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Abstract

Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In
many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into
groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multi-
domain in nature but the diversity of the accessory domains and their organization are usually not taken into account while
classifying kinases into groups or subfamilies.

Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to
suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and
iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between
two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to
handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively
validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human
protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is
based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences
for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores
computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also
provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica.

Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other
classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multi-
domain architecture.
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Introduction

Kinases constitute a key class of enzymes responsible for the

regulation of many biological phenomena. By covalently attaching

a phosphate group to its target (phosphorylation) a kinase is able to

regulate a particular biological reaction. Kinases are virtually

involved in almost every signal transduction pathway occurring in

a living cell. Although different types of biological molecules can

be phosphorylated (proteins, nucleotides, lipids, etc), the largest

group of kinases is protein kinases, which phosphorylate at Ser/

Thr or Tyr residues. About 2% of proteins encoded in genomes of

most of the eukaryotes are indeed Ser/Thr/Tyr kinases [1]. They

are involved, for example, in cell cycle control, embryonic devel-

opment, as well as in cancer pathways, and thus constitute popular

drug targets [2–4].

Genome sequencing projects generate data at a rate that makes

it impossible to conduct biological experiments to characterize the

function of every protein encoded in a genome. In this context,

several groups, including ours, have developed bioinformatic

approaches to identify and analyze the repertoire of protein kinases

(kinomes) in complete genomes [5–22]. Our KinG database [1]

(http://hodgkin.mbu.iisc.ernet.in/,king/) currently stores the ana-

lysis made from 488 genomes: 54 eukaryotes, 49 archaebacteria,

259 eubacteria, and 126 viruses. Ser/Thr/Tyr kinases form a very

large protein family. They are divided into many subfamilies which

usually correspond to different substrate specificities and mode of

activation. Classification of protein kinases encoded in a genome

into various subfamilies is extremely valuable to gain further insight

into their detailed biological function. However the available

classification approaches as used, for example, in the construction of
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KinG and Kinomer databases [23], use the amino acid sequences of

catalytic kinase domain only and ignores the sequence of the regions

outside the catalytic domain.

Several classification schemes for kinases have been proposed in

the literature. In their path paving work, Hanks and Hunter

performed conservation and phylogeny analysis of the catalytic

domains of eukaryotic protein kinases [24,25]. It enabled them to

reveal conserved features of the catalytic domain; furthermore,

protein kinases with similar mode of regulation clustered together

in the resulting phylogenetic tree [24]. In a subsequent paper, they

exhaustively applied the phylogenetic analysis to all eukaryotic

protein kinases whose sequence was available at the time of their

study, i.e., 243 sequences. Based on the resulting phylogenetic

trees, they proposed a classification scheme consisting in 5 major

groups, divided into 55 subfamilies, with related substrate

specificity and mode of regulation [25]. This classification scheme

which is entirely dependent on the amino acid sequences of

catalytic domains only, is currently used to describe the sequences

stored in our KinG database. The Hanks and Hunter classification

has then been extended by different groups. An extended version

of Hanks and Hunter classification has been developed for the

Protein Kinase Resource [26,27] (http://www.nih.go.jp/mirror/

Kinases/). It is composed of three levels: 9 groups, 81 families and

238 subfamilies. Another extension of Hanks and Hunter classi-

fication was developed by Manning and coworkers for the

KinBase database (http://www.kinase.com/kinbase). Families

were obtained by sequence comparison of the catalytic domains,

aided by knowledge of sequence similarity and domain structure

outside of the catalytic domains, known biological functions, and

gross similarity in biological functions of kinases across organisms

[7,28]. It currently consists of 10 groups divided into 256 families.

Some of the 256 families are organism-specific. This classification

has been subsequently used by Miranda and Barton, who

proposed a multilevel classification procedure based on Hidden

Markov Model (HMM) profiles of catalytic domains for sequence

classification [29]. This classification scheme has been used to

describe the sequences stored in the Kinomer database [23]. The

Kinase Sequence Database (http://sequoia.ucsf.edu/ksd/), con-

tains 7128 protein kinases from 948 organisms, classified into 287

families [30]. The clustering into subfamilies is achieved by a

recursive algorithm combining BLAST and profile-based searches.

An all-against-all BLAST search is first carried out to produce a set

of pairwise scores. The top-scoring pair is then used to generate a

HMM profile and the sequences matching that profile are

integrated into the family and removed from the data set. This

procedure is iterated until exhaustion of the pool of sequences or

on reaching the lower limit of BLAST score. The KSD

classification scheme relies only on the catalytic domain sequences

and it does not consider non-kinase regions in multi-domain

kinases. A specific classification for plants is used in PlantsP

(http://plantsp.genomics.purdue.edu/), a database dedicated to

plant protein kinases and phosphatases [31,32]. In this approach

protein kinase sequences were clustered using scores provided by

full-length sequence comparison using BLAST and maximal

linkage clustering. This resulted in a classification with three levels:

5 classes divided into 27 groups, divided further into 44 families.

This classification, however, is specifically designed for plant

protein kinases. A comprehensive classification of all kinases, not

restricted to protein kinases, was carried out by Cheek and

colleagues [33,34]. They built HMM profiles corresponding to

Pfam and COG families of catalytic kinase domains [35–37] and

used them to retrieve all putative kinases from a non-redundant

database. Evolutionary links between profiles were then detected

using PSI-BLAST and related families were merged, resulting in a

final classification into 11 groups, divided into 25 families and

encompassing 59,402 sequences. In the resulting classification, all

protein kinases belong to the same family of 22,074 sequences,

other families separating kinases for other substrates. Finally,

structural information can also be incorporated into the classi-

fication. Scheeff and Bourne thus combined sequence alignment

and structural features to perform Bayesian phylogenetic infer-

ence, yielding a phylogenetic tree encompassing 31 protein kinases

[38]. Recently, Jabobs et al classified 426 structures corresponding

to 71 distinct human protein kinases, based on the conformations

of two structural elements. The resulting clusters were in

agreement with inhibitor specificity of the kinases [39]. Unfortu-

nately, structural information is available only for a small fraction

of protein kinases, making these approaches not suitable for whole

kinome analysis. It thus appears that the main classification

schemes currently in use for full kinome analysis are based on or

derived from the Hanks and Hunter pioneering classification that

relied solely on the catalytic domain sequences. They do not

automatically make use of information on accessory domains that

are found tethered to the catalytic kinase domain [8,15,16].

In this paper, we present a strategy to detect outliers in existing

kinase classification. Our strategy is based on an alignment-free

scoring scheme, which implicitly considers domains tethered to

catalytic kinase domain. Similarity between sequences is assessed

by the presence of common short amino acid patterns. This is an

extension to the measure introduced by Kelil et al [40], with a

consistent normalization scheme. These similarities are then used

as input to an iterative procedure to detect outliers, i.e., proteins

with inconsistent classification. We report the result of the outlier

detection on the human kinome and the kinome of Entamoeba

histolytica.

Results and Discussion

We first present some notable features of protein kinases that

explain the difficulties of kinase classification and led us to develop

this approach. We then use a small data set of well characterized

kinases and compare different types of distances (alignment-based

and alignment-free) both on full-length sequences and catalytic

domains. The correlation between them and their ability to form

homogeneous clusters is assessed. We finally report some

potentially interesting cases that emerge from the analysis of the

entire human kinome using alignment-free distances, and a brief

analysis of the Entamoeba histolytica kinome.

Specific features of protein kinases
Many protein kinases are multi-domain proteins. The

functional catalytic core of all Ser/Thr/Tyr kinases is a domain of

approximately 250–270 amino-acids with a common three-

dimensional fold [41]. In many eukaryotic protein kinases, as

well as in a number of prokaryotic protein kinases, this catalytic

domain is tethered to one or more non-kinase domains that are

responsible for regulation, substrate specificity, scaffolding, etc

[42]. Globally, 64% of the kinases analyzed in KinG database

have at least one accessory domain tethered to the catalytic kinase

domain. If we restrict to the human kinome, 330 kinases out of

about 550 are multi-domain proteins. There is also a wide variety

of different protein architectures, as listed in Table 1, with 65

distinct domain architectures seen in the validation data set of 212

human kinase sequences. The presence of accessory domains is

thus a non-negligible factor, that should be taken into account for

the kinase classification. In an early attempt, we have tested the

use of distance measures based on domain architectures, with

moderate success (see Text S1). Indeed, an inherent limitation of

Protein Kinase Classification
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such distances is that they rely heavily on the domain detection

step. Difficulties in this step are discussed in the next paragraph.

Domain detection can be difficult in some cases. It is not

uncommon that significant proportion of a long protein sequence

is unassigned in terms of domains. For example, a very long

protein kinase of several thousands of residues can be described by

a catalytic domain that only spans a small portion of it and much

of the rest of the sequence might remain uncharacterized by any

standard domain family. In the KinG database, the coverage of

sequences by Pfam domains, on a per-residue basis, ranges from 6

to 100%. Low coverage typically refers to very long protein kinases

with a catalytic region as the only detectable domain. Conversely,

total coverage is often found in short proteins that match catalytic

domain profile almost on their whole length. For human kinases,

the coverage is between 11 and 97%, with an average of 58%.

The average coverage of kinomes stored in KinG by Pfam

domains is highly variable across different organisms. For example,

on a per-residue basis, it is equal to 21% for Prochlorococcus marinus,

43% for Plasmodium falciparum, and 80% for Phycomyces blackesleeanus.

It means that, depending on the organism, 20 to 80% of sequence

length in kinases have no detectable match with Pfam domain

families. This reflects both on the variety of kinome organizations,

and the fact that domain detection is impaired on highly divergent

sequences such as those found in Plasmodium falciparum. In the cases

of proteins with two kinase domains in a gene product, it is not

trivial to consider subfamilies of both the kinase domains in the

classification.

Domain shuffling occurs in protein kinases. Another

feature of multi-domain protein kinases that complicates the

classification is that they display domain rearrangement, i.e.,

domain A is followed by domain B in a kinase, and domain B

is followed by domain A in another kinase. Some examples of

domain shuffling seen in protein kinases are listed in Table 2.

It can be seen that different domains can be tethered on both

sides of the catalytic domains. In some cases, alternate domain

architectures are seen within the same organisms.

Comparison between different distances
The classification of protein kinases is classically based on the

comparison of amino acid sequences of catalytic domain regions

alone. Given the (i) multi-domain nature of many protein kinases,

(ii) difficulty of domain assignment, and (iii) existence of domain

shuffling, we wished to propose a protocol to refine classification

that would:

N take into account full-length sequences,

N be insensitive to domain detection inaccuracies by avoiding the

step of domain detection,

N take into account domain shuffling.

These are achieved by Local Matching Score (LMS) measure, that

satisfies these three conditions.

Here, we compare the distances derived from LMS with

alignment-based distances: distance based on percentage identity

between catalytic domains ( = identity distance), distance based on

BLOSUM scores between catalytic domains ( = BLOSUM catalytic

distance), and distance based on BLOSUM scores between full-

length sequences ( = BLOSUM full distance). For comparison pur-

pose, the LMS distances are computed for catalytic domains

( = LMS catalytic distance) and full-length sequences ( = LMS full

distance). All distances are normalized between 0 and 1. Com-

putation of distances are detailed in the Materials and Methods

section. The validation data set consists of 212 human kinases with

their classification well established.

Selected examples. Figure 1 illustrates the difference be-

tween different types of distances on two selected pairs of human

Table 1. Composition of the validation data set.

Hanks and Hunter
classification group Nb(prot)1 Nb(archi)2

Agc 37 17*

camk 35 7*

Ck1 6 1*

cmgc 38 1*

mekk_ste11 2 2*

mek_ste7 3 1*

mlk 3 1

nima 4 2*

pak 4 1

plantrk 3 3*

polo 1 1

Ptk 51 31*

Raf 2 1

tgfb 10 4*

translationk 2 2*

wee1 2 1*

unclassified 9 1*

Total 212 65

1: number of proteins,
2: number of distinct domain architectures,
*: contains the basic architecture made of a single catalytic domain.
doi:10.1371/journal.pone.0012460.t001

Table 2. Examples of domain swapping in protein kinases.

Alternate domain
architectures1

Organisms in which the 2 architectures
are seen2

Ank Pkinase/Pkinase Ank -

Pkinase Death/Death Pkinase Bos taurus, Branchiostoma floridae, Gallus gallus,

Snipe’s laevis, Xenopus tropicalis

FHA Pkinase/Pkinase FHA Roseiflexus sp. (strain RS-1),

Saccharomyces cerevisiae (strain AWRI1631)

Trichodesmium erythraeum (strain IMS101)

PP2C Pkinase/Pkinase PP2C Arabidopsis thaliana, Micromonas pusilla
CCMP1545,

Micromonas sp. RCC299, Oryza sativa subsp.
japonica,

Ostreococcus tauri, Vitis vinifera

SH2 Pkinase/Pkinase SH2 -

UBA Pkinase/Pkinase UBA -

Pkinase PH/PH Pkinase Entamoeba dispar SAW760, Trypanosoma cruzi

1: domain architectures are searched against PFAM 24.0,
2: for each architecture, corresponding sequences are retrieved from PFAM 24.0,
and the origin organism is considered. Abbreviations used: Pkinase: protein
kinase catalytic domain, Ank: ankyrin repeat, Death: death domain, FHA:
Forkhead-associated domain, PP2C: protein phosphatase 2C, SH2: src
homology 2 domain, UBA: ubiquitin associated domain, PH: pleckstrin
homology domain.

doi:10.1371/journal.pone.0012460.t002

Protein Kinase Classification
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kinases Proteins. ENSP00000266970 and ENSP00000293215,

aligned on Figure 1A do not possess any accessory domains or

unassigned regions. Hence, distances computed from catalytic

domains and full-length sequences give consistent results: about 0.2

using BLOSUM distances and 0.4 using LMS distances. On the

contrary, proteins ENSP00000281821 and ENSP00000350896,

shown in Figure 1B are multi-domain kinases. Their catalytic

domains share high sequence identity, but these proteins are less

similar if we consider their full lengths. The divergence of the

sequences even results in different domain assignment in these two

kinases: domain GCC is detected in ENSP00000350896 but not in

ENSP00000281821. Indeed, distances based on catalytic domains

are smaller than full-length distances: 0.2 versus 0.5 with BLOSUM

distances, and 0.4 versus 0.8 using LMS distances Note that whether

a GCC domain is detected in sequence ENSP00000350896 or not

has no influence on full-length distance computation since the

approach does not rely on domain definition. For the same reason,

they allow to take into account the similarity in linker regions: in this

example, the regions upstream the catalytic domains.

Global comparisons. Figure 2 presents the correlation

between different distances computed from the validation data

set. All types of distance are positively correlated, with Spearman

correlation coefficients ranging from 0.45 to 0.88. As expected,

sequence alignment-based, i.e., identity distances and BLOSUM

distances show very high correlation, with coefficients between

0.73 and 0.88. These distances are all computed after sequence

Figure 1. Sequence alignment of selected protein pairs. A: Sequences ENSP00000266970 and ENSP00000293215. B: Sequences
ENSP00000281821 and ENSP00000350896. Identities are indicated by black background. Pfam domains are indicated by colored boxes:
red = catalytic domains, magenta = domains detected in both proteins, blue = domain detected in only one protein. Abbreviations used:
Ephrin_lbd = Ephrin receptor ligand binding domain, GCC = GCC2 and GCC3 domain, fn3 = fibronectin type III domain, Pkinase = protein kinase
domain, SAM = sterile alpha motif domain (type SAM_1 is detected in ENSP00000350896 and type SAM_2 is detected in ENSP00000281821). Global
sequence alignment is obtained using the Needleman-Wunsch algorithm. For each pair of sequences, the different distances are indicated at the
bottom of the alignment. Image generated using ESPript software [52].
doi:10.1371/journal.pone.0012460.g001

Protein Kinase Classification
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alignment, the difference between them being the way the

alignments are scored, they are thus expected to give similar

results. By contrast, LMS distances show lower correlation with

alignment-based distances, with correlation coefficients between

0.42 and 0.50. These distances are based on the detection of

common patterns between sequences without alignment, and are

thus likely to bring additional information. Interestingly, on the

comparison between full-length LMS distances and identity

distances, as well as the comparison between full-length LMS

distances and identity distances, points are scattered in the region

corresponding to low identity distance. This scattering indicates

that some pairs of sequences can appear in close proximity

according to identity distance between their catalytic sites, and

have various similarity level based on LMS distances.

These results underline the importance of considering regions

outside catalytic kinase domain in classification, as sequence

alignment-based measures tend to overrate the similarity levels

between two multi-domain kinases with high similarity in the

conserved kinase region and poor or almost no similarity outside

the catalytic region.

Ability to generate homogeneous clusters. We assess the

efficiency of the different types of distances to delineate pertinent

biological groups in a data set of 212 human protein kinases. As

explained in the Materials and Methods section, sequences of the

validation data set are assigned into 17 broad families, derived

from Hanks and Hunter classification, in agreement with

Swissprot annotations. The ability of the distances to cluster

these sequences in homogeneous groups is assessed using the

Figure 2. Comparison between the different distances computed between protein sequences of the validation data set. LMScat: LMS
distances between catalytic domains, LMSfull: LMS distances between full-length sequences, IDcat: identity distances between catalytic domains,
BLOSUMcat: BLOSUM distances between catalytic domains, BLOSUMfull: BLOSUM distances between full-length sequences. The lower panel reports
the Spearman rank correlation coefficients between different distances.
doi:10.1371/journal.pone.0012460.g002

Protein Kinase Classification
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procedure illustrated in Figure 3a. Briefly, distance matrices are

used as the input to hierarchical clustering using Wards linkage;

the resulting hierarchical trees are then cut at various depths, and

the global quality of resulting clustering is measured by the

Biological Homogeneity Index (BHI). A BHI close to 1 indicates

homogeneous clusters with respect to the available annotations. In

Figure 3b, we report the BHI as a function of the number of

clusters, obtained using different distance matrices. It can be seen

that the four types of distances yield clusters of high and roughly

similar homogeneity. It should be noted that we do not expect

a better performance of LMS distances over alignment-based

distances when comparing catalytic domains only. Under such

circumstances, sequence alignment is surely the most accurate way

to evaluate the similarity between two sequences. The LMS scores

are only an approximation of this similarity, based on common

patterns. At 17 clusters, which is the number of different broad

families in the data set, BHI is equal to 94.2% using identity and

BLOSUM distances, 92.5% using the LMS catalytic distances and

94.8% using the LMS full distances.

Outliers in the human kinome
Having shown that distances between full-length sequences are

able to form homogeneous clusters on a small validation data

set, we now employ them to detect outliers in the human kinome.

We use the iterative procedure described in the Materials and

Methods section, to detect sequences that are divergent compared

to the core members of their group. These sequences constitute

potential cases of uncertainty in classification. In some of these

outliers, amino acid sequence of the catalytic region is most similar

to a particular sub-family of kinases, but the regions outside the

catalytic kinase region suggests similarity to another sub-family.

We refer these cases as ‘‘hybrid kinases’’.

Analysis of kinases in various organisms, ranging from prokary-

otes to eukaryotes, revealed the presence of hybrid kinases [42]. For

example, in the protozoan parasite E. histolytica, occurrence of few

hybrid kinases has been reported [22]. Typical agc1 kinases are

characterized by a single domain (the catalytic domain). However in

four E. histolytica kinases with catalytic domains closely related to the

agc1 subfamily, pleckstrin homology (PH) domain occurs before the

kinase region in the primary structure. Such a domain architecture

is typical of certain agc3 kinases, which act near plasma membrane.

High similarity of the catalytic region to agc1 kinases suggest that

some of the properties, such as substrate specificity and/or mode of

regulation, of these hybrid kinases are inherited from agc1.

However, given the existence of PH domain in these kinases, some

other properties, like sub-cellular localization or involvement of

phospholipids, may be inherited from agc3. One of the E. histolytica

kinases shows good similarity to camk kinases in its catalytic region.

However, atypical of camk kinases, this E.histolytica kinase has an

endonuclease 5 domain following the kinase domain in the sequence

[22]. This feature suggests that this kinase might interact with single-

stranded or duplex DNA, while the substrates of this kinase would

be closely-related to substrates of typical camks. Such unusual

domain architectures in hybrid kinases may also suggest a role of

these kinases in facilitating cross-talks between different signal

transduction pathways. Some of the E. histolytica kinases show close

similarity to cytoplasmic kinases in their catalytic kinase regions.

However a transmembrane region is predicted in all these E.

histolytica kinases. This suggests a hybrid nature in these kinases,

inheriting the property of association with membrane, like a

receptor kinase, and potentially with substrate specificities similar to

that of a cytoplasmic kinase. Occurrence of kelch domain has been

reported [22] in a few E. histolytica tyrosine kinases, which indicates

roles of these kinases in regulatory and cytoskeletal function. In an

extreme case of hybrid nature, both histidine kinase domain and

Ser/Thr kinase domain have been observed in a cyanobacterial

protein [15].

The originality of our approach is to take into account the full-

length sequences of all the kinases including hybrid kinases, such as

those discussed above, and other multi-domain kinases. We have

Figure 3. Assessment of different distances to detect homoge-
neous clusters in the validation data set. A: each distance matrix is
used as input to hierarchical clustering; clusters are extracted from the
resulting trees and assessed by the biological homogeneity index (BHI); B:
evolution of BHI according to the number of clusters. LMScat: LMS
distances computed from catalytic domains, LMSfull: LMS distances com-
puted from full-length sequences, BLOSUMcat: Blosum distances com-
puted from catalytic domains, BLOSUMfull: Blosum distances computed
from full-length sequences, IDcat: identity distances computed from
catalytic domains. Horizontal and vertical lines indicate respectively
BHI = 1 and number of clusters equal to 17.
doi:10.1371/journal.pone.0012460.g003

Protein Kinase Classification
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employed the procedure on the set of human kinases that were

originally assigned, using the sequence of catalytic regions only,

into one of the 55 standard subfamilies. During this classification, a

number of kinases fell in the category of ‘‘unclassified kinases’’ as

they did not show convincing level of similarity to any of 55 well-

established subfamilies of protein kinases. These unclassified

kinases were excluded in the present exercise. The final AUC

distributions obtained with BLOSUM and LMS distances are

presented in Figure 4. It can be seen that the histogram of AUC

values obtained using BLOSUM distances exhibits continuous

distribution, with no clear-cut threshold. On the contrary, we can

easily set a threshold equal to 0.75 on the histogram obtained

using LMS distances. Using this threshold, 38 sequences are

detected as outliers, and proposed as putative hybrid kinases. In

order to understand the hybrid nature of these outliers, we

examined the closest sequences (in LMS distance) of each outlier

and propose an annotation based on the neighbors. After a careful

scrutiny, the final list of hybrid kinases comprises of 37 sequences.

Summary information for these 37 cases is provided in Table S1,

additional information is given in Table S2 and all AUC values are

given in Table S3. In Table S1, we provide details about the

catalytic domain similarity to known sub-families, available

biological information and LMS similarity. In particular, we

report the identity and sequence coverage percentage that was

observed during our assignment to one of the Hanks and Hunter

subfamilies using profiles of catalytic domains (see Materials and

Methods section). Based on the LMS distances, and classification

of closest neighbors, we suggest a classification which reflects

hybrid nature of these kinases. In a number of cases, however, we

are not able to suggest a hybrid annotation (question marks in

Table S1), because the outlier has no close neighbors, or they are

too diverse. Lack of closely-related kinases with good similarity in

the catalytic region adds a further dimension of novelty to these

kinases. We do not suggest that our classification as hybrid kinases

should supplant currently existing classifications. We draw

attention to the divergent similarity links that can exist among

multi-domain kinases, when one restricts the comparison to

catalytic domain or consider the full-length (multi-domain)

sequences. Only experimental biochemical characterizations could

provide ultimate confirmation. We discuss a few selected cases

below.

ENSP00000303165. According to its catalytic domain, this

kinase belongs to the agc1 subfamily (ATP-dependent and GTP-

dependent protein kinases). It corresponds to Swissprot entry

ST32A_HUMAN and is annotated as Ser/Thr protein kinase.

There is evidence at transcript level for this protein, and no

experimental data regarding the substrate or mode of regulation is

available. Based on the LMS distance, this sequence is very similar

to a sequence classified as agc_other. No known accessory

domains were detected in this sequence, which is 358 amino

acid long, although the number of residues outside the aligned

catalytic region is nearly 100. Its catalytic domain, which is 259

residue long, displays distant similarity with the one of agc1: the

match is characterized by 36% sequence identity with 99%

coverage. There is thus a possibility that similarity outside the

catalytic domain influences the classification of full length protein

close to agc_other subfamily rather than agc1, which is assigned

when one considers only the catalytic region.

ENSP00000155926. This kinase is classified as camk1, i.e.,

calcium/calmodulin regulated kinase, with distant similarity to

camk1 catalytic domain profile: 30% identity and 94% coverage

according to rps-blast search. This sequence corresponds to

Swissprot entry TRIB2_HUMAN and is annotated as camk,

belonging to the tribbles subfamily. There is evidence only at the

transcript level for this protein. Like the previous case, there is a

single catalytic domain detected in this sequence, covering 245

residues, for a total length of 343 residues leaving almost 100

residues outside the catalytic domain. Based on LMS distances the

full-length sequence is classified as camk2 probably due to the

sequence outside the catalytic region. Hence a hybrid camk1/

camk2 status is assigned to this protein.

ENSP00000369030. This sequence belongs to the camk2

group, with low similarity in the catalytic domain: 30% identity

over 94% coverage based on rps-blast. Again, no known accessory

domain was detected in this sequence which is 483 residues long,

with a catalytic domain of 263 residues. It corresponds to swissprot

entry Q59GL9_HUMAN, for which there is evidence only at the

transcript level, and appears close to an unclassified kinase using

LMS distance, suggesting a hybrid camk2/unclassified status. One

might expect the catalytic region of this protein recognizes

substrates similar to that of a classical camk2, with regulatory

strategies different from that of a classical camk2. The similarity

Figure 4. AUC distributions obtained on the human kinome. A: AUC obtained using the iterative procedure starting from BLOSUM full-length
distances, B: AUC obtained using the iterative procedure starting from LMS full-length distances. The vertical red line indicates the cut-off for the
detection of hybrid kinases.
doi:10.1371/journal.pone.0012460.g004
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with nearest homologues (members of camk2 subfamily) is

confined to the catalytic domain.

