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Extracellular vesicles (EVs) are abundant in most biological fluids and considered
promising biomarker candidates, but the development of EV biomarker assays is
hindered, in part, by their requirement for prior EV purification and the lack of
standardized and reproducible EV isolation methods. We now describe a far-field
nanoplasmon-enhanced scattering (FF-nPES) assay for the isolation-free
characterization of EVs present in small volumes of serum (< 5 µl). In this approach,
EVs are captured with a cancer-selective antibody, hybridized with gold nanorods
conjugated with an antibody to the EV surface protein CD9, and quantified by their
ability to scatter light when analyzed using a fully automated dark-field microscope
system. Our results indicate that FF-nPES performs similarly to EV ELISA, when
analyzing EV surface expression of epithelial cell adhesion molecule (EpCAM), which
has clinical significant as a cancer biomarker. Proof-of-concept FF-nPES data indicate
that it can directly analyze EV EpCAM expression from serum samples to distinguish early
stage pancreatic ductal adenocarcinoma patients from healthy subjects, detect the
development of early stage tumors in a mouse model of spontaneous pancreatic
cancer, and monitor tumor growth in patient derived xenograft mouse models of
pancreatic cancer. FF-nPES thus appears to exhibit strong potential for the direct
analysis of EV membrane biomarkers for disease diagnosis and treatment monitoring.

Keywords: liquid biopsy, extracellular vesicles, exosome, biomarker profiling, EpCAM, automated microscopy
INTRODUCTION

Tumor biopsies remain the gold standard for diagnosis, but are limited by how easily a tumor can be
resolved and how amenable it is to biopsy. Surgical biopsies can also be costly, and incur risk and
psychological stress. Analysis of tumor-derived or tumor-associated factors (e.g. circulating tumor
cells (CTCs) and DNA (ctDNA), extracellular vesicles (EVs), and various protein biomarkers) in
plasma or serum thus offer an attractive alternative. Such approaches have attracted substantial
interest over the past decade for their ability to evaluate cancerous lesions, including primary and
metastatic tumors, and permit serial analysis of their response to treatment.
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CTCs and ctDNA are present in very low concentrations in
blood, and their analysis require time-consuming and labor-
intensive isolation techniques that are susceptible to
contamination and lack specificity and batch-to-batch
consistency (Yadavalli et al., 2017; Merker et al., 2018). CTCs
cannot be detected in ~50% of cancer patients (Crawford et al.,
2014) and CTC assays have been flagged for high levels of false-
positive results (Alix-Panabières and Pantel, 2014). ctDNA
assays have high specificity and moderate sensitivity for
oncogenic variants (Mok et al., 2015; Hao et al., 2017), but
may not reflect tumor heterogeneity and fail to detect scarce
DNA variants (Bettegowda et al., 2014). In contrast to CTCs,
ctDNA, and many proteins biomarkers, tumor-derived EVs are
relatively abundant and stable in the circulation, contain factors
that reflect the phenotype of their parent cell, and are secreted by
all tumor cells and thus should reflect tumor heterogeneity
(Kalluri, 2016).

The development of EV biomarker assays for cancer has,
however, been limited by available assay methods. EV ELISA, a
standard means of EV biomarker analysis, requires separate EV
isolation steps, and its results are compromised by the lack of
standardized and reproducible methods of EV isolation. Most
EV isolation techniques subject EVs to forces or conditions that
can alter their integrity, have poor and variable EV yields, and are
subject to substantial variation in the purity and quality of their
EV isolates. These issues are a major obstacle for the clinical
translation of EV ELISAs, and their relatively large serum or
plasma volumes requirements render them impractical for
research involving mouse models, particularly studies that
require serial blood draws.

