wt+mutant : mutant+mutant) if equal

amounts of wild type and mutant are present). The situation is

relatively easy because allosteric influences of one motor head on
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its partner have been investigated extensively, and for several

mutations the kinetic intermediate that is affected is known [2,4].

Spastin displays a far more complex behavior. It assembles and

disassembles dynamically, and forms hexameric rings. To appre-

ciate the tremendous increase of complexity in comparison to

kinesin, one has to consider the following facts: (i) Six subunits per

functional unit allow many more mixed states, with one, two, …,

six mutant subunits per ring. The number of mutated subunits per

spastin hexamer ring can still be calculated assuming a binomial

distribution. In addition, however, there are several configurations

of rings with a given number of mutant subunits (Fig. 1). For

examples, there are three ways of arranging two mutant subunits

in a hexameric ring (configurations 3–5 in Fig. 1). Due to the ring

shape of enzyme structures, identical configurations can occur as

rotational permutations. They cannot be mirrored because there is

an ‘upper’ and a ‘lower’ side of the ring [5]. The symmetry

properties of these configurations are important because the

comparison with other AAA ATPases suggests that the activity of

one subunit requires the neighboring subunit to provide an

arginine residue for the catalytic process [6–9]. In agreement,

patient families with a spastin R499C mutation suffer from HSP

[10,11]. The arginine finger comes from (only) one oriented

neighbor. Therefore, it is important to know which neighbor is

intact or defective. The increase in complexity is also due to (ii) the

dynamic assembly behavior, which makes it necessary to consider

assembly and disassembly rates that are different for wild type and

mutant subunits. In the case of kinesin, the dimeric structure is

stable over periods much longer than the catalytic cycle, and hence

negligible. The assembly rate is also unaltered by mutations,

because all known mutations are in the catalytic or the cargo-

interaction domain, and not in the neck domain, which is

responsible for the coupling of the motor domains [2,12,13].

Another well-studied example is GroEL, which is also stable over

the course of multiple catalytic turnovers [14]. In contrast, spastin

is mostly monomeric, and assembles into hexamers only for short

periods of time [5,15,16]. In fact, only one mutant in the ATP-

binding cleft the E442Q (human spastin numbering) point mutant

in the Walker B motif has been observed to form oligomers that

are stable enough to be observed in gel filtration, analytical ultra-

centrifugation, cross-linking and SAXS experiments [5,15,16].

Another observation emphasizes the importance of hexamer

assembly rates: an artificial, dimeric spastin construct behaved as if

it were fully activated by microtubules (kcat&4s{1 instead of

1s{1). Importantly, microtubules were shown to facilitate forma-

tion of higher oligomeric states, suggesting that oligomerization

and catalytic turnover are intricately convolved [17]. As a third

complication, (iii) spastin is an allosteric enzyme with a co-

operative mechanism. Kinetic studies with ATP analogs and

inactive spastin mutants showed that at least two of the six subunits

influence each other strongly [16]. This was concluded from

quantitative kinetic experiments using ATP and the substrate

analog ATP-cS, and by the dominant-negative effect of inactive

mutant subunits. Still, the allosteric coupling in spastin hexamers is

much less clear than that of, for example, kinesin and GroEL,

which are also allosteric enzymes. Their co-operativity has been

characterized in series of publications [14,18]. These three

arguments show how complex oligomerization and functionality

are intertwined, and how difficult it is to predict dominant-

negative effects of mutant subunits on wild type protein in mixed

oligomers. Although there are many ‘classical’ theories on

allosteric mechanisms that deduce allosteric properties from

(homotropic or heterotropic) ligand effects [19–22], there are only

few studies that address the question how mutant subunits can

exert a dominant-negative effect from a conceptional and

systematical point of view. Several publications on different AAA

ATPases reported the inhibitory effect of mutants in mixed wild

Figure 1. Possible configurations of subunits originating from different alleles. The subunits encoded by allele 1 (e.g. wild type, yellow)
and allele 2 (e.g. inactive mutant, red) are shown. The number is an arbitrary identifier of each conformation. The ‘Variable Names’ cSXXXXXX (X
either W or M, for wild type or mutant) signify the concentrations of the particular hexamer conformation in a simulation run. In the simulation,
rotational permutations of a given conformation (represented by the sequence of the letters M and W) arise, and are summed up to give the
concentration of the particular hexamer conformation.
doi:10.1371/journal.pone.0067815.g001
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type-mutant oligomers, and identified the observations as allosteric

effects [23–28]. A common scheme underlying these specific cases,

however, has not been discovered yet [29]. The mathematical

description of hexamer assembly leads to non-linear systems of

equations and cannot be solved analytically (Model and Methods).

Such systems can be investigated by numerical integration or

simulations. We approached the problem by Monte-Carlo simu-

lations that model the behavior of wild type spastin, and mixtures

of wild type and mutant spastin, because numerical integrations on

ensembles of finite sizes that are allowed form oligomers of limited

sizes have been shown to possibly lead to inaccurate results [30].

Results

To interpret the inhibition pattern of mixtures of wild type and

mutated spastin we first show that the assembly pathway kinetics

of hexameric rings is an important determinant for the steady

state ATPase turnover, before we investigate alternative allosteric

schemes that can explain experimental observations. We finally

demonstrate that one of these schemes describes the observed

behavior best. Note that we will use the term ‘pathway’ in the

context of oligomer assembly, the term ‘scheme’ if we refer to

inhibition networks and patterns.

Oligomerization and Activity of Wild Type Spastin
In experiments, dimeric spastin assemblies, but no higher oligo-

meric states, have been detected [5,16]. The evidence that hexa-

mers still are the active form of the enzyme are indirect. (i) Inhibition

studies show that the addition of inactive mutants to wild type

spastin slows down the ATP turnover per wild type subunit [16]. (ii)

Moreover, structural investigations of mutant protein and analogies

to other AAA ATPases indicate that spastin forms hexameric ring

structures that probably represent the active form of the enzyme

[5,15,16,31,32]. Hence, at saturating ATP concentrations, the

assembly pathway shown in figure 2 is the most basic one (Fig. 2A).

The catalytic step ATP turnover occurs at the rate kcat after the

hexamer has been formed, unless the hexamer disassembles with

the reverse rate k62. Since our model assumes saturating ATP

concentrations, the ATP binding step does not need to be

implemented as a bi-molecular reaction, and might occur before

or after hexamer formation. It is an important assumption of our

model, however, that the disassembly step k62 is not accompanied

by product (ADP and phosphate) release. Figure 2A treats the

steps between dimerization and hexamerization as one collective

step. As the simultaneous encounter of five molecules is negligible,

intermediate oligomers must play a crucial role in the progress of

hexamerization. In reality, subunits could join the partially

assembled oligomer one by one in a sequential manner (Fig. 2B).

For a hexamer, this would involve five different reactions (1+1,

2+1, 3+1, etc.; termed 1–2–3–4–5–6 assembly pathway). Howev-

er, in homo-hexamers, reactions of partially assembled inter-

mediates among each other are to be expected [33]. This reduces

the number of different reactions that lead to full assembly. Note

that the number of steps is always five but the number of different

reactions may be less than five (Fig. 2). The pathways involving the

least number of different reactions are shown in figure 2. They

involve either dimeric and trimeric intermediates (termed 1–2–3–6

pathway, Fig. 2C), or dimeric and tetrameric intermediates (1–2–

4–6 pathway, Fig. 2D). In principle, mixed pathways with up to

nine reactions are possible (the ninth reaction, trimer plus dimer, is

missing in figure 2). However, the 1–2–3–6 and the 1–2–4–6

pathways have a special feature: They require the least accumu-

lation of different intermediate oligomer pools. This is important

because all forward rates are concentration-dependent, and in

practice only occur if a sufficient amount of the reaction partners is

available.

A quantitative description of the oligomerization process,

however, is complicated. From figure 2, one can derive differential

equations that describe the temporal development of the system

(Model and Methods). As the concentration of free enzyme goes

into the rate equations with the first and second power (depending

on the step), a system of five coupled non-linear equations arises

that cannot be solved analytically. To describe the biochemical

reactions properly, and to be able to set up new experiments, we

used a Kinetic Monte-Carlo simulation for our system [34]. We

implemented the simulation as described in the Model and

Methods section (Fig. 3). In a first step, we modeled the

dependence of the ATP turnover rate on the spastin concentration

(Fig. 4 and 5). In experiments, the activity has been shown to

saturate at high enzyme concentrations [16]. As an additional

requirement to match the experimental observations, we chose the

assembly parameters to keep the equilibrium monomer concen-

tration as high as possible, and to keep the number of dimers

above the number of trimers (tetramers).

These requirements were fulfilled when the dimerization step

was slow, the following oligomerization steps were faster, and the

catalytic step were slightly higher than the observed maximal

turnover rate, kmax (Tab. 1). Note that we define here kobs as the

observed substrate turnover rate under a specific condition, kmax

as the extrapolated maximal rate, and kcat as the catalytic constant

(as indicated in figure 2) used in the simulation. For the following

simulations, we used the default set of parameters given in table 1.

The simulation gave reproducible traces for a given set of

parameters (Fig. 4B and 5B show the data of ten simulation runs

for each point).

The observed and simulated turnover rates (kobs) depended on

the total enzyme particle number. We performed our simulation

with varying total particle numbers, ten times for each condition

(Fig. 6). Again, the replicates produced very similar time traces. A

plot of the observed turnover rate, kobs, against enzyme particle

number followed approximately a Michaelis-Menten kinetics. We

therefore fitted the steady state data with equation 8 (Model and

Methods). The residuals displayed a systematic deviation, showing

that the Michaelis-Menten model does not describe the system

accurately. This is not unexpected because the oligomerization is

not pseudo-first order, and involves reactions of higher order than

assumed in the Michaelis-Menten model. Still, the half-maximal

activation constant calculated from the Michaelis-Menten fit, Km,

lay close to the particle number at which kobs~kcat (2:5:s{1 under

default parameter settings) was reached. In the 1–2–3–6 assembly

pathway with standard parameters, we found Km~1008+25
particles, in the 1–2–4–6 assembly pathway Km~1645+38
particles. A pseudo-first order approximation (equation 11)

predicted Km~990 particles, slightly lower than found in

simulations (Tab. 2).

Along with the kobs we plotted the fraction of wild type mole-

cules present in a specific oligomeric state in dependence of the total

particle number (Fig. 4B and 5B, right axis). The distribution

showed that the above requirements were fulfilled over a large

concentration range. As the model assumed hexamers to be the only

catalytically active form, the catalytic turnover, kobs, was directly

proportional to the number of wild type subunits in hexamers.

These plots allowed a comparison of the 1–2–3–6 and the 1–2–

4–6 assembly pathways (Fig. 6). The 1–2–3–6 assembly pathway

produced a steeper dependence of kobs on the particle number,

with a lower half-maximal activation constant. Moreover, the 1–

2–3–6 assembly pathwayfavored trimers at the expense of the

dimeric population. Concomitant with the relatively large trimer

AAA ATPase Kinetics Simulation
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population, the number of free monomers in the 1–2–3–6 pathway

was lower, showing that trimer formation is a key step in this

assembly pathway. In contrast, the 1–2–4–6 pathway produces

a fraction of dimeric intermediates larger than that of tetramers.

This is because the 1–2–4–6 assembly pathwaycontains two

reactions that are driven by a high concentration of dimers.

To get deeper insight into the dependencies of equilibrium

concentrations (and thus kobs) on the oligomerization rates, we

increased the rates k12, k23, k24, k36, k46 and kcat by a factor of 100

(Fig. 6). Not unexpectedly, increasing the dimerzation rate k12 in

the 1–2–3–6 assembly pathway increased the number of dimers

(Fig. 6C). In turn, trimer formation was favored, and the pool of

monomers was reduced. The half-maximal activation constant was

reduced from Km~1008 to 451+7 particles, more than two-fold.

The pseudo-first order formula predicted Km~9:9 particles. This

large discrepancy demonstrates the crucial importance of the

initial second order step.

The 100-fold increase of k23 also affected the free monomer

number due to a flow of monomers into trimers (Fig. 6E). At the

same time, it diminished the pool of subunits in dimers almost

completely. The half-maximal activation constant was reduced

from Km~1008 to 556+17 particles, a little less than two-fold

compared to the default parameter set. The calculated pseudo-first

order value was Km~504.

Figure 2. Assembly pathways. The figure shows four ways of assembling hexameric ring structures from monomers. Panel A is a scheme that
treats all steps after dimer formation as one collective step. The reactions leading to a hexamer are treated as reversible reactions (rates along the
arrows), the catalytic step as irreversible (rate kcat). Panel B fills in the missing steps from dimer to hexamer by sequential addition of single subunits.
We term the pathway 1–2–3–4–5–6 to indicate the oligomeric intermediates. Panels C and D show pathways in which partially assembled
intermediates are allowed to react with each other. In panel C, trimeric intermediates are allowed to react with each other (hence 1–2–3–6 pathway),
in panel D dimers are allowed to react with each other and with tetrameric intermediates (1–2–4–6 pathway). Numbers with yellow background
enumerate reactions of different intermediates (the 9th reaction of dimers with trimers does not occur in the displayed pathways).
doi:10.1371/journal.pone.0067815.g002
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Obviously, the increase of rate k36 will lead to a reduced

amount of trimers (Fig. 6G). Moreover, it will create a situation

where dimerization is rate-limiting at low total particle numbers.

As suspected from these considerations, the simulations produced

curves with a half-maximal activation constant which is a little less

than half of the default situation, and the Km changed from

Km~1008 to 458+9 particles. The calculated pseudo-first order

yields Km~990 particles.

As in the 1–2–3–6 assembly pathway, increasing the di-

merization rate, k12, in the 1–2–4–6 pathwayreduced the number

of free dimers in equilibrium at the expense of free monomers

(Fig. 6D). The half-maximal activation constant was Km~364+9
particles instead of 1645 particles in the default parameter set. The

calculated pseudo-first order value was Km~9:9 particles. With

a 100-fold increased k24 the half-maximal activation constant was

largely unaffected (Km~1858+77 instead of 1645 particles;

pseudo-first order 504 particles; Fig. 6F). A 100-fold higher k46

did not lead to major changes, either (Km~1060+29 instead of

1645; pseudo-first order 990 particles; Fig. 6H). At low particle

numbers, the pool of tetramers was strongly reduced. Over the

entire concentration range, the number of free tetramers became

rate-limiting. Together, these variations demonstrate that large

deviations to the pseudo-first order approximation occur when

rates of steps with quadratic dependencies are altered.

Increasing the kcat in either assembly pathway to 500, led to a of

less than 2/3 of kcat, and a huge Km (Fig. 6K). In this case, the

pool of hexamers decomposed mainly through the hydrolysis step,

making the forward oligomerzation steps rate-limiting.

Allosteric Basis of Inhibition by Mutant Subunits
In biochemical assays it has been shown that inactive mutant

subunits of AAA proteins inhibit the activity of wild type enzymes,

demonstrating that wild type and mutant proteins can form mixed

oligomers in vitro [16,24,26,27,35]. In addition, artificial con-

catemer constructs revealed the importance of different mixed wild

type-mutant hexamer configurations [25]. Still, the experimental

results are difficult to interpret because the assembly pathways

involve a large number of intermediates and combinations, and

are based on assumptions that have not been formulated explicitly,

nor tested rigorously for global consequences in computer

simulations.

We therefore extended our Kinetic Monte Carlo simulation,

and allowed the incorporation of mutant subunits along with wild

type (Fig. 1). In our simulations, the mutant was always considered

to be unable to hydrolyze ATP (inactive), as shown experimentally

for a number of AAA protein point mutants. The mutant’s effect

was assumed to originate from the allosteric coupling between the

subunits of the hexameric ring, and the activity of wild type

subunits in a mixed oligomer modulated by the presence of

mutant(s). Accordingly, wild type subunits were allowed to have

a ‘normal’ turnover rate, kcat,WW , and a reduced, ‘basal’ rate,

kcat,WM , which was manifested in the presence of mutant subunits

in the hexameric ring.

There are different, alternative inhibition schemes to model the

allosteric modulation of kcat (Fig. 7). In several publications it has

been assumed that one single defective subunit per hexamer can

abolish, or reduce the catalytic activity of the remaining active

subunits to the lower ‘basal’ rate (kcat,WM ) [26]. This assumption

resembles Monod-Wyman-Changeux’s model of themutually

exclusive existence of ‘tensed’ (T) and ‘relaxed’ (R) states in an

oligomer, which, however, does not make predictions on effects of

mutant subunits [36]. As it is not the only possible explanation, we

are considering here the following alternative inhibition schemes

(Fig. 7 and Tab. 3):

(i) One (or more) mutant subunits inhibit the activity of all

other wild type subunits in a hexameric ring (Fig. 7A),

Figure 3. Flow chart of simulation. The figure shows the computational implementation of the Monte Carlo simulation, its input parameters, and
the output produced.
doi:10.1371/journal.pone.0067815.g003
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(ii) a mutant inhibits both of its direct ring neighbors (Fig. 7B),

(iii) a mutant inhibits one oriented ring neighbor (Fig. 7C),

(iv) defective subunits do not have any influence on the

remaining subunits (not shown)

(v) There is a certain threshold of defective mutant subunits

(e.g. two, three etc. per hexamer) that has to be exceeded

before inhibition takes place ([26]; not shown).

It is relatively easy to see whether inhibition schemes (iv) and (v)

apply: the ‘no inhibition scheme’ (iv) predicts that the activity per

wild type subunit is unaffected by the presence of defective

mutant(s); the threshold scheme (v) with n§2 predicts sigmoidal

dependencies of rates on mutant concentration that are sums of

binomial probabilities, which has not been observed in any case

[16,26]. We do not elaborate on these schemes here, but focus on

schemes (i) to (iii) because they produce similar inhibition patterns

that are difficult to discern.

The kinetic scheme for wild type used above required

a minimum of five different reactions to account for hexamer

formation. The inclusion of mutant protein in the 1–2–3–6 or 1–

2–4–6 assembly pathways increases the number of possible

reactions tremendously. Each reaction in figure 2 C and D can

occur with any configuration of wild type-mutant oligomers.

Furthermore, the two reaction partners can combine in two

orientations (at the left-hand or right-hand side). For example,

tetramer formation according to the 1–2–4–6 pathway from two

dimers can occur as

WW+WW WWWW,

WW+WM WWWM or WMWW,

WW+MW WWMW or MWWW,

WW+MM WWMM or MMWW,

WM+WM WMWM,

WM+MW WMMW or MWWM,

WM+MM WMMM, or MMWM,

MW+MW MWMW,

MM+MW MMMW or MWMM and

MM+MM MMMM.

In principle, each of these reactions could have a unique

forward and a unique reverse reaction rate. From the molecular

perspective, however, it seems reasonable that the rates depend on

the interface neighbors: for example, it is reasonable that the

reaction WW+MM has the same rate as MW+MM because the

new interaction is the same (namely XW. MY, X and Y either

wild type or mutant). In our simulations, we therefore assumed

identical rates for reactions leading to identical subunit interfaces.

As given in the example above, we considered all permutations

and all possible reactions between intermediate multimers, but left

the simulation otherwise unchanged.

The simulation ran stable for both assembly pathways (1–2–3–6

and 1–2–4–6) and all three inhibition schemes, and produced

similar output for repeated runs with identical parameters.

Increasing mutant numbers at a constant number of wild type

subunits (typically, 1000) showed that the kobs (calculated per wild

type molecule) decreased in a continuously falling way (Fig. 8A

Figure 4. Simulation of wild type activity according to the 1–2–3–6 assembly pathway. Panel A: Time trace of cADP, and intermediate
oligomer concentrations. Panel B: Concentration dependence of activity with a Michaelis-Menten curve fit.
doi:10.1371/journal.pone.0067815.g004
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and E). When wild type and mutant subunits were set to default

rates for wild type and mutant, inhibition schemes 1 (Fig. 7A; one

defective mutant in a ring slows down all remaining wild type

subunits to a basal level) showed the strongest response on the

presence of mutant. Scheme 3 (Fig. 7C; only one direct neighbor is

affected) responded to the addition of mutant subunits only at

higher numbers of mutant subunits. Inhibition scheme 2 (Fig. 7B;

one defective mutant slows down its direct neighbors to a basal

level) was intermediate. By eye, the half-maximal inhibition

occurred between approximately 200 and 1000 mutant subunits

for all schemes (Fig. 8A and E). The simulated inhibition pattern

was very similar when 5000 instead of 1000 wild type subunits

were used although it was approximately five times higher than the

half-maximal activation constant for wild type only (Fig. 6). This

indicates that the subunit exchange rate did not limit the kinetics

in our default parameter set.

As for the wild type case, we tested the effect of varied

parameters for each inhibition scheme. Setting the association

constants,
kiz1,i

ki,iz1
, for mutant subunits to a different value than

wild type by changing the forward and reverse assembly rates, as

well as the variation of the catalytic constant of a wild type under

the influence of a mutant, kcat,WM , did not affect the simulation

result qualitatively (Fig. 8). Upon closer inspection, qualitative

differences become visible. The largest differences between the

inhibition schemes occurred when kcat,WW and kcat,WM differed to

a great extent (Fig. 8D and H). As intuitively expected, scheme 1

(Fig. 7A, one single defective subunit slows down all other wild type

hexamer subunits to the slower kcat,WM level) led to an inhibitory

effect with the smallest numbers of mutant subunits (Fig. 8, yellow

crosses). This effect was alleviated when the dissociation rate of

mutant-wild type and mutant-mutant neighbors was assumed to be

fast, meaning that the dissociation rates of neighbors with one

mutant partner (termed koff ,MX or koff ,XM , X either wild type or

mutant, in figure 8) were 100-fold faster than those with wild type

neighbors (Fig. 8B and F). When this rate was set to zero (i.e.: once

Figure 5. Simulation of wild type activity according to the 1–2–4–6 assembly pathway. Panel A: Time trace of cADP, and intermediate
oligomer concentrations. Panel B: Concentration dependence of activity with a Michaelis-Menten curve fit.
doi:10.1371/journal.pone.0067815.g005

Table 1. Default parameter values.

reaction forward rates reverse rates

2 monomers < dimer k12~0:01 k21~10

dimer+monomer < trimer k23~0:1 k32~10

2 dimers < tetramer k24~0:1 k42~10

2 trimers < hexamer k36~0:5 k63~10

tetramer+dimer< hexamer k46~0:5 k64~10

catalytic step (hexamer ? 6 monomers) kcat~5:0 n.a. (irreversible)

Standard Rates Used in the Wild Type Simulation.
doi:10.1371/journal.pone.0067815.t001
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a mutant subunit is incorporated the oligomer can only fall apart

through the pathway of full assembly and ADP production), the kobs

according to inhibition scheme 1 followed a steeper decrease

(Fig. 8C and G). This is because in equilibrium, the majority of the

wild type subunits is incorporated in oligomers together with

mutants, and thus performs slow substrate turnover. In this case

Figure 6. Dependence of wild type steady state kinetics on the choice of parameters. Panels A–E show simulations according to the 1–2–
3–6 pathway, F–K the 1–2–4–6 pathway. Data on panels A and F was created with the default parameter set. In panels B and G, the dimerization step,
k12, was accelerated 100-fold. In panel C the rate of timer formation from monomers and dimers, k23, was increased 100-fold, in H the rate of tetramer
formation, k24. Panels D and E show the effect of 100-fold increased hexamer formation rates, k36 (1–2–3–6 pathway) and k46, (1–2–4–6 pathway).
Finally, panels F and K display the effect of accelerated kcat values. The left axes show kobs, drawn is black crosses in the graph, the right axes the
frequency of subunits occurring in specified intermediates (red balls monomers, green double-triangles dimers, magenta triangles timers, magenta
squares tetramers, blue hexagons hexamers). The data are fitted with a Michaelis-Menten curve, above the graphs the residuals are given.
doi:10.1371/journal.pone.0067815.g006
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inhibition scheme 3 extrapolates to a relatively high kobs because

fewer mutant subunits are available as monomers in solution to co-

assemble with free wild type subunits. In addition, according to

inhibition scheme 3 the effect of mutated subunits in oligomers is

relatively mild. All of these features did not differ to a great extent

for the 1–2–3–6 and the 1–2–4–6 assembly pathway.

Analysis of Inhibition Experiments
One of the key questions of this study was whether it is possible

to devise a simple formula that describes the inhibitory response of

wild type to the presence of inactive mutants with sufficient

accuracy. For other AAA ATPases, a model based on the binomial

distribution of mutants in hexamers has been used frequently

[26,27,35]. The idea is that a threshold number of mutant subunits

in a hexamer leads to a complete inactivation of the remaining

wild type subunits. To this end, the probability of finding

a hexamer with 0, 1, 2, …, 6 mutant subunits is calculated from

a binomial probability distribution at each ratio of wild type/

mutant. Then, for each of the populations, a relative activity per

hexamer is assigned, namely 100% if it contains less than the

threshold number of mutants, and 0% else. This results in a set of

7 curves, predicting the dependence of the relative activity on the

percentage of mutant present (Figure 2 in [26]).

This model has three drawbacks: (1) the sum of wild type and

mutant protein is thought to be constant, meaning that the wild

type concentration is decreasing to zero towards 100% mutant.

This is problematic form a theoretical viewpoint, as well as from

the experimental perspective because at high mutant concentra-

tions, the signal-to-noise ratio is poor. (2) The model does not

implement allosteric effects. The concept of allostery is based on

the assumption of different wild type states (T to R, in the MWC

nomenclature). (3) In this model, binomial probabilities are

calculated from p~
nMut

nWtznMut

. Here, the initial, and not the

equilibrium numbers are used, which are likely to differ under

most conditions.

Binomial Fitting Model
To overcome these problems, we developed novel fitting function

that predicts the activity per wild type monomer as readout,

allowing to discriminate between an allosterically activated or

inhibited state. We also consider the possibility that wild type and

mutant subunits incorporate into hexamers with different rates. Our

fitting model distinguishes hexamers without mutants, and

hexamers containing at least one mutant subunit. The first

population comprises only wild type subunits in the fully active

state (kcat,WW ; MWC nomenclature: R state), the latter contains

wild type subunits in an inhibited state (with kcat,WM ; MWC: T

state) and mutants (that are completely inactive). Importantly, wild

type subunits only occur in hexamer configurations 1 to 13 (Fig. 1),

implying that the fit function has to disregard hexamers composed

of mutants only (Fig. 1, configuration 14). Then, the probability of

finding a hexamer with at least one mutant subunit is (Eqn. 1):

p Mut§1ð Þ~

P5
k~1

6

k

� �
nWt

nWtznMut

� � 6{kð Þ
1{

nWt
nWtznMut

� �k

P5
k~0

6

k

� �
nWt

nWtznMut

� � 6{kð Þ
1{

nWt
nWtznMut

� �k

nWt number of wild type subunits.

nMut number of mutant subunits.

The numerator reflects the number of hexamers that have 1,

2,or 5 mutant subunits, the denominator all hexamers that contain

at least one wild type subunit. The probability of finding a hexamer

without any mutant is (Eqn. 2):

p Mut~0ð Þ~
nWt

nWtznMut

� �6

P5
k~0

6

k

� �
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Then, the observed turnover is (Eqn. 3a):

kobs~kcat, WW
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4
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Table 2. Fitted parameter values of pure wild type simulated
models, and pseudo-first order prediction.

parameter
set 1–2–3–6

pseudo-
mono–
molecular 1–2–4–6

kcat Km dKm Km kcat Km dKm

default 4.5 1008 25 990 4.5 1645 38

100 k12 4.6 451 7 9.9 4.6 346 9

100 k23(24) 4.4 557 17 504 3.7 1858 77

100 k36(46) 4.5 458 9 990 4.5 1060 22

100 kcat 330 23846 160 991 318 35901 271

Response of the model on parameter variation.
doi:10.1371/journal.pone.0067815.t002

Figure 7. Inhibition schemes. The figure shows three reasonable
ways how inactive mutant subunits could inhibit the hexameric
assembly. (A) If all subunits were strictly coupled and the activity of
each subunit depended on an entirely intact surrounding, any inactive
mutant subunit would inhibit all other subunits (scheme 1, full ring
cooperativity). (B) If there were only a local effect on the neighboring
subunits, only the two neighbors would be inhibited (scheme 2, local
influences). (C) The inhibition might be even more specific and directed
to only one of the two neighbors (scheme 3, neighbor inhibition).
Table 3 was derived from these schemes considering all possible
configurations (Fig. 1).Not shown: for the simulation, the affected
subunit does not necessarily need to be the neighbor of the mutated
subunit but could also lie in the opposing position. Additional schemes
not considered here are discussed in the text.
doi:10.1371/journal.pone.0067815.g007
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kcat,WW catalytic constant of wild type under allosteric control of

wild type.

kcat,WM catalytic constant of wild type under allosteric control of

mutant.

To implement the possibility that wild type and mutant

incorporate into hexamers with different association constants,

we introduced a factor d, with which the mutant concentrations in

equation 7 were multiplied (Eqn. 3b):

kobs~
n5

wtkcat, ww

6d5n5
mutz15d4n4

mutnwtz20d3n3
mutn

2
wtz15d2n2

mutn
3
wtz6dnmutn

4
wtzn5

wt

z
6d4n4

mutz15d3n3
mutnwtz20d2n2

mutn
2
wtz15dnmutn

3
wtz6n4

wt

� �
dnmutkcat, wm

6d5n5
mutz15d4n4

mutnwtz20d3n3
mutn

2
wtz15d2n2

mutn
3
wtz6dnmutn

4
wtzn5

wt

The use of d to account for different affinities between wild type

and mutant subunits is a simplification that circumvents the use of

non-linear equations due to the law of mass attraction. It assumes

that the number of free mutant subunits in equilibrium is

proportional to the number of mutants used in total. In general,

this is not true. Hence, d cannot be translated easily into the ratio

of affinities wild type-wild type/wild type-mutant.

Non-competitive Fitting Model
As an alternative, we deduced a fit function from a non-

competitive inhibition scheme (Fig. 9). Non-competitive inhibition

was described by the following model. The concentrations cES

and cIES (concentrations of enzyme-substrate and enzyme-

substrate-inhibitor complexes; Fig. 9) were calculated from Ks,

Ki, cE, cS (enzyme and substrate concentrations), and cI (inhibitor

concentration) by the law of mass attraction [37]. The turnover

rate was defined as cES:kcat,WW zcIES:kcat,WM . This results in

the following solution (Eqn. 4):

f (x)~
nWt kcat, WW

:Kizkcat, WM
:xð Þ

KsznWtð Þ Kizxð Þ

The equation is an extension of a textbook formula, with the

generalization that kcat,WM may be larger than zero [37]. It should

be noted that the reaction scheme underlying this fitting function

does not describe the case of co-assembly of wild type and

(inhibitory) mutant subunits because in ‘classical’ models, both

substrate and inhibitor concentrations are independent parame-

ters. Therefore, in general equation 4 cannot return meaningful

biochemical parameters. It turns out, however, that it fits

experimental and simulated data surprisingly well. As a purely

empirical comparison, we used a single-exponential fit to the data.

Fit Functions on Simulated Data
To test the feasibility of the fit functions, the simulated data

from figure 8 were re-plotted with best fits for each formula

(Fig. 10). Fits of simulations according to scheme 1 with the non-

competitive inhibition fit function showed systematic deviations

(Fig. 10B). As this formula was derived from a model that differs

fundamentally from inhibition scheme 1, this observation is not

unexpected. Vice versa, data sets of all inhibition schemes could be

fitted by the binomial fit formula surprisingly well (Fig. 10A). This,

however, does not imply that the binomial fit model describes the

kinetic mechanism appropriately, as shown by the purely empirical

exponential fit that matched the data equally well.

Moreover, the binomial fit showed severe quantitative mis-

matches, and the fitted kcat,WW values were a factor of 2–3 too low

(Tab. S1). As the maximal turnover rate of wild type is usually

known from experiments in the absence of mutant, this

shortcoming is particularly worrisome. We therefore repeated

the fitting procedure with a fixed kcat,WW ~5:s{1. Under this

constraint, the binomial fit showed a clear qualitative deviation

whereas the non-competitive fit was almost identical as before

(Fig. 11). With fixed kcat,WW values, the fitted value of Km in the

Table 3. Activity Patterns in Mixed Hexamers.

Scheme 1 Scheme 2 Scheme 3

configuration
(see Fig. 1)

nww fraction of
fully active wild
type

nwm fraction of
inhibited wild
type

nww fraction of
fully active wild
type

nwm fraction of
inhibited wild
type

nww fraction of
fully active wild
type

nwm fraction of
inhibited wild
type

1 6/6 0 6/6 0 6/6 0

2 0 5/5 3/5 2/5 4/5 1/5

3 0 4/4 2/4 2/4 3/4 1/4

4 0 4/4 1/4 3/4 2/4 2/4

5 0 4/4 0 4/4 2/4 2/4

6 0 3/3 1/3 2/3 2/3 1/3

7 0 3/3 0 3/3 1/3 2/3

8 0 3/3 0 3/3 1/3 2/3

9 0 3/3 0 3/3 0 3/3

10 0 2/2 0 2/2 1/2 1/2

11 0 2/2 0 2/2 0 2/2

12 0 2/2 0 2/2 0 2/2

13 0 1/1 0 1/1 0 1/1

14 0 0 0 0 0 0

Numbers of wild type subunits with full and inhibited activity per hexamer.
doi:10.1371/journal.pone.0067815.t003
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non-competitive scheme was very close to what was obtained

previously (Fig. 4 and 5), kcat,WM reasonably close to the value put

into the simulation, and KI close to the point of half-maximal

inhibition (Tab. S2). Considering the systematic deviations of the

fit to scheme 1, the non-competitive inhibition model described

the simulated data of scheme 2 and 3 with great accuracy.

Applicability of Simulations
To test whether our simulation reflects the experimental data,

we overlaid simulated and measured data points (Fig. 12 and 13).

To this end, we scaled the experimental concentrations propor-

tionally to the number of wild type subunits in the simulation, nWt

and converted, for example, the experimental concentration of

5:88:10{7M to 1000 particles. Also, as the measured kmax was

Figure 8. Inhibition of wild type activity by mutants. The graph plots the simulated turnover rates, kobs, as functions of mutant molecule
numbers (nWt = 1000). The simulations for panels A–D used the 1–2–3–6 assembly pathway, E–H the 1–2–4–6 modelpathway. The different inhibition
schemes are indicated as amber crosses (scheme 1), blue triangles (scheme 2) and green circles (scheme 3). The parameters for wild type-mutant
interactions were varied as indicated and described in the text. koffXM and koffMX signify the dissociation rates of a mutant (M) with any neighbor (X)
in either left or right direction.
doi:10.1371/journal.pone.0067815.g008

Figure 9. Reaction scheme for derivation of non-competitive
inhibition fitting function. E enzyme, S substrate, I inhibitor, Km

Michaelis-Menten constant, Ki inhibition constant, P product.
doi:10.1371/journal.pone.0067815.g009
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slightly lower than simulated (3:8s{1 vs. 3:3s{1 (1–2–4–6) and

3:7s{1 (1–2–3–6) [16]), we adjusted the kobs axis accordingly.

In experiments, a strong dependence of spastin’s apparent

turnover rate on the enzyme concentration was observed (Fig. 12).

The activation was positively correlated with the enzyme

concentration, and could be fitted by a hyperbola [16].

Our simulations on wild type enzyme according to the 1–2–3–6

and the 1–2–4–6 assembly pathways both showed good agreement

with these data. Due to the limited number of experimental data

points, which get extremely noisy at low enzyme concentrations,

we cannot elucidate the assembly behavior in more detail. The

empirical Michaelis-Menten curve is sufficient to describe the

dependence. Our simulations also matched the experimental

inhibition data with great accuracy. Figure 13 shows the calibrated

experimental (red crosses), and the simulated data (blue crosses). In

particular, the experimental data points fall in close proximity to

simulation data obtained by inhibition scheme 2 (Fig. 13A and E).

Still, none of the schemes matches perfectly.

The situation changes if one considers that the experimentally

determined protein concentrations are inherently error-prone,

which may lead to systematic errors concerning the ratio of

mutant and wild type protein concentrations. With 20%

measurement error in each concentration, the ratio ranges

between 0.67 and 1.5. When we adjusted the scaling of the

experimental data manually to match either of the simulated

curves best (Fig. 13B–D and F–H), we found almost perfect

convergence, especially with inhibition scheme 2 (Fig. 13C and G).

In this case, the systematic error correction had to be 1.3-fold, well

within the estimate of the experimental accuracy. The shape of

data according to inhibition scheme 1 clearly differed from

experimental data (Fig. 13B and F), and the error correction had

to be high (a factor of 0.25) to match the data at all. Scheme 3

resembled the scaled experimental data very closely if a 4-fold

error correction was used (Fig. 13D and H). Together, these results

argue that an inhibition scheme assuming interactions in two

directions (inhibition scheme2) is most likely, whereas scheme 3

with interactions in one direction only is disfavored due to

quantitative mismatches. The MWC-like scheme 1 is implausible

because of its clear qualitative deviations.

Discussion

AAA ATPases are a family of proteins whose members catalyze

various chemo-mechanical reactions [38,39]. The majority is

active in the form of hexameric rings and displays a complex form

of cooperativity [25,40–43]. The large number of allelic forms of

human AAA ATPases with dominant-negative pathogenic effects

is known (http://omim.org/), highlighting the impact of subunit

interactions and co-operativity in AAA oligomers. For the first

time, we address here this problem systematically, and predict the

kinetic consequences of alternative cooperative models by

computer simulations. In particular, we consider assembly

reactions as important steps for the steady state rate, which to

our knowledge has not been done so far.

Traditionally, co-operativity is detected in plots of catalytic rate

vs. substrate concentration, where sigmoidal curves are evidence

for positive co-operativity. All common explanatory models

assume stable oligomeric enzymes with multiple binding sites,

such as hemoglobin or the lacI protein [19,21,22,44,45].

Another, less conventional way to detect co-operativity is the use

of hetero-oligomeric enzymes composed of intact and defective

Figure 10. Fitting of inhibition curves. The figure shows the same simulation data points as in figure 8A (1–2–3–6 assembly pathway, default
rates) with different fit functions. Curve fits to simulated data according to the 1–2–4–6 assembly pathway look essentially the same. Each panel
shows the same fit function for the three inhibition schemes.
doi:10.1371/journal.pone.0067815.g010

Figure 11. Qualities of binomial and non-competitive fit functions. The graphs show logarithmic plots of simulated data according to
inhibition scheme 1 (amber crosses). Panels A and B were generated using the 1–2–3–6 assembly pathway, panels C and D the 1–2–4–6 pathway. The
data were fitted to the binomial (top row, panels A and C) and the non-competitive fit function (bottom, panels B and D). Blue lines show fits with
iteratively optimized kcat,WW, green lines with fixed kcat,WW ~5:s{1.
doi:10.1371/journal.pone.0067815.g011
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Figure 12. Simulated wild type data and experimental data. The figure shows the enzyme concentration-dependent ATPase activity as
measured previously (red crosses [10]) in comparison to simulated data (blue crosses). The left panel shows simulated data according to the 1–2–3–6
assembly model, right 1–2–4–6.
doi:10.1371/journal.pone.0067815.g012

Figure 13. Simulated inhibition data and experimental data. The graphs show logarithmic plots of experimental data (red crosses; [10]) and
simulated data (blue crosses). Panel A and E: The graphs show experimental data that was proportionally adjusted to match nWt and the uninhibited
kobs (red crosses [10]), along with simulated data points (blue crosses; schemes 1–3 according to the labels). The other panels show the scaled
experimental data with a correction for possible systematic errors in protein concentration determinations.
doi:10.1371/journal.pone.0067815.g013
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subunits. The reasoning is: If wild type subunits did not influence

their catalytic behavior mutually, the addition of inactive mutant

subunits would most likely have no impact on the resulting activity.

Vice versa, in plots of catalytic rates (per wild type subunit) vs.

inactive mutant concentration, co-operativity would be reflected

by rates that depend on the mutant concentration. In fact, several

publications report a decrease of the steady state catalytic turnover

rate in the presence of increasing mutant concentration [16,26].

Curiously, there is also a case published where the activity is best

in 50:50 mixtures of wild type and mutant [35].

Alternative concepts explaining traditional models of co-

operativity have been developed in decades of work [19–

22,44,46]. Models of co-operative effects induced by mutant

titrations have not been worked out yet, and thus, existing

publications use coarse simplifications, or even intuition. Indeed,

the accurate description of these experimental setups is compli-

cated for at least two reasons.

One problem is that the equilibrium concentrations of enzyme

monomers and oligomers cannot be calculated easily due to the

fact that homo-oligomerization is a non-linear phenomenon. A

frequently used approximation is that in equilibrium the con-

centrations of free wild type and mutant subunits are the same as

the initial, total concentrations of these species [16,27,35,45]. The

probability of incorporating k mutant subunits into an oligomer is

computed by a binomial probability function, taking the ratio of

mutant subunits in total protein as the parameter p (probability of

encountering a mutant). That the initial wild type and mutant

concentrations are different from the equilibrium concentrations

has been disregarded frequently, possibly because the calculation is

complicated and requires the solution of a set of coupled non-

linear equations [26,27,35,45]. To overcome this problem, we

devised here explicit assembly pathways, and predict specific meta-

stable intermediates. This can help in the design of future single-

molecule experiments that elucidate the oligomerization kinetics,

a problem that has only recently been addressed experimentally [47].

The other problem is that modeling of co-operative effects by

use of wild type-mutant mixtures requires an explicit assignment

of the inhibitory mechanism. By inhibitory mechanism we mean

a concise description of the inhibitory effect of mutant subunits

on the other subunits of the oligomer in dependence of the

configuration (Tab. 3). We think it is extremely important to

consider this point because several structural investigations have

shown that even homo-hexameric AAA ATPase rings may contain

structurally distinct subunits [41,48,49]. To our knowledge, our

study is the first one that systematically compares the conse-

quences of different patterns of inhibition.

In fact, our simulations using alternative inhibition schemes

produced highly diverging curves. Scheme 1, in which one

defective subunit affects the entire ring, had the strongest effect

under all parameter settings. As intuitively expected, scheme 3 led

to the weakest inhibition effect, and thus the highest Ki. scheme 2

was intermediate. Which inhibition scheme applies to the real,

experimental situation?

We can answer this question here for spastin, for which we

generated experimental data [16]. In figure 10, we compared the

experimental inhibition data with our simulations. We found

a strong qualitative and quantitative resemblance to inhibition

scheme 2, which assumes an effect of inactive mutant subunits on

both neighboring subunits. This idea is not unrealistic, and models

involving allosteric coupling in both directions have been put forth

for the PAN ATPase complex [50]. In fact, the model works even

if allosteric coupling does not affect direct neighbors, but subunits

further away. Although inhibition table 3 would differ sightly, the

result would not change recognizably.

With our simulation study we wanted to find out whether

simplified kinetic models are able to explain the complicated

allosteric dependencies. In the literature, a strong bias for models

implementing binomial distributions prevails [26,27,35,45]. How-

ever, these examples show systematic deviations between fit and

data. To test whether these deviations were due to an insufficient

mathematical description or whether they had a systematic cause,

we developed an improved binomial fit formula accounting for the

fact that (i) mixed wild type/mutant hexamers contain three levels

of activity (mutant, fully active and inhibited wild type), and (ii)

that wild type and mutant subunits may have different oligomer-

ization constants (factor d in equation 3). Our model fitted

experimental and simulation data qualitatively very well but failed

quantitatively. The fitted kcat,WW values were more than two-fold

lower than the set values. When kcat,WW was fixed at the known

number (5 s-1), the curve fit showed clear systematic deviations,

even for inhibition scheme 1 (Fig. 9A and C).

As an alternative, we used a non-competitive inhibition model,

extended from textbook knowledge [37]. This model treats

inhibitor binding as pseudo-first order event, which is legitimate

for ligands but not for homo-oligomers [33]. Still, for many

parameter sets equation 4 fitted the curves qualitatively and

quantitatively with reasonable accuracy. The fitted kcat,WM was

mostly within a range of 2 from the true value but sometimes off

to a much larger degree. Also, the fitted Km values lay close to

those obtained in simulations without mutant. Interestingly,

a pseudo-first order approximation came close to the fitted values

but was very sensitive towards changes of any bi-molecular rate

(Tab. 2).

Together, our simulations show that ‘avalanche’ hexamer

assembly pathways can describe the observed dependence of

spastin activity on the enzyme concentration. Moreover, these

simulations predict a negative co-operativity of inactive mutant

subunits. Naively, we expected to see the best agreement between

simulation data according to inhibition scheme 1 and the binomial

fitting function, and inhibition scheme 3 and the non-competitive

fitting function. Surprisingly, the distinction was not clear in our

analyses. For experimental data, the non-competitive inhibition

scheme was the only one that fitted the data with sufficient

accuracy. Still, these observations show how difficult it is to

conclude from global inhibition patterns of randomly mixed

enzyme populations on molecular models. To circumvent these

difficulties, experiments have been performed that test specific

configurations (Fig. 1) by use of artificially fused AAA proteins

[25]. The authors interpreted their results in the light of three

models, which they called ‘concerted’, ‘sequential’ and ‘probabi-

listic’. The concerted model is essentially the MWC model that

does not allow the simultaneous presence of R and T forms in one

oligomer, with the implicit assumption that mutant subunits do not

alter the rule of symmetry conservation. The sequential model

describes the inhibition behavior inspired by Koshland, Nemerthy

and Filmer (KNF model) who assumed an induced fit that leads to

the sequential activation of subunits in the oligomer [22]. The

authors excluded both of these models: They argue that their

‘‘results rule out a requirement for concerted hydrolysis in six

subunits’’, and their ‘‘findings were inconsistent with models

requiring concerted hydrolysis by a subset of subunits’’ because

they found hexamers that contained at least one mutant subunit

but still showed full enzymatic and unfolding activity [25]. For

example, a construct that separated all wild type subunits by

mutants (configuration 9 in figure 1) showed wild type activity. At

first sight, this seems to contradict a sequential transmission of an

induced fit, as hypothesized by the KNF model.
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However, this view disregards possible differences between wild

type-wild type and wild type-mutant interactions, and also possible

differences between different mutants. In fact, all observations by

Martin et al. can be explained by a modification of our inhibition

scheme 3: If only the E185Q Walker B mutant has an inhibitory

effect on the oriented, second-next neighbor, and the R370K

mutant has no (or negligibly small) influence on wild type subunits,

the observed rates reveal the levels of kcat,WW and kcat,WM (Fig.

S1). Although there may be slight adaptations necessary to fully

explain all details of the study, our general claim is that it is

possible to devise an inhibition scheme that fits all data, if it

(i) distinguishes different allosteric activity levels in wild type

subunits, (ii) clearly tabulates a network of subunit interactions,

and (iii) considers that different mutants may disturb the allosteric

network in different ways. These principles are in line with other

studies from Sauer and co-workers that show elegantly that there is

co-operativity and allosteric coupling in ClpX, and that the

mutants E185Q and R370K have greatly differing phenotypes

although both are inactive in homo-hexameric mutant rings

[23,24].

We think that the allosteric mechanism of hexameric AAA

ATPases is more complicated than our current model imple-

ments. For example, there may be more than two allosteric

states (wild type under influence of wild type or mutant, in our

terminology, or R and T in the MWC model), and the patterns

of mutual interactions may be more complicated than we

implemented in our simulations. Models that view hexamer

subunits in groups of three functionally coupled entities, as

proposed for ClpX and PAN, are attractive and have substantial

experimental support [24,50]. In the future, we will extend our

model in the light of these ideas, and link it to the force generation

mechanism.

Model and Methods

Kinetic Monte Carlo Simulation
The simulation used here calculated the numbers of the

biochemical reactants (monomeric and oligomeric enzyme species,

and the ADP produced) over time based on the model and the

initial values described below. The reaction was assumed to

occur in an arbitrary unit volume, in which the particles were

homogeneously distributed, and their encounters not diffusion-

limited. The simulation implemented a Gillespie (also known as

Kinetic Monte Carlo) algorithm, as illustrated in scheme 2 [34].

The number of simulation steps (usually 100,000 time steps),

and the initial number of particles (n0, typically 1,000 to 10,000)

could be adjusted. After each simulation run, the time traces were

checked manually to ensure that stable equilibria had been

reached. The values before equilibrium were discarded for the

calculation of rates. The rate was derived from a linear fit of the

ADP production over time. We implemented the simulation in

Igor Pro (Wavemetrics, Portland, OR, USA), which we also used

to analyze our experimental data [16].

The list of intermediate species is shown in figures 1 and 2,

where all possible final configurations are listed (Fig. 1), and the

partially assembled oligomers are embedded in the kinetic scheme

(Fig. 2). The program considered the possibility that newly added

subunits (or partially assembled intermediates) could join the

reaction partner at either side (‘left’ or ‘right’).

The total ATP turnover rate of wild type spastin was derived

from the number of subunits present in hexamers, and their

catalytic turnover rate (Eqn. 5):

kobs~nW6kcat,W6

kobs observed turnover.

nW6 number of wild type subunits assembled in hexamers.

kcat,W6 catalytic constant of wild type spastin.

The key step in our simulation is the calculation of nW6. To

account for the fact that hexamerization most likely does not

proceed via addition of subunits one by one (1-2-3-4-5-6 pathway;

Fig. 2) but via assembly of oligomeric intermediates [33], we used

two models illustrated in figure 2. The assembly according to the

1-2-3-6 pathway occurs according to the following set of equations

(Eqn. 6a):

d

dt
cE1~2k21cE2zk32cE3z6kcatcE6{2k12cE2

1{k23cE1cE2

d

dt
cE2~k12cE2

1zk32cE3{k21cE2{k23cE1cE2

d

dt
cE3~k23cE1cE2z2k63cE6{k32cE3{2k36cE2

3

d

dt
cE6~k36cE2

3{k63cE6{kcatcE6

The 1-2-4-6 assembly pathway (Fig. 2) is described in the

following set of differential equations (Eqn. 6b):

d

dt
cE1~2k21cE2z6kcatcE6{2k12cE2

1

d

dt
cE2~k12cE2

1z2k42cE4zk64cE6

{2k24cE2
2{k46cE2cE4{k21cE2

d

dt
cE4~k24cE2

2zk64cE6{k46cE2cE4{k42cE4

d

dt
cE6~k46cE2cE4{k64cE6{kcatcE6

Mutant Inhibition Simulation
To calculate the catalytic turnover of mixed wild type/mutant

hexamers, each subunit in a hexamer was assigned to a specific,

model-dependent kcat, which could be either high (kobs,fast) or low

(kobs,slow). Different alternative allosteric models were formulated,

and used as look-up tables for the simulation program (Fig. 1 and

Tab. 3). The rationales for the competing models are given in the

Results part.

To calculate the average catalytic turnover, the simulation kept

track of the number of particles in a given oligomeric state and

configuration. There are four different arrangements of mixed

wild type-mutant dimers (WW, WM, MW, and MM), 16 different

arrangements of tetramers, and 14 of hexamers. The number of

hexamer configurations is lower than that of tetramers because

rotational permutations occur that lead to identical arrangements.

The catalytic turnover numbers are always given per wild type

subunit present in the simulation, not per hexamer. The apparent

turnover rate per wild type subunit (kobs,perWt) was calculated

according to the following equation with values from table 3

AAA ATPase Kinetics Simulation
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(Eqn. 7):

kobs,perWt~
kcatWt,fast

:nWt,fastzkcatWt,slow
:nWt,slow

nWt,total

where

kobs,perWt observed apparent turnover rate, originating from

wild type subunits in mixed wild type-mutant hexamers

kobs,fast catalytic constant of uninhibited wild type spastin (in

practice identical to kcat,W6)

kcatW ,slow catalytic constant of wild type spastin, inhibited by the

presence of mutant subunits

nW ,fast number of wild type spastin subunits in hexamers with

fast turnover

nW ,slow number of wild type spastin subunits in hexamers,

inhibited by the presence of mutant subunits nWt,total total number

of wild type subunits

In our model, the assembly of hexamers played a central role.

The program therefore allowed the variation of all kinetic rates of

the 1–2–3–6 and the 1–2–4–6 pathways (Fig. 2). Both models

included four forward rates and four backward rates of the

dimerization reaction (W+W < WW, W+M < WM, W+M <
MW, M+M < MM). The 1–2–3–6 model included 16 forward

and 16 backward rates for trimer formation (XX+W < XXW or

WXX, XX+M < XXM or MXX; XX any of the dimer

configurations) resulting in eight trimer configurations, and 64

forward and 64 backward reactions for hexamer formation,

resulting in 14 different hexamer configurations (fewer than in the

preceding step because of rotational symmetry) (Fig. 1). The 1–2–

4–6 assembly pathway required 16 forward and 16 backward

reactions for tetramer formation, resulting in 16 different tetramer

configurations. The hexamerization reaction had 4 (number of

dimer configurations) 16 (number of tetramer configurations) 2

(attachment of the dimer to the left or the right of the tetramer)

= 128 forwards, and 128 backward rates.

The forward and reverse rates of all combinations between wild

type and mutant intermediates were allowed to differ in the

program. In practice, however, we set all rates of reactants with

identical interfaces to the same value. For example, the

tetramerization rate k24,WM was identical for all reactions

XW+MX (X any type). Otherwise, the simulations were evaluated

as for wild type only.

Analysis Methods
To analyze the simulated data sets we used the following fit

functions.

Michaelis-Menten equation. To fit a Michaelis-Menten

curve, the following equation was used (Eqn. 8 [37]):

kobs( )~
kcat

:

Kmz

x substrate concentration

Pseudo-first order reaction scheme. The pseudo-first

order reaction was derived from the following reaction scheme

(Fig. 14)) and set of equations. In this scheme, only the first step is

assumed to depend on the substrate concentration. Subsequent

steps were treated as internal or conformational changes. This

system is described by (Eqn. 9):

d

dt
cE1(t)~{cS:k12

:cE1(t)zk21
:cE2(t)zk61

:cE6(t)

d

dt
cE2(t)~cS:k12

:cE1(t){k21
:cE2(t){k23

:cE2(t)zk32
:cE3(t)

d

dt
cE3(t)~k23

:cE2(t){k32
:cE3(t){k36

:cE3(t)zk63
:cE6(t)

d

dt
cE6(t)~k36

:cE3(t){k61
:cE6(t){k63

:cE6(t)

ctotal~cE1(t)zcE2(t)zcE3(t)zcE6(t)

cS is the substrate concentration, which in this case has to be

interpreted as the concentration of the required intermediate, cEk.

The steady state solutions are (Eqn. 10):

cE1(t)~
cEtotal(k21k32k61zk21k36k61zk23k36k61zk21k32k63)

a

cE2(t)~
cEtotalcS:k12(k32k61zk36k61zk32k63)

a

cE3(t)~
cEtotalcS:k12k23(k61zk63)

a

cE6(t)~
cEtotalcS:k12k23k36

a

a~k21k32k61zk21k32k63zk21k36k61zk23k36k61zcS: k12k23k36ð

zk12k23k61zk12k23k63zk12k32k61zk12k32k63zk12k36k61Þ

The steady state turnover is k616(t), and (Eqn. 11):

Km~
k21k32k63zk21k32kWWzk21k36kWWzk23k36kWW

k12k23k36zk12k23k63zk12k32k63zk12k23kWWzk12k32kWWzk12k36kWW

Supporting Information

Figure S1 Proposed allosteric network for explanation
of behavior of fused ClpX wild type-mutant chimera.
Data taken from [25].

(TIF)

Table S1 List of fitted parameters using different fit
functions (all parameters free in iteration).

(XLS)

Table S2 List of fitted parameters using different fit
functions (kcat,WW fixed to preset value).

(XLS)

Figure 14. Reaction scheme for derivation of pseudo-first order
approximation. The reaction scheme specifies the reactions that were
used to derive the pseudo-first order formula.
doi:10.1371/journal.pone.0067815.g014
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