ENSP00000363115 and ENSP00000229470. These two

kinases are classified as ptk1 (src subfamily) in the current

literature, but according to LMS scores, these two proteins are

closer to subfamily of ptk8. ENSP00000363115 corresponds to

Swissprot entry FGR_HUMAN, labeled as src Tyr kinase. There

is experimental evidence at protein level for this entry [43] but its

substrate specificity and mode of regulation are unknown. Its

catalytic domain is tethered to SH3 and SH2 domains; similar

domains are seen in close ptk8 members (ENSP00000348295 and

ENSP00000357656). ENSP00000229470 also displays a SH2

domain, and is close to the same ptk8 members. It corresponds to

a swissprot entry (Q5R3A8) which has no experimental char-

acterization available. It should be noted that both these proteins

have been assigned to ptk1 group with good confidence: 59% and

97% identity with catalytic domains of ptk1. However, they are

both multi-domain proteins. Their domain organization places

them close to the ptk8 subfamily, which is why we suggest a hybrid

ptk1/ptk8 status. It is likely that the SH3 and SH2 domains

tethered to the Tyr kinase domain facilitate protein-protein

interactions while the kinase domain potentially elicit substrate

specificity characteristic of ptk1 subfamily of tyrosine kinases.

Existence of such kinases also raises the possibility of these kinases

acting as a mediator of cross-talks between two signaling pathways.

ENSP00000354170. This kinase is traditionally classified as

ptk3 (csk subfamily), with low similarity (31% identity with catalytic

domains of csk subfamily). It corresponds to Swissprot entry

Q59FL9, for which only transcript evidence is available. According

to the present classification protocol, this kinase appears very close

to many ptk15 members. Accessory domains immunoglobulins and

I-set have been detected in this sequence, unlike other ptk3 but like

ptk15 kinases. In addition, it has a few predicted trans-membrane

segments. In view of these features, this kinase is likely to share the

properties from ptk3 and ptk15 subfamilies.

ENSP00000343940. This sequence is classified as raf kinase

with low similarity (33% identity with catalytic domain of raf). It

corresponds to Swissprot entry TESK2_HUMAN, annotated as

TKL Ser/Thr kinase. It has been characterized experimentally for

its capacity to phosphorylate cofilin [44]. Based on LMS distance,

it is very close to the category of ‘‘unclassified kinase’’ suggesting

that the sequence outside the catalytic region is not typical of any

of the known subfamilies. We thus suggest the status of hybrid raf/

unclassified for this kinase, which is a mono-domain protein

(catalytic domain encompass 277 out of 542 residues). This status

implies that while this kinase might share some of the properties of

raf kinase, it is unlikely to function as a typical raf kinase, with

differentiation from classical raf kinases potentially mediated by

the regions outside the catalytic domain.

Unclassified protein kinases. In addition to hybrid kinases,

the LMS distances can suggest potential classification of kinases

that do not fall in existing subfamilies. By examining the closest

sequences for 83 unclassified kinases, we detected similarity with

known subfamilies for 21 cases. In addition, 41 sequences show

good similarity for other unclassified kinases and not pre-classified

kinases. We suggest that these proteins could form one or several

distinct novel subfamilies. The remaining 21 proteins display

equivalent similarity to sequences from different subgroups, thus

we cannot suggest any new membership. These results can be

found in Table S4.

Analysis of Entamoeba histolytica kinome
We used the set of protein kinases of E. histolytica stored in the

KinG data base. Among these 307 sequences, 195 are assigned to

a particular subfamily. The distribution of AUC values obtained

after the iterative procedure suggests a threshold for hybrid

detection equal to 0.84 (data not shown). AUC values are given in

Table S5. As the experimental information about E. histolytica

protein kinases is too sparse (only one reviewed Uniprot entry), we

comment here on only a few cases.

One of the kinases, 304.m00063, is classified as agc1 based on

its catalytic domain sequence. This sequence has an AUC value

equal to 0.7 and has an unusual architecture, with a PH domain

tethered to the catalytic domain. PH domains are usually seen in

agc3 kinases. Interestingly, the closest neighbor of this sequence

(4.m00671) is classified in the agc3 subfamily. A sequence classified

in the pak subfamily, 157.m00090, has an AUC value equal to 0.7.

This sequence has a predicted transmembrane domain, which is

unusual for this subfamily. It is close to other sequences with

transmembrane domains: 383.m00035, a raf hybrid kinase, and

232.m00085, an unclassified kinase.

Conclusions
In their pioneering work, Hanks and Hunter presented the first

classification of protein kinase subfamily [25]. They used

phylogenetic analysis of catalytic domains to build classification

trees, used as a basis for the classification in 55 distinct subfamilies.

With similar objective, we have devised a classification strategy

based on alignment-free measures and AUC computation. The

alignment-free approach employed in this work enables conve-

nient comparison of multi-domain kinases. Its fast computation

allows its use on large data sets as well. Consideration of non-

kinase regions in multi-domain kinases enables more robust

classification and also enables recognition of hybrid kinases.

Materials and Methods

Data set
KinG Database. The KinG database (http://hodgkin.mbu.

iisc.ernet.in/,king/) currently stores the analysis made on the

kinomes of 488 organisms: 54 eukaryotes, 49 archaebacteria, 259

eubacteria, and 126 viruses. The procedure of detection and

analysis of protein kinases have been described in several previous

studies and is hence only briefly summarized here [8,14–16,20,22].

Putative protein kinases are detected using a combination of profile

search methods. Sequences that lack crucial functional residues in

the catalytic domain are discarded. Putative functional kinases are

assigned into one of the 55 Hanks and Hunter subfamilies

(description in Table S6) using the following heuristic. Each

sequence is matched against a database of multiple PSSM [45]

that describes the catalytic domain for each of the 55 subfamilies,

using rps-blast [46]. Hits with less than 30% sequence identity or

less than 70% coverage of the query sequence are discarded to

ensure that the putative protein kinase has a full catalytic domain.

Each sequence is finally assigned to the subfamily which shows the

best e-value. The domain annotation is done using HMMER [47]

(http://hmmer.wustl.edu/), with e-value = 0.01. In this study,

subfamily assignment provided by KinG is used as a representative

of Hanks and Hunter classification scheme.

Human kinome. We considered an updated version of

human kinome analyzed in our group [48], following our first

kinome annotation [8]. The full human kinome consists of over

550 proteins, with many of them assigned to one of the 55 Hanks

and Hunter subfamilies using the method described above.

Sequences and KinG annotations are available in Text S2.

Validation data set. In order to assess the validity of our

approach, we consider a subset of the human kinome denoted

as the validation data set. In order to eliminate any risk of
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misclassification that can occur when sequences exhibit very low

sequence identity with the reference Hanks and Hunter profiles,

we retain only sequences that are annotated in Swissprot. For the

sequences present in Swissprot, the biological annotation is

examined and they are kept only if the Swissprot annotation is

in agreement with our KinG classification. It results in a data set of

212 sequences. The annotation provided by Swissprot can confirm

the broad group of the kinase (e.g., cmgc), but not the exact

subfamily (e.g. cmgc5). The 212 kinases are thus classified only in

terms of broad groups, in this case, 17 groups. A total of 65 distinct

domain architectures are observed. The composition of the vali-

dation data set in terms of broad groups and domain architecture

is given in Table 1. Some families are well represented, like ptk

with 51 members, whereas for other groups, we only have a few

representative sequences, like translationk and wee1 for which

there are only two members. The extreme case is the polo group,

with only one sequence. The number of domains in one protein

ranges from 1 to 11 (protein ENSP00000330161, a plantkr kinase

in which the catalytic domain is followed by 10 ankyrin repeats).

The number of different domains in one protein ranges from 1 to

6 (ENSP00000355237 and ENSP00000355727, two agc kinases

where the catalytic domain is followed by a protein kinase C terminal

domain, a DMPK coiled coil domain, a C1 domain, a pleckstrin

homology domain and a CNH domain; ENSP00000261833, an agc

kinase where DMPK coil is replaced by ATG16). Except the basic

architecture made of a single catalytic domain (indicated by a * in the

table), which is seen in 13 groups, no architecture is shared by

different groups. Sequence ids are available in Table S7.

A protozoan kinome: Entamoeba histolytica. We con-

sider the kinome of Entamoeba histolytica, the etiological agent of

amoebiasis. The protein kinases encoded in the genome of E.

histolytica have been analyzed in our group [22] and are available

trough the KinG database. It is a set of 307 sequences, 195 of them

being classified in one of the Hanks and Hunter subfamilies.

Sequences and annotations are available in Text S3.

Distances between sequences
Alignment-based distances. The global alignment between

two sequences is computed by the Needleman-Wunsch algorithm

implemented in the EMBOSS package [49], with following para-

meters: gap opening penalty = 10, gap extension penalty = 0.5,

scoring matrix = BLOSUM62. From the global alignment, we

derived two normalized distances. The first one, denoted as identity

distance is simply defined by:

IDdist s,s’ð Þ~1{perc s,s’ð Þ ð1Þ

where perc s,s’ð Þ denotes the percentage of sequence identity

between s and s’, given by the number of identical residues

divided by the alignment length. This quantity is relevant only to

compare sequences with similar length and domain organization; it

was thus applied to catalytic domains only.

The second distance, denoted as BLOSUM distance, is defined by:

BLOSUMdist s,s’ð Þ~1{
score s,s’ð Þ

min score s,sð Þ,score s’,s’ð Þf g ð2Þ

where score s,s’ð Þ denotes the score of the alignment between s and

s’, obtained using the Needleman-Wunsch algorithm, and

min x,yf g the minimum taken over x and y. We also tested this

last distance using gap opening penalty = 0 and gap extension

penalty = 0, but it gave poor cluster quality.

Alignment-free distance based on the local matching

score (LMS). We introduce a new similarity measure, called

LMS for Local Matching Score, to assess local similarity between

sequences without the use of sequence alignment. The principle is

outlined in Figure 5. It is in essence similar to what is proposed in

the CLUSS software [40], but we essentially introduced

modifications in the normalization scheme.

The principle is to detect identical short patterns of length L
that are common to two sequences s1 and s2. This can be achieved

without alignment, by scanning s2 for all patterns present in s1.

Once common patterns have been identified, the corresponding

residues are scored using a substitution matrix (precisely, the

diagonal scores of the matrix).

The local matching score (LMS) between sequences s and s’ is

thus given by:

LMS s,s’ð Þ~
X

i[ _ss,_ss’f g
M i,i½ � ð3Þ

where _ss,_ss’f g denotes the set of amino acids in s and s’ that are

embedded in common patterns, and M i,i½ � is the corresponding

substitution score taken in a substitution matrix. We tested various

minimum length from 2 to 6 and four types of substitution matrix:

BLOSUM62, PAM250, PAM100 and the identity matrix. Scores

are normalized to distances in the range [0,1] using the following

formula:

LMSdist s,s’ð Þ~1{
LMS s,s’ð Þ

0:5| LMS s,sð ÞzLMS s’,s’ð Þð Þ ð4Þ

For LMS computation, the minimal length of common patterns

is set to 5 residues. Scores are computed using the BLOSUM62

matrix, which gave slightly better performance than PAM250

(data not shown).

Assessment of distances for sequence classification
Hierarchical clustering. We assess the ability of distances

between sequences to form homogeneous clusters in a validation

data set, as illustrated on Figure 3B. We used the agglomerative

hierarchical clustering approach, under the R statistical

environment [50], to generate a classification tree. The general

principle of agglomerative hierarchical clustering is to iteratively

merge the closest clusters, until we get one cluster containing all

the data. Initially, each object to be classified is first assigned to its

own cluster. One starts with a N|N distance matrix describing

the dissimilarities between the N objects. After a new cluster has

been formed, one has to compute the distance between this new

cluster and all the others. Several linkage procedures are available

to compute the distance between clusters. We used the Ward’s

Figure 5. Computation of Local Matching Score (LMS) between
two sequences without alignment.
doi:10.1371/journal.pone.0012460.g005
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linkage: the distance between two clusters is the increase of

variance observed after merging the two clusters.

Measuring cluster quality. In the present case, all

sequences are protein kinases, classified in different subfamilies

according to Hanks and Hunter classification. In an ideal

classification: (i) all members of a given sub-family should be

grouped in the same cluster and (ii) each cluster should contain

only one sub-family. These two properties are measured

respectively by the concentration and the purity of the clusters. Let

us denote by F~F1,F2,F3,::Fl the set of subfamilies, and by

C~C1,C2,C3,::,Ck the set of clusters. The concentration of a sub-

family Fi in a cluster Cj is the fraction of sequences in Fi that

belong to cluster Cj ; and the purity of cluster Cj , related to sub-

family Fi is the fraction of cluster Cj that belongs to sub-family Fi.

Clearly, as the number of clusters increases, purity will increase

and concentration will decrease. For this reason, it is desirable to

have a global measure that should be maximized. We used the

Biological Homogeneity Index (BHI), introduced by Datta and

Datta [51] to overcome the limitations of purity and concentration

measures. It is defined by:

BHI F ,Cð Þ~ 1

k

Xk

j~1

1

Cj

�� ��| Cj

�� ��{1
� � X

s=s’[Cj

F sð Þ~F s’ð Þð5Þ

where F sð Þ~F s’ð Þ is equal to 1 if sequences s and s’ belong to the

same subfamily and 0 otherwise. The BHI index is a measure of

cluster homogeneity with respect to some biological classes. It is in

the range [0,1], with larger values corresponding to more

homogeneous clusters. Note that the splitting of one 100% pure

cluster into two sub-clusters will let the BHI value unchanged.

Detection of outliers in a set of pre-classified sequences
Starting from a set of protein kinases already classified in terms

of Hanks and Hunter subfamilies based only on the similarity of

their catalytic domains, our goal is to use full-length distances to

detect the sequences that are outliers in the initial classification.

We use an iterative procedure, as illustrated in Figure 6. The idea

is to set a sequence as the reference point, and consider its close

neighbors: if close neighbors are classified in subfamilies other than

the reference, the reference sequence is an outlier, potentially

misclassified. We start initially with a distance matrix and a set of

sequence weights W , all equal to 1. For each sequence s, we plot

the local purity P versus distance cut-off x, and compute the Area

Under the Curve (AUC) as follows:

AUC(s)~

ð1

0

P(s,x)dx

where P(s,x)~

P
s’,dist(s,s’)vx F (s)~F (s’)|W (s’)P

s’,dist(s,s’)vx W (s’)

ð6Þ

where dist s,s’ð Þ denotes the LMS distance between s and s,’ and

F sð Þ~F s’ð Þ is equal to 1 if sequences s and s’ belong to the same

subfamily and 0 otherwise. The shape of the curve P~f xð Þ is an

indicator of the similarity of a sequence with members of the same

subfamily and others, as illustrated on Figure 7. In the case of

a correct classification (Figure 7a), the nearest neighbors of a

reference sequence are from the same subfamily, and sequences

from different subfamilies are more distant. It results in a high

local purity at low distance, a decrease of purity at high distance

and an AUC value close to 1. On the contrary, if a sequence is

misclassified (Figure 7b), the local purity is low even at low

Figure 6. Detection of outliers in a pre-classified data set. 1: the distance matrix and initial weights are used to compute AUC values for each
sequence using equation 6; 2: sequences weights are updated using equation 7; 3: the procedure is iterated until convergence; 4: the final AUC
values are used to compute a histogram; 5: the histogram shape is used to detect outliers.
doi:10.1371/journal.pone.0012460.g006

(5)
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distance, resulting in low AUC value. This approach has an

obvious limitation: the presence of misclassified sequences at short

distance of a reference sequence might distort its purity curve and

alter its AUC. To circumvent this limitation, we iterate the pro-

cedure by updating the sequence weights at each iteration as follows:

W sð Þ iteration tz1½ �~AUC sð Þ iteration t½ �: ð7Þ

The procedure is iterated until the AUC values remain

constant. The putatively misclassified sequences are detected

using the value of AUC: sequences with an AUC lower than a

chosen cut-off are proposed as hybrid kinases. The final AUC cut-

off is chosen according to the distribution of AUC: for both human

and E. histolytica sequences, we observed a clear bimodal shape for

the LMS distributions. Such bimodal distributions suggest that two

types of sequences are present in the data set: well-classified

sequences with high AUC values, and divergent, putatively

misclassified sequences, with low AUC values. The cut-off was

then naturally chosen at the limit between the two modes.

BLOSUM distances did not produced bimodal AUC distributions.
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