Epithelial cell adhesion molecule (EpCAM, also known as
CD326) represents a good candidate for an EV biomarker as it is
overexpressed in many human adenocarcinomas and squamous
cell carcinomas (Went et al., 2004), and this expression closely
correlates with the epithelial-mesenchymal transition (EMT)
regulating tumor invasion and metastasis (Gao et al., 2015; Ye
et al., 2015; Sankpal et al., 2017). EpCAM is thus an appealing
candidate biomarker for cancer diagnosis and the evaluation of
anti-tumor therapy responses. Studies have employed different
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approaches to evaluate EV-associated EpCAM expression,
including magnetic activated cell sorting (MACS) and
microfluidic separation and analysis procedures (Runz et al.,
2007; Rupp et al., 2011; Im et al., 2014; Zhao et al., 2016).
However, all these the methods employed in these studies require
ultracentrifugation for EV isolation, or large sample volumes, or
employ complicated fabrication procedures and sensing
methods. Development of a streamlined approach that uses
common laboratory equipment to analyze EV biomarkers
present in complex biological samples, therefore represents a
critical unmet need for the development of EV biomarkers assays
with potential clinical applications.

In this article, we describe a sensitive method that allows
EpCAM expressing EVs to be directly analyzed from biological
samples using a fully automated far-field dark-field (FF-DF)
microscope to detect and quantify nanoplasmon-enhanced
scattering (nPES) from nanoparticle probes bound to target EV
biomarkers (Figure 1). Results of our study indicate that FF-
nPES performance is similar to that of EV ELISA but does not
require an EV isolation step. Proof-of-concept data indicate this
assay can directly analyze EVs from microliter scale serum
samples to detect the development of spontaneous pancreatic
cancer and progression of human tumor xenografts in mouse
models of pancreatic cancer and can distinguish patients with
early stage pancreatic cancer from their healthy controls.
MATERIALS AND METHODS

Cell Lines and Their Culture Condition
The human pancreatic cancer cell line PANC-1 was obtained
from the American Type Culture Collection (Manassas,
Virginia). PANC-1 cells were cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM; Hyclone, GE Healthcare Life Sciences)
supplemented with 10% fetal bovine serum (FBS; Life
technology, Thermo Scientific Inc.), 1 U·ml−1 penicillin, and 1
mg·ml−1 streptomycin (Corning). All PANC-1 cell cultures were
grown in triplicate and incubated at 37°C in a humidified 5%
CO2 incubator.
FIGURE 1 | – Schematic of the isolation-free profiling of EpCAM-expressing EVs in small (1 µl) serum samples using a far-field dark-field (FF-DF) microscope assay,
in which both image capture and analysis are automated to reduce assay variability and potential operator bias.
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EV Isolation From Cultured Media
PANC-1 cellswere cultured to > 90% confluence, washed twicewith
phosphate-buffered saline (PBS; pH7.0) and then incubated for 48 h
in serum-free DMEM. Conditioned media was then collected and
centrifuged at 2,000g for 30min, supernatants were vacuum filtered
using a 10 kDa centrifugal filter (Merck Millipore Ltd), and EV
concentrates were centrifuged at 21,000g for 45 min to remove cell
debris. Clarified supernatants were then centrifuged at 100,000g for
3 h and the resulting EV pellets were suspended in PBS (pH 7.0) and
stored at 4°C and used within 48 h.

EV Characterization
EV sample size distributions were measured using a NanoSight
NS300 (Malvern Panalytical) equipped with a 532 nm laser, where
EV samples were analyzed for 30 s, in triplicate, using NanoSight
particle tracking software (screen gain and detection threshold set
as 1.0 and 2, respectively). The morphology of EV samples
negatively stained with osmium tetroxide were analyzed using a
2010F transmission electron microscope (JEOL USA). Western
blots analyses were performed according to standard protocols
using 20 µg (~ 8 ml) of cell and EV protein lysates that were probed
with antibodies to TSG101 (4A10; Santa Cruz Biotechnology),
VDAC1 (B-6; Santa Cruz Biotechnology), and EpCAM (VU-1D;
Invitrogen), and a horseradish peroxidase (HRP)-coupled
secondary antibody (RMG07; Abcam). Chemiluminescent signal
from these Western blots was visualized using an ImageQuant™
LAS 4000 imaging system (GE Healthcare Life Sciences).

Enzyme-Linked Immunosorbent Assay
(ELISA)
Half-volume 96well plates (3690; Corning)were incubatedwith 50
ml per well of the VU-1D9 anti-human EpCAM antibody (0.5
mg·ml−1 in PBS; Invitrogen) for 12 h at 4°C, then washed with PBS
and blocked with 5% bovine serum albumin (BSA) in PBS
supplemented with 0.01% Tween® 20 (PBST, pH 7.0; Sigma-
Aldrich) for 2 h. These plates were then aspirated and incubated
for 12 h at 4°C with EV samples diluted in PBS (25 ml per well) to
concentrations of 1.2, 0.8, 0.5, 0.4, and 0.2 µg/µl. Plates were then
washedwith PBST and incubated for 1 h at 37°Cwith 50ml per well
of biotinylated MEM-61 anti-human CD9 antibody (0.5 mg.ml−1;
Invitrogen) suspended in 5% BSA/PBST. Sample wells were then
washed five times with PBST and incubated for 1 h at 37°C with 50
ml streptavidin conjugated horseradish peroxidase (HRP, 1:5000
dilution, Cell Signaling Technology) suspended in 5% BSA/PBST.
Plates were thenwashed five times with PBST and incubated for 15
min at 37°C with 50 ml per well of 3,3’,5,5’-Tetramethylbenzidine
reagent (eBioscience Inc.), then supplemented with 50 ml per well
of 2 M H2SO4 stop solution and analyzed for absorbance at 450
nm. The EV ELISA standard curve was calculated using GraphPad
Prism 8.0.2 software (GraphPad Software) plotting optical density
versus EV concentration.

FF-nPES Assay of Serum Samples and
Isolated EVs
192-well masked (8 rows x 24 columns) glass slides with protein
A/G surface functionalization (nPES slides) were purchased from
Frontiers in Genetics | www.frontiersin.org 3
Arrayit Corporation. Each column represents 8 technical
replicates of the same sample. Each well was filled with 1 µl of
0.5 mg.ml−1 EpCAM antibody; VU-1D9 anti-human EpCAM
(Invitrogen) for isolated EV, and unpurified human and patient-
derived pancreatic cancer xenograft (PDX)mouse serum samples
and Clone G8.8R anti-mouse EpCAM (R&D Systems) for
unpurified serum samples from KrasLSL.G12D/+; p53R172H/+;
PdxCretg/+ (KPC) mouse models of spontaneous pancreatic
cancer. Sample wells were incubated for 1 h at 37°C and
washed three times with 1 ml per well of PBS. Slides were then
blocked by addition of 1 ml per well of SuperBlock™ (Thermo
Scientific™), incubated for 2 h at 37°C, and incubated for 4 h at
37°C with 1 ml per well of samples. Isolated EV samples were
diluted in PBS to concentrations of 1.2, 0.8, 0.5, 0.4, and 0.2 µg/µl,
with replicate samples added to each column (N = 8); while the
human, PDX, and KPC serum samples were diluted with PBS at a
1:1 ratio. All wells were then aspirated and filled with 1 ml per well
of PBS containing neutravidin functionalized gold nanorods (25 ×
71 nm; Nanopartz™) conjugated with 0.5 mg.ml−1 biotinylated
CD9 antibody, MEM-61 anti-human CD9 (Invitrogen) for
isolated EV and for unpurified human and PDX serum samples
and MZ3 anti-mouse CD9 (BioLegend) for KPC serum samples.
To make these detection antibody probes, 40 ml of gold nanorods
(~ 2.5 × 1011 particles) was washed with PBS three times
(centrifuged at 8,500 g for 10 min), supernatant carefully
removed, mixed with 10 ml of biotinylated antibody, and diluted
to 200 ml with PBS. The mixture was stored at 4°C until use. After
1 h incubation at 37°C, slides were aspirated and washed once for
10 min each with PBST and de-ionized water on a HulaMixer
(ThermoFisher Scientific), as described previously (Wan et al.,
2019). The standard curve of the assay using isolated EVs was
calculated using GraphPad Prism 8.0.2 (GraphPad Software) by
plotting optical signal versus EV concentration. The EV EpCAM
expression from human, PDX, and KPC serum samples was
analyzed by plotting optical signal from replicate wells in each
columnof thenPES slide. Since samples in thefirst and last columns
and first and last wells of each column of the nPES slides tended to
exhibit edge effects due to greater evaporation effects in these wells,
the first and last columns were filled with PBS and not used for
analysis, and signals from the top and bottom row of each column
were excluded from data analysis.

Clinical Samples
Serum samples from pancreatic ductal adenocarcinoma patients
and healthy donors were collected at the time of diagnosis by the
biospecimen repository core lab at Baylor University Medical
Center (Dallas, Texas) as specified by a protocol approved by its
Institutional Review Board. All patients gave written informed
consent for study participation. Only patients diagnosed with
pancreatic ductal adenocarcinoma (PDAC) that underwent
surgery (early stages) were selected for the sample collection
and enrolled in this cohort. Investigators were blinded to the
group identities of clinical samples during analysis.

Serum samples were rapidly thawed to room temperature
from −80°C storage, vigorously mixed and then centrifuged at
500g for 15min to precipitate protein aggregates and other debris.
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Supernatants were then diluted 1:1 with PBS, and vortexed before
transferring 1 ml to each replicate well on the assay slide.

Mouse Pancreatic Cancer Models
Serialbloodsamplesweredrawneverytwoweeks,foratotaloffourtime
points, from an 80-day-old male KrasLSL.G12D/+; p53R172H/+;
PdxCretg/+ (KPC) mouse and three 4-month-old mice implanted
with patient-derived pancreatic cancer xenografts (PDX mice)
(Banerjee et al., 2016) housed at the Translational Genomics
Research Institute in Phoenix, Arizona.Mice were analyzed to assess
tumordevelopmentandsizeateachblooddrawbythree-dimensional
high-resolution abdominal ultrasonography using a Visualsonics
Vevo 770 system (Fujifilm Visualsonics, Ontario, Canada) as
described (Whatcott et al., 2017). All animal procedures used in this
study followed Institutional Animal Care and Use Committee
(IACUC)-approved protocols and guidelines.

Far-Field Dark-Field (FF-DF) Imaging and
Optical Intensity Measurements
FF-DF images were captured using an Eclipse Ti-S inverted
microscope (Nikon Instruments Inc.) equipped with a motorized
stage, a 4× objective lens (NA = 0.13), and a dark-field condenser
(1.20 < NA < 1.43) illuminated by a 100 W halogen lamp. FF-DF
images of nanoparticle-scattered light were automatically
captured using a DS-Ri2 color camera (Nikon Instruments
Inc.) and automatically processed on Image J image analysis
software (NIH) using the Dark Scatter Master (DSM) plugin
(Sun et al., 2016) to avoid operator bias.

Finite-Difference Time-Domain (FDTD)
Simulations
FDTD simulations were performed using Lumerical FDTD
Solutions software. The material optical properties of gold were
set to the Johnson and Christy standard (Johnson and Christy,
1972). One unit-cell was simulated with a normal incidence of a
plane wave source(s); while the in-plane and out-of-plane
boundary conditions were set to periodic and perfectly matched
layers (PMLs), respectively. Circularly-polarized light was
simulated by a superposition of two linearly polarized sources
with p/2 relative phase retardance. Themesh accuracy was set to 5
and a refined mesh was used around the gold nanorod. The auto
shutoff for convergence of simulations was set to 10−6.

Statistical Analysis
The data was statistically analyzed using one-way ANOVA, two-
tailed Mann–Whitney U-test, and Student’s t-tests (significance
level of a = 0.05) included in the GraphPad Prism 8.0.2 software.
RESULTS

EpCAM Expression on EVs Isolated From
a Human Pancreatic Cancer Cell Line
EVs were isolated from the pancreatic ductal carcinoma cell line
PANC-1 to analyze the performance of this assay approach.
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Nanoparticle tracking analysis demonstrated that PANC-1 EVs
isolated by ultracentrifugation had a mean diameter of ~130 nm
and primarily overlapped the size range attributed to exosomes
(30 – 150 nm) (Supplementary Figure 1A), while transmission
electron microscopy found that these particles demonstrated the
cup-shaped morphology characterist ic of exosomes
(Supplementary Figure 1B) (György et al., 2011). Western
blot analysis found that EV lysates contained EpCAM and the
cytosolic phosphoprotein tumor susceptibility gene 101
(TSG101) but not the mitochondrial membrane protein
voltage-dependent anion-selective channel 1 (VDAC1), used as
negative control for exosome samples (Supplementary Figure
1C) (Lötvall et al., 2014).

Serial dilutions of PANC-1 EVs (1200, 800, 530, 360, and
240 ng·µl−1; approximately corresponding to 2.1, 1.5, 1.0, 0.6,
and 0.3 × 109 particles/µl, respectively) were immobilized on
nPES slide by an anti-EpCAM capture antibody, hybridized
with neutravidin-modified AuNRs that were pre-conjugated
with a biotinylated anti-CD9 antibody, and target EV signal
was quantified from far-field dark-field (FF-DF) images of
these slides (Figure 2A). DF-FF optical signal revealed a
strong linear correlation (R2 = 0.96) with EV concentration
(mg/ml EV lysate) similar to that observed with an EV ELISA
performed with the same samples, which required 5-fold more
antibody (Figure 2B).

EV EpCAM Expression in Two Mouse
Models of Pancreatic Cancer
To evaluate the ability of our assay to detect EV EpCAM changes
associated with tumor development or growth, KPC and PDX
mouse models of pancreatic cancer were analyzed by serial blood
draws and abdominal ultrasound procedures at four bi-weekly
time points (Figure 3A). High resolution ultrasound analyses
employed in this study were used to detect developing tumors
and estimate their volumes. Both KPC and PDX mice were
analyzed in this study, since KPC mice spontaneously develop
pancreatic tumors (Hingorani et al., 2005) and represent a
model of early tumor development, while PDX mice carry
xenografts of human pancreatic tumors and thus directly
reflect the genomic changes associated with human pancreatic
cancer. EV EpCAM levels in the blood samples of the KPC
mouse were found to significantly increase (p-value = 0.0013) at
the first time point at which a pancreatic tumor mass was
detectable (Figure 3B). EV EpCAM signal did not further
increase at the subsequent time point, perhaps due to the
modest increase in tumor volume in this interval. Blood
samples were collected from three 130-day-old PDX mice
before their tumor xenograft procedure and every two weeks
thereafter. EV EpCAM signal was observed to significantly
increase (p-value <0.005 for all mice) by two weeks after
transplant and subsequent EV EpCAM signal was observed to
correlate (R2 > 0.99 for all mice) with changes in the xenograft
tumor volume (Figures 3C–E). Notably, this correlation held
even in one PDX mouse that demonstrated tumor regression
and subsequent expansion (Figure 3E).
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EV EpCAM Expression in a Cohort of
PDAC Patients and Healthy Control
Subjects
To investigate the performance of this FF-nPES platform to
differentiate serum samples drawn from patients with and
without pancreatic ductal adenocarcinoma (PDAC) based
on their EV EpCAM signal, we analyzed serum samples
obtained from a retrospective case-control study, where the
case and control groups did not differ by age and gender
(Supplementary Table 1).

FF-DF AuNR signal was significantly higher (p-value =
0.0011) in patients with PDAC versus healthy control subjects
(Figure 4A), and a receiver operating characteristic (ROC) curve
analysis (Figure 4B) found that this signal could effectively
distinguish samples obtained from PDAC cases and healthy
control subjects with good performance (area under the curve
of 0.8139). Kaplan-Meier analysis of the PDAC cases after
stratifying this cohort by high vs. low FF-DF EV EpCAM
signal found that patients with high EV EpCAM signal had
significantly reduced mean survival (520 vs. 365 days, p-value =
0.0363) (Figure 4C), despite failing to exhibit any apparent
differences in their demographic or clinical information
(Supplementary Table 2). Subsequent analysis found that EV
EpCAM signal differed between healthy controls and PDAC
patients with any histologic grade, tumor stage or degree of
lymph node involvement, but was not significantly different
among different levels of any of these tumor parameters
(Figures 4D–F). EpCAM EV signal thus could not differentiate
patients based on cancer stage but could distinguish patients with
early stage PDAC from healthy controls. Pancreatic tumors are
classified by multiple parameters, including histologic grading of
its cellular differentiation state, its growth stage as assessed by
their size and growth outside the pancreas, and its metastasis to
Frontiers in Genetics | www.frontiersin.org 5
nearby lymph nodes. FF-nPES results for serum EV EpCAM
expression distinguished patients classified as having well-
differentiated (G1) and moderately differentiated (G2) PDAC
tumors, which exhibit slower growth and better prognosis that
less differentiated tumors, from healthy controls but not from
patients with poorly differentiated (G3) tumors (Figure 4D). FF-
nPES analysis of serum EV EpCAM also distinguished patients
with tumors smaller than 4 cm (T1 and T2) from healthy
controls (Figure 4E), but not from patients with larger tumors.
Finally, FF-nPES results also differentiated patients without
lymph node tumor involvement (N0) from healthy subjects
(Figure 4F), but not from patients with lymph node
metastases (N1). Lymph node involvement is a strong
predictor of poor outcomes, as median survival is markedly
reduced (from 25.5 to 12.3 months) in pancreatic cancer patients
with tumors that have metastasized to at least 2 lymph nodes
(Baldwin et al., 2016). These results indicate that FF-nPES
analysis of serum EV EpCAM levels can distinguish healthy
subjects from patients with early stage pancreatic cancer by any
of the three parameters analyzed in this study. This information
did not resolve these early pancreatic cancer cases from more
advanced cases defined by these same criteria, in agreement with
the demographic analysis of patients with high and low serum
EV EpCAM expression (Supplementary Table 2). It is thus
unclear what is responsible for the reduced survival time
observed between these groups, as differences in tumor severity
do not appear to be responsible for this disparity.
DISCUSSION

Conventional tumor biopsy procedures can provide
information about the genotype, biomarker expression
FIGURE 2 | FF-DF image (A) and standard curve (B) of PANC-1 EV dilutions analyzed with an EpCAM capture antibody and an anti-CD9 specific AuNR probe.
Data were analyzed as described in the Materials and Methods section and represent mean ± SEM; n = 6 replicates/sample.
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FIGURE 3 | (A) Study timeline for the KPC and PDX mouse models. (B) EV EpCAM expression in longitudinal serum samples from a KPC mouse during tumor
development. (C–E) EV EpCAM expression and their correlation with tumor size in longitudinal serum samples from PDX mice before and after tumor implantation.
(Data were analyzed as described in theMaterials and Methods section and represent mean ± SEM; n = 6 replicates/sample). **P-value = 0.0013, ***P-value < 0.0001;
ns, P-value = 0.3331.
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profile, and differentiation state of the biopsy sample, but are
useful only for accessible tumors and often carry risks that not
all patients may be willing to accept. The information these
biopsies provide is influenced by the portion of the sample that
is analyzed, and such biopsies may therefore fail to capture the
diversity of the tumor. Liquid biopsies, by contrast, utilize
samples of body fluids (e.g. blood, cerebrospinal fluid, urine,
saliva) that can be obtained by non-invasive or minimally
invasive procedures that carry minimal risk. Such biopsies
can be used to survey the cancer-associated factors released
from tumors present in all anatomical regions, including
surgically inaccessible sites. EVs represent a rich source of
information in many liquid biopsy samples, including plasma
and serum, since they are abundantly released by most tumors
and are relatively stable in the circulation, unlike CTCs and
ctDNA, which are present at low concentration and are
relatively unstable in the circulation (Neumann et al., 2018).
However, analysis of EV-associated biomarkers in liquid
biopsies is complicated by the requirement that EVs be
purified from these samples prior to their analysis, since
there is no standard method for EV isolation, and most such
methods are subject to substantial variations in EV yield and
purity. FF-nPES circumvents this isolation step and employs a
plasmon-based approach to detect exosomes captured by
tumor-specific markers. This approach is modular, in that its
specificity can be readily altered by changing the specificity of
the capture antibody used to isolate the target EV population
for analysis and employs a streamlined workflow that could be
Frontiers in Genetics | www.frontiersin.org 7
fully automated to reduce operator error and bias and enhance
its potential for clinical translation. FF-nPES offers advantages
over near-field nPES (Liang et al., 2017), which required an
operator to identify and manually focus images used for
analysis, increasing operator involvement and introducing
potential bias. However, to offset this advantage, FF-nPES is
less sensitive than near-field nPES, reducing its utility for the
analysis of factors present in low concentrations.

Gold nanoparticles can be more readily functionalized than
nanoparticles synthesized from other noble metals, without
altering their size-dependent properties to scatter light at
specific surface plasmon resonance (SPR) wavelengths (Polito
et al., 2015; Wang et al., 2018). Gold nanorods (AuNRs) are more
sensitive to their microenvironment than gold nanospheres
(Rajeshwari et al., 2016) and are widely used as sensing
elements (Vigderman et al., 2012; Wang et al., 2016). To
improve FF-nPES sensitivity, we performed FDTD simulations
to determine how the size of the AuNRs should be adjusted to
maximize the nPES signal they produced at a given
concentration (Supplementary Figure 2A). Nanoparticle SPR
is governed by their absorption and scattering of light, and both
properties are directly proportional to particle volume. Larger
AuNRs scatter more light and are therefore more suitable for
imaging applications (Park et al., 2014), although the detection
efficiency of their SPR is also governed by the absorbance of their
environment. Our FDTD simulation results indicated that the
maximum SPR of AuNRs ~70 nm in length was not absorbed by
water, indicating that these AuNRs had the best optical
FIGURE 4 | (A) EV EpCAM expression in serum samples from PDAC patients and healthy donors .**, P-value = 0.0011. (B) ROC curve of the ability to distinguish PDAC
and healthy controls based on EV EpCAM signal. (C) Kaplan-Meier curve of overall survival time of patients with above average (high expression) and below average (low
expression) serum EV EpCAM signal. (D–F) Difference in EV EpCAM signal in healthy controls and PDAC patients stratified by their histologic grade, tumor stage, and lymph
node involvement (Data were analyzed as described in theMaterials and Methods section and represent mean ± SEM; n = 6 replicates/sample). (D) **, P-value = 0.0053;
ns, P-value = 0.9998. (E) **, P-value = 0.0018; ns, P-value = 0.3182. (F) *, P-value = 0.0299; ns, P-value = 0.9808.
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properties for detection probes in our FF-nPES EV assay
platform. A 70-nm neutravidin-functionalized AuNR was
therefore chosen as a probe to detect targeted EV surface
proteins in a subsequent EV biomarker assay. In this approach
(Supplementary Figure 2B), target EVs were captured by an
antibody to EV biomarker of interest (i.e. EpCAM) that was
immobilized to the surface of an assay slide, and captured EVs
were visualized by an AuNR conjugated with an antibody that
recognized a general EV surface marker (i.e. CD9).

FF-nPES appeared to demonstrate similar performance to EV
ELISA, but offered several advantages not shared with EV ELISA,
including the ability to directly analyze EVs from small volumes of
serum. FF-nPES requires only a small volume of serum or plasma
(<5 µL) to perform an EV analysis with eight technical replicates,
much less than required by EV ELISAs. This low volume
requirement makes FF-nPES a promising platform for the
analysis of serum or plasma EV samples from mouse models,
particularly in longitudinal studies that cannot employ EV
ELISAs. FF-nPES assay results indicate that FF-nPES analysis of
EVEpCAMlevelsinserialmouseserumsamplescanbothdetect the
development of early pancreatic tumors and evaluate their
progression. FF-nPES detected a serum EV EpCAM
concentration change corresponding to the initial development of
a spontaneous pancreatic tumor. This change was detected when
the developing tumor was still 25mm3, whichmatched the limit of
detectionof thehigh-resolutionultrasoundapproachused todetect
and quantify tumors in this model. EV EpCAM concentration
changesdetectedbyFF-nPESalsocorrelatedwithtumorgrowthina
PDXmousemodelofhumanpancreaticcancer,andthiscorrelation
held even in one mouse that demonstrated tumor regression and
regrowth, suggesting that this approach could have utility for the
evaluation of tumor responses to therapy in drug or biomarker
studies and potential clinical applications.

Both applications would be highly useful for the early diagnosis
and monitoring of cancers, such as pancreatic cancer, that can be
difficult to diagnose due to their nonspecific symptoms or which
may be difficult to image or directly biopsy. Pancreatic cancer has
one of the worst cancer survival rates, since its tumors are usually
detected at later stages after they havemetastasized to other tissues
and are no longer curable by surgical resection (Howlader et al.,
2012). Early diagnosis of this cancer is difficult, since its symptoms
are shared by several other gastrointestinal tract pathologies.
Imaging approaches used for tumor detection also fail to detect
lesions < 3 cm in their largest dimension, and cannot be relied on
for early detection (Kaur et al., 2012). Carbohydrate antigen 19-9
(CA19-9) and carcinoembryonic antigen (CEA) are the two most
widely used markers for early diagnosis of PC, although only
CA19-9 has received FDA-approval for pancreatic tumor
evaluation. However, CA19-9 is not expressed by all patients
with pancreatic tumors (only 65% demonstrate elevated CA19-9
levels while their tumors are still resectable) and patients with
generic pancreatic diseases or other cancers can also exhibit
elevated CA19-9 levels (Goggins, 2005). Therefore, other
markers are gravely needed in the clinic for early stage diagnosis
of pancreatic cancer. FF-nPES analysis of serum EV EpCAM
expression may have potential for the early diagnosis and
Frontiers in Genetics | www.frontiersin.org 8
monitoring of pancreatic tumors if results from clinical trials
match our mouse model results. Other studies have reported
that changes in plasma EV EpCAM levels correlate with
ovarian cancer (Im et al., 2014; Zhao et al., 2016) and breast
cancer (Rupp et al., 2011).

FF-nPES offers several advantages over EV ELISA approaches
in current use as a standard EV analysis approach in research
studies, since it reduces assay time, variability, and the amount of
sample volume required for an assay by eliminating the need for a
separate EV isolation step. These features and its streamlined and
automated assay protocol, which requires equipment that should
be available in most well-equipped clinical laboratories make it a
good potential candidate for clinical translation. Our proof-of-
principle results suggest that such an assay could provide clinically
useful data, but further analytical and clinical validation studies are
required to determine its potential for adoption as an analysis
platform in diagnostic EV biomarker applications.
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