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SUMMARY:

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1–3. It drives 

ozone and aerosol production, modulates atmospheric oxidation, and interacts with the global 

nitrogen cycle4–8. Isoprene emissions are highly uncertain1,9, as is the non-linear chemistry 

coupling isoprene and the hydroxyl radical, OH—its primary sink10–13. Here we present the first 
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global isoprene measurements from space, using the Cross-track Infrared Sounder (CrIS). These 

isoprene measurements, together with observations of its oxidation product formaldehyde, provide 

new constraints on isoprene emissions and atmospheric oxidation. We find that 

isoprene:formaldehyde relationships measured from space are broadly consistent with current 

understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low-NOx. 

We analyze these datasets over four global isoprene hotspots in relation to model predictions, and 

present a first demonstration of isoprene emission quantification based directly on satellite 

measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current 

underestimates of natural NOx emissions bias modeled OH and hence isoprene. Over southern 

Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-

year analysis sheds light on interannual isoprene variability, and suggests the role of El Niño.

Isoprene (2-methyl-1,3-butadiene), produced during photosynthetic metabolism and emitted 

mainly from leaves of woody plants, has global emissions comparable to those of methane 

and significantly greater than the sum of anthropogenic volatile organic compounds 

(VOCs)1–3. Isoprene is highly reactive (lifetime <1 h at OH = 5 × 106 molec cm−3) and 

plays a pivotal role in atmospheric oxidation, ozone, and aerosol formation4–8. Air quality 

and chemistry-climate models thus require accurate isoprene emission inputs; however, 

current estimates span a wide range (~210–990 TgC y−1 globally1,9). Also uncertain is 

whether isoprene oxidation at low nitrogen oxide (NOx) levels depletes versus sustains the 

abundance of hydroxyl radicals (OH)—the principal atmospheric oxidant10–13. Space-borne 

measurements of formaldehyde (HCHO, an isoprene oxidation product) can provide top-

down constraints14, but alone its use as an isoprene proxy is hampered by uncertainties in 

the NOx-dependent chemistry governing the formaldehyde production yield and timescale15, 

and by competing non-isoprene formaldehyde sources14,16–18.

Fu et al.19 recently demonstrated the viability of direct space-borne isoprene retrievals using 

infrared (IR) radiance measurements from the Cross-Track Infrared Sounder (CrIS). That 

study employed optimal estimation (OE) to retrieve isoprene column abundances (Ωisoprene; 

Supplementary Note I; Supplementary Fig. 1) over Amazonia, with results validated using 

aircraft measurements. Here, we build on that work to develop an artificial neural network 

(ANN)-based algorithm for deriving global isoprene columns from CrIS. The ANN 

computational efficiency allows fuller exploitation of the dense CrIS sampling (~9×106 

spectra/day) for understanding spatial and temporal drivers of atmospheric isoprene. We thus 

derive the first global observations of atmospheric isoprene from space, and use this dataset 

to evaluate current understanding of its emissions and atmospheric oxidation.

Isoprene spectral index

As described in Methods, we use the CrIS-measured brightness temperature difference (ΔTb) 

between the peak of the ν28 isoprene band20 and nearby off-peak channels (see Extended 

Data Fig. 1a) as a spectral index for deriving isoprene column abundances from the satellite 

data. Analogous methodologies have been used successfully for a range of other 

atmospheric species21–24. Extended Data Fig. 1b shows the ΔTb-isoprene relationship as 

simulated by a forward radiative transfer model for diverse conditions spanning the global 
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atmosphere over land (Methods). The relationship is approximately linear with slope varying 

as a function of thermal contrast (atmosphere-surface temperature difference; Methods and 

Extended Data Fig. 1c). Interfering species likewise play a role and need to be accounted for 

as discussed later.

Figure 1 maps the global and seasonal ΔTb distribution measured by CrIS. Clear 

enhancements are seen over many predicted isoprene source regions: Amazonia, northern 

Australia (January), central Africa (April), and the US Southeast (July). However, ΔTb 

enhancements also manifest over regions not predicted by the GEOS-Chem chemical 

transport model (CTM; Methods) to have large isoprene sources (e.g., equatorial eastern 

Africa and the Arabian Peninsula, Pakistan and the US Southwest in July, Angola/Zambia in 

January and April). Elevated ΔTb values also occur across the tropics, with spatial 

distribution resembling that of water vapor. As will be seen, ΔTb enhancements not 

associated with high modeled isoprene can reveal locations where emissions are much 

higher than presently thought—many parts of the world lack flux measurements for 

regionally important plant species. However, we show later that the rest of these anomalous 

features disappear once thermal contrast, water vapor, and related factors are properly 

accounted for via the ANN.

ANN-based isoprene measurements

We use a supervised feedforward ANN to derive isoprene columns from the CrIS ΔTb data 

and contemporaneous observations of relevant surface and atmospheric properties 

(Methods). The employed ANN (representing the mean of 10 networks) reproduces 93% of 

the isoprene column variance across the full training data set. Prediction uncertainty is 

typically <30% for elevated isoprene columns (>1×1016 molec cm−2), increasing to 50% or 

more for low isoprene amounts/low thermal contrast.

We apply the trained ANN to the space-borne CrIS ΔTb measurements to derive global 

isoprene distributions for January, April, July, and October 2013 (Methods). Because the 

statistical performance of the ANN summarized above does not necessarily represent the full 

observational uncertainty, we further evaluate our results with the previously validated OE 

retrievals19 and with independent aircraft measurements from two campaigns over the US 

Southeast25,26.

Figure 2a compares the ANN and OE isoprene measurements over Amazonia for September 

2014, revealing strong agreement between the two (r = 0.9, m = 0.8). Furthermore, Figure 2b 

shows that the aircraft-model comparisons (see Methods) yield slopes (m = 1.2–1.3) and 

correlations (r = 0.5–0.7) that statistically match the CrIS-model comparison (m = 1.3, r = 

0.6), thus providing indirect validation of the CrIS data. The aircraft measurements also 

reveal key spatial features that are consistent with CrIS but not captured by GEOS-Chem. In 

particular, the largest observed isoprene enhancements occur over the Missouri Ozarks, 

farther north than model predictions—as also seen by CrIS. Finally, the enhancement 

magnitude measured during both aircraft campaigns is larger than predicted by the model, a 

finding likewise obtained from the CrIS data (Fig 2b).
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These results provide robust support for the ANN-derived isoprene abundances from CrIS. 

Looking forward, more validation datasets in high-isoprene regions (specifically, airborne or 

surface-based column measurements) would enable more extensive uncertainty assessment 

and retrieval improvement.

CrIS isoprene: links to emissions, OH

The global isoprene column distribution is governed by the balance between emissions and 

loss (predominantly via reaction with OH). Extended Data Fig. 3 maps global isoprene 

emissions, lifetimes, and columns predicted by GEOS-Chem. Because modeled OH (and 

therefore the isoprene lifetime) varies strongly with NOx and with isoprene itself, the 

isoprene distribution differs substantially from that of emissions. For example, while 

predicted July emissions are higher in the US Southeast than Amazonia, the resulting 

isoprene columns are dramatically higher over Amazonia.

Figure 3a quantifies this effect in the model by plotting the global ensemble of monthly 

mean 1330 LT isoprene columns against emissions. Points are colored by simulated 

tropospheric nitrogen dioxide (NO2), and two limiting regimes emerge. At elevated NOx 

(ΩNO2 ≳ 1015 molec cm−2) the relationship is near-linear, reflecting approximate local 

steady-state between isoprene columns and emissions—and slope corresponding to the 

isoprene lifetime. At lower NOx, the isoprene columns increase superlinearly with 

emissions. In this regime (occurring in the model most notably over Amazonia) elevated 

isoprene suppresses OH and therefore its own sink, leading to runaway concentrations.

Formaldehyde, an isoprene oxidation product, is more buffered to OH variability than is 

isoprene itself: i) photolysis ensures that HCHO removal continues even at low OH, and ii) 

its production is proportional to isoprene×OH, which is more stable than either quantity 

alone when elevated isoprene suppresses OH. Because of these differing sensitivities, the 

isoprene:HCHO column ratio is a proxy for the atmosphere’s oxidizing capacity over 

isoprene source regions. Figure 3b illustrates this relationship: on a global basis, across all 

locations and seasons, the monthly mean 1330 LT Ωisoprene/ΩHCHO ratios simulated by 

GEOS-Chem scale tightly with 1/[OH] (r = 0.94; Supplementary Note II discusses factors 

driving this relationship). A sensitivity analysis using an alternate isoprene oxidation 

mechanism (Mini-CIM8; see Methods) yields a similarly strong correlation (Supplementary 

Fig. 2), with details presented in Supplementary Note III.

The strong correlation in Fig. 3b encompasses the full global range of chemical regimes for 

isoprene oxidation: from unpolluted situations where isoprene-derived peroxy radicals (RO2) 

are long-lived and react mainly with hydroperoxyl radicals (HO2), other RO2, or isomerize; 

to polluted areas where isoprene-derived RO2 react quickly with NO27,28. This globally 

aggregated Ωisoprene/ΩHCHO vs. 1/OH slope is weighted to isoprene-rich, OH-poor 

conditions: Supplementary Note III shows that the modeled slope varies across our analysis 

regions from 0.18 to 0.49. A sensitivity study with the independent Mini-CIM mechanism 

further shows systematic adjustments of 28 to 56% depending on location (Supplementary 

Fig. 4), while factors such as non-isoprene biogenic VOC emissions and model mixing 

assumptions (which influence the column-integrated OH-isoprene reaction rate29) also 
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influence the slope (Supplementary Note III). Overall, however, results here clearly 

demonstrate that the Ωisoprene/ΩHCHO provides a strong proxy of atmospheric oxidation that 

is observable from space.

We can therefore derive new constraints on isoprene:OH chemistry globally by combining 

the CrIS isoprene measurements derived here with space-based HCHO columns from OMI30 

(Ozone Monitoring Instrument; Methods). Specifically, we employ the measured 

isoprene:HCHO ratios from CrIS and OMI as a direct proxy of 1/[OH] (and hence the 

isoprene lifetime) that can be used to test chemical models. To that end, Fig. 4 plots the 

Ωisoprene/ΩHCHO ratios measured by CrIS + OMI and as simulated by GEOS-Chem. Data are 

shown as a function of isoprene and NO2
31 for months spanning all four seasons (Jan, Apr, 

Jul, Oct), and confined to scenes with elevated surface temperatures (>293 K) to limit noise 

due to low isoprene/thermal contrast. In both satellite-based and modeled relationships, we 

see a low-OH (and long isoprene lifetime) regime when isoprene is elevated and NOx is low, 

and an opposing higher-OH (short lifetime) regime when the reverse is true. These oxidative 

regimes, and the chemical transitions between them, are generally consistent between model 

and observations, with the corresponding Ωisoprene/ΩHCHO ratios (and thus OH) agreeing to 

within 10–40% at low to moderate NO2 (≲1015 molec cm−2). One clear discrepancy is that 

the model population of extremely high isoprene at extremely low NOx is not seen in the 

data; as we will see this primarily reflects model NOx errors over Amazonia. Some 

disparities also emerge at elevated NO2; however, the observed values in this range have 

higher error due to limited measurements and lower isoprene columns with more uncertainty 

(Extended Data Fig. 4).

The above comparison supports the current model treatment of OH chemistry in the 

presence of isoprene. In particular, it argues against any substantial missing OH recycling at 

low NOx
10,12,32—instead, the modeled OH levels are modestly higher than implied by the 

satellite data. A sensitivity analysis using the Mini-CIM8 isoprene oxidation mechanism 

supports this conclusion (Supplementary Note IV; Supplementary Fig. 5). In the following, 

we therefore examine the CrIS isoprene distribution and seasonality in light of the oxidative 

information provided by the Ωisoprene/ΩHCHO ratio, with measurement-model differences 

used to inform present understanding of emissions and atmospheric NOx.

Figure 1 shows the global CrIS isoprene columns and corresponding GEOS-Chem 

predictions for January, April, July, and October 2013. The CrIS data reveal a number of 

isoprene hotspots that are consistent with the known isoprene sources discussed earlier—in 

particular, Amazonia, Central Africa, Australia, and the Ozarks of the US Southeast. These 

regions stand out because they combine strong emissions with a chemical regime where 

isoprene is sufficiently long-lived to be detectable from space (unlike, e.g., China in July, 

with elevated emissions but shorter isoprene lifetimes; Extended Data Fig. 3). For the 

months shown, the Central Africa and US Southeast enhancements peak in April and July, 

respectively, consistent with model predictions.

These dominant isoprene features are robust across the suite of ANN predictions: the 

column standard deviation across networks is typically <25% in these regions (Methods; 

Extended Data Fig. 5). The anomalous ΔTb enhancements discussed earlier in the context of 
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spectral interferences do not emerge as enhancements in the CrIS isoprene maps, showing 

that the ANN is effectively accounting for non-isoprene factors influencing ΔTb. A notable 

feature not predicted by GEOS-Chem is the strong observed isoprene enhancement over 

southern Africa in January and, to a lesser degree, in April; this is explored further below.

Sections below examine each of the above hotspots in terms of their implications for present 

understanding of atmospheric isoprene. For each region we apply the corresponding 

Ωisoprene/ΩHCHO vs. 1/[OH] relationship in Supplementary Fig. 3 as a transfer function to 

quantify OH, and the isoprene lifetime, from the measured isoprene:HCHO ratios. The same 

transfer function is likewise applied to the model ratios (in this way, all relative 

model:measurement lifetime discrepancies arise solely from the underlying isoprene and 

HCHO column data, and are unaffected by any transfer function uncertainty). We further 

apply the satellite measurements to provide an initial quantification of isoprene (and NOx) 

emissions over the same global hotspots, as detailed in Supplementary Note V and VI. From 

this analysis we identify and discuss emergent gaps in current bottom-up understanding of 

isoprene emissions. Results are summarized in Figs. 5–6 and in Supplementary Figs. 6–7 

and 12–17.

Amazonia

The CrIS isoprene columns over Amazonia reveal strong seasonal variability in both the 

magnitude and location of the isoprene maxima. For the months examined, observed 

columns in western South America (Fig. 5 bar plot; Extended Data Fig. 6) are highest in 

October and April and lowest in July. This is consistent with local ground-based 

measurements during GoAmazon33, which exhibit a June minimum and increase nearly 2-

fold from then to October (Fig. 5). Wei et al.33 attribute this seasonal minimum to leaf-

flushing between wet and dry seasons; other studies34,35 also infer low isoprene emissions 

during new leaf growth in June-July. This seasonality is not well-represented in GEOS-

Chem, which instead peaks in April and exhibits only a 5% July-October column increase.

Also apparent from Fig. 5 is that long isoprene lifetimes/low OH areas based on the 

Ωisoprene/ΩHCHO observations are also low-NOx based on OMI NO2 (e.g., ΩNO2 < 0.2 × 1015 

molec cm−2 corresponds here in GEOS-Chem to surface [NO] < 32 ppt and RO2 lifetimes to 

NO of >2.4 minutes), especially in January, April, and October. This agrees with chemical 

expectations for isoprene-rich, NOx-poor environments, and thus provides strong 

confirmation of our approach, since the lifetime/OH constraints are derived only from 

isoprene and HCHO without incorporating any NOx data.

Whereas the measured isoprene columns reveal localized maxima varying by season, 

GEOS-Chem instead predicts persistently elevated isoprene throughout much of western 

Amazonia. The model simultaneously predicts a much broader region of low OH (and 

elevated isoprene lifetime) than is inferred from the satellite data from January-July. We 

attribute these discrepancies mainly to the dramatic, widespread model NOx underestimate 

apparent during these months (Fig. 5). While the modeled Amazonian NOx levels are 

frequently low enough to yield the runaway isoprene concentrations discussed previously, 

the observations do not show this occurring to such an extent.
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Simulations using the Mini-CIM mechanism (Supplementary Fig. 6), while featuring some 

spatial differences compared to the standard model, nonetheless lead to similar overall 

conclusions when evaluated against the satellite data. Specifically, predicted isoprene 

columns from January-July are higher than is observed, though to a lesser degree than in the 

base-case due to higher OH in Mini-CIM. Furthermore, the suppressed OH predicted by 

Mini-CIM over Amazonia extends over a broader geographic area than is revealed in the 

satellite data. As before, this disparity exhibits a spatial fingerprint matching the overly-low 

model NOx as implied by OMI ΩNO2.

The above ΩNO2 bias could theoretically reflect model NOx errors in the free troposphere or 

boundary layer36,37; the former would have little effect on near-surface isoprene chemistry. 

However, we find that GEOS-Chem surface NOx predictions are indeed significantly too low 

relative to surface observations during GoAmazon38 (Supplementary Note V). Liu et al.39 

likewise infer from in-situ measurements a large near-surface NOx bias in GEOS-Chem 

predictions for this region, which they attribute to underestimated soil emissions. Our 

satellite-based optimization described in Supplementary Note V (Supplementary Figs. 9–11; 

Supplementary Table 1) leads to substantial Amazonian NOx emission increases that agree 

well with the Liu et al. findings.

Supplementary Fig. 11 further shows that our NOx optimization successfully reduces the 

large isoprene lifetime biases over Amazonia in the prior model—providing independent 

confirmation of the results and supporting this first isoprene emission quantification using 

CrIS. We thus derive monthly Amazonian isoprene emissions that point to significant and 

coherent spatial errors in the bottom-up inventory (details in Supplementary Note V). 

Overall, these results highlight the critical need to better understand NOx sources for this 

part of the world, and to elucidate the mechanisms driving isoprene emission variability in 

the tropics.

Africa

Two African isoprene hotspots are observed by CrIS: one in central Africa in April, and one 

in the Miombo and transitional woodlands of Angola peaking in January (Fig. 5)40. While 

GEOS-Chem captures the timing of the central African enhancement, the CrIS data show the 

predicted isoprene peak to be too strong and too far north—as found previously based on 

OMI HCHO41 (model predictions using Mini-CIM are similar; Supplementary Fig. 6).

The Miombo/Angola peak has not been previously identified to this extent, though elevated 

leaf-level isoprene fluxes have been observed in woody savannas here42. Furthermore, while 

the CrIS-observed hotspot is largely missing from MEGANv2.1, it matches the location and 

season of highest emissions according to a regional inventory from Otter et al.43 

incorporating detailed local land-cover information. The enhancement location in a low-NOx 

(and therefore low OH) area leads to large isoprene enhancements relative to the 

corresponding emissions and HCHO (Figs. 3, 5), explaining why a correspondingly strong 

HCHO peak is not seen. The CrIS seasonality over southern Africa also compares well with 

the Otter et al.43 inventory (Fig. 5 bar plot; Extended Data Fig. 6), with a January maximum 

and July minimum. GEOS-Chem, conversely, peaks in April with isoprene columns 2–4× 

lower than CrIS.

Wells et al. Page 7

Nature. Author manuscript; available in PMC 2021 March 09.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



The total isoprene emissions inferred from CrIS over southern Africa are higher than the 

prior estimate during January and April (Supplementary Fig. 13), and imply an emission 

overestimate north of the equator and underestimate to the south (particularly over Angola/

Namibia). These emission adjustments broadly support previous HCHO-based 

findings14,41,44,45. As described in Supplementary Note V, our CrIS-derived isoprene 

emissions for all of sub-equatorial Africa are highly consistent with the Otter43 estimates, 

but substantially higher than MEGANv2.1. Such large discrepancies reveal a need for 

further investigation of isoprene sources in this understudied region.

US Southeast

CrIS isoprene columns over the US Southeast peak in July over the ‘isoprene volcano’ in 

Missouri/Arkansas, where surface mixing ratios up to 36 ppb have been observed46. The 

aircraft data shown in Fig. 2b corroborate the CrIS isoprene distribution over this region, and 

OMI HCHO columns (Extended Data Fig. 7) likewise peak over the same part of the Ozarks 

during this time.

The GEOS-Chem isoprene maximum is shifted southward with lower column amounts than 

CrIS (Fig. 6; Supplementary Fig. 7). Kaiser et al.47 emphasize the importance of correcting 

NOx biases when inferring isoprene emissions, and indeed modeled NO2 columns exhibit 

significant, spatially varying, biases over this region (Fig. 6, Supplementary Fig. 8). The 

isoprene lifetime predicted by the standard model is ~2× the satellite-inferred value over the 

southern portion of the domain (where model isoprene is biased high), and ~30–50% too 

low over Missouri (where the model is too low). However, the model does capture the 

observed regional isoprene seasonality48 (Fig. 6). After correcting the NOx biases above, we 

derive from the CrIS data moderate downward isoprene emission adjustments over 

Louisiana, Mississippi, and Alabama offset by increases over Missouri, Illinois, and eastern 

Texas (Supplementary Fig. 14).

Australia

CrIS isoprene columns over Australia are highest in the north during January and April, with 

smaller enhancements along portions of the eastern and southern coasts (Fig. 6). The 

northern Australia hotspot matches the location and timing of peak OMI HCHO (Extended 

Data Fig. 7). GEOS-Chem does not capture the observed spatial distribution, instead 

predicting peak enhancements over eastern Australia in January and weaker enhancements 

to the north and south (Fig. 6, Supplementary Fig. 7). As over the US Southeast, spatially 

varying NOx biases are apparent and play a role in the above isoprene discrepancies.

Over southeastern Australia, the CrIS isoprene columns peak in January, with a ~25% 

decrease from January to April and a July minimum. GEOS-Chem predicts a much larger 

(~90%) January-April drop, with mean columns 40–95% lower than observed. In-situ 

measurements from the Sydney Particle Study49 support the weaker seasonality seen by 

CrIS (Fig. 6). The CrIS-based source optimization shows that this modest seasonality also 

manifests in the underlying isoprene emissions (Supplementary Fig. 15).
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Future outlook

We presented the first global picture of isoprene from space, derived from CrIS radiances 

using an artificial neural network (ANN). The reliability of the CrIS measurements is 

supported by comparisons to aircraft data and to (previously validated) optimal estimation 

measurements. However, more extensive validation data is needed to better quantify 

uncertainties and refine the measurement approach presented here.

Combining the CrIS measurements with contemporaneous HCHO observations provides a 

new space-based constraint on isoprene lifetimes, OH, and emissions. The satellite-derived 

isoprene:HCHO column ratios support current understanding of isoprene-OH chemistry as 

represented in GEOS-Chem. In particular, the satellite data provide no indication of 

substantial missing OH recycling under high-isoprene, low-NOx conditions. A comparison 

between measured and predicted isoprene columns over key hotspot regions elucidates 

spatial and temporal biases in modeled isoprene emissions and NOx, which highlight in 

particular the need for better mechanistic understanding of the drivers of tropical isoprene 

and NOx sources.

Finally, this work lays a foundation for multi-year studies examining seasonal-to-interannual 

isoprene changes and their impacts on atmospheric chemistry. Supplementary Note VII 

illustrates this potential by applying the CrIS ANN retrieval from 2012–2018 over Amazonia 

and southern Africa (Supplementary Fig. 18). Results show that the strong seasonal patterns 

discussed earlier persist from year-to-year, but also reveal interannual differences tied to 

temperature shifts and climate features such as El Niño. Future analyses of the full global 

CrIS isoprene record can therefore elucidate key drivers of interannual ecosystem variability, 

including drought and other disturbance, and the couplings between climate, ecosystems, 

and atmospheric chemistry.

METHODS:

CrIS satellite sensor

CrIS is a Fourier transform spectrometer that was launched onboard the Suomi-NPP satellite 

in October 2011. A second CrIS instrument was launched onboard NOAA-20 in November 

2017, and a third is planned for inclusion on JPSS-2 (expected launch in 2022). CrIS flies in 

a sun-synchronous orbit with 1330 LT daytime equator overpass. The early afternoon 

overpass is advantageous as it coincides with peak isoprene emissions50 as well as with 

enhanced surface-atmosphere thermal contrast and vertical mixing—both of which increase 

the sensitivity of thermal IR sounders to near-surface absorbers. CrIS has an angular field of 

regard consisting of a 3 × 3 pixel array (each with a 14-km diameter nadir footprint) and a 

cross-track scan width of 2200 km, resulting in near-global coverage twice daily. The CrIS 

measurements have 0.625 cm−1 spectral resolution in the longwave IR51, with noise 

characteristics (~0.04 K at 280 K) that improve significantly over other atmospheric 

sounders52. The high spectral resolution and low noise provide additional key advantages for 

measuring atmospheric isoprene.
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GEOS-Chem simulation

We use the GEOS-Chem 3D chemical transport model (CTM) as an intercomparison 

platform for evaluating the isoprene estimates from CrIS, and to interpret the space-based 

observations in terms of isoprene emissions and chemistry. The model (v11–02e; www.geos-

chem.org) employs GEOS-5 FP meteorological data from the NASA Global Modeling and 

Assimilation Office (GMAO), here regridded to 2° latitude × 2.5° longitude with 47 levels 

from the surface to 0.01 hPa. Simulations use a 10-min transport timestep (20-min for 

emissions and chemistry) and one-year initialization. Model output for 1200–1500 LT is 

used for comparison with the ~1330 LT CrIS and OMI observations.

GEOS-Chem includes detailed HOx-NOx-VOC-ozone-BrOx chemistry coupled to 

aerosols6,53. The v11–02e isoprene oxidation scheme54–56 (which is consistent with the 

standard v11–02c mechanism detailed by Bates and Jacob8) has been extensively updated to 

reflect recent laboratory and field-based findings, in particular for the reaction of isoprene 

peroxy radicals (ISOPO2) with HO2
57 and isoprene epoxides with OH58, ISOPO2 self-

reaction27, aerosol uptake of isoprene oxidation products55, and isoprene nitrate 

chemistry54,59. ISOPO2 isomerization60–62 is treated explicitly, with oxidation and 

photolysis of the resulting hydroperoxyaldehydes following the current state-of-science62–65 

as described by Fisher et al.54.

Along with base-case simulations using the standard (v11–02e) mechanism above, we 

perform sensitivity analyses using the Mini-CIM version of the reduced Caltech Isoprene 

Mechanism (RCIM8,66), implemented in GEOS-Chem v11–02c. Mini-CIM is streamlined 

from the parent RCIM mechanism outlined by Wennberg et al.66 by lumping very-low-yield 

(<0.1% globally) isoprene oxidation products to arrive at a number of organic species and 

reactions comparable to what is used in current global models. Bates and Jacob8 found 

global model results using Mini-CIM to be highly consistent with those using the more 

explicit parent mechanism (e.g., methane lifetime difference of < 0.1%), and thus 

recommend its use except in specialized applications involving highly functionalized, low-

yield isoprene oxidation products.

An important feature of Mini-CIM is its dynamic treatment of the allylic and peroxy radicals 

resulting from the initial OH+isoprene addition67,28 versus the fixed distributions used in 

prior mechanisms (including GEOS-Chem v11–02e). Mini-CIM also includes more 

intermolecular H shifts than older mechanisms, including rapid peroxy-hydroperoxy 

shifts68,69 that increase low-NO OH recycling compared to GEOS-Chem v11–02e. An 

additional difference compared to our base-case simulations lies in the fact that Mini-CIM 

predicts more HCHO production at low-NOx, with differences reaching approximately 20% 

for NO between 1 and 20 ppt8.

Biogenic emissions of isoprene and other VOCs are simulated using MEGANv2.11, 

implemented in GEOS-Chem as described by Hu et al.70. Global anthropogenic emissions 

are based on the RETRO inventory for VOCs and on EDGARv4.271 for NOx, SOx, and CO; 

each is overwritten by regional inventories over the U.S.72, Canada, Mexico73, Europe74, 

and Asia75. GFED476 is used to compute biomass burning emissions; while lightning and 

soil NOx emissions are from Murray et al.77 and Hudman et al.78, respectively.
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Isoprene signal and brightness temperature difference

Isoprene has two IR absorption features (ν27 and ν28) in the vicinity of 900 cm−1 that are 

associated with the wagging vibrational mode for each of the molecule’s =CH2 groups20. 

Extended Data Fig. 1a illustrates the radiance signal arising from those absorption features, 

plotted as the simulated difference in brightness temperature between an atmosphere with 

and without isoprene, assuming an isoprene profile with 5 ppb in the boundary layer and the 

US Standard Atmosphere for interfering species. Fu et al.19 demonstrated previously that the 

ν27 and ν28 features shown in Extended Data Fig. 1a are detectable from individual CrIS 

spectra over high-isoprene regions.

We start here from single-footprint Level 1B CrIS radiances that have been subsetted (1 of 

each 3 × 3 pixel array; FOV 6), cloud screened, and gridded to 0.5° latitude × 0.625° 

longitude. The ΔTb values are then calculated as the difference between off-peak (mean of 

the spectral points at 894.375 and 895 cm−1) and on-peak (mean of the spectral points at 

893.125 and 893.75 cm−1) Tb values at the ν28 feature.

Cloud screening is based on the observed difference between the 900 cm−1 brightness 

temperature and the surface skin temperature. We simulate this difference for clear-sky 

conditions as a function of water vapor column density (solid black line in Extended Data 

Fig. 8a) using the Line-by-Line Radiative Transfer Model79,80 and employ a conservative 

linear approximation (solid red line in Extended Data Fig. 8a) to screen the observations. 

Temperature and water vapor information is from MERRA-2 reanalysis81 and interpolated 

to the time of CrIS overpass. We find good spatial correspondence between the location of 

our cloud-screened pixels and cloud flags derived from other spaceborne sensors such as 

VIIRS and MODIS.

Given the demonstrated importance of careful cloud screening for OE isoprene retrievals 

from CrIS19, we test the sensitivity of our results to cloud effects by employing a less 

stringent (by 2 K) brightness temperature threshold (dashed red line in Extended Data Fig. 

8a). Results of this test are summarized in Extended Data Fig. 8b and c, and show that the 

resulting ΔTb and isoprene changes are generally less than 15%, and less than 5% for 

enhanced isoprene levels. This suggests that the uncertainty in results presented here is not 

dominated by cloud effects.

Extended Data Fig. 1a shows that other atmospheric species (specifically water vapor, nitric 

acid, ammonia, and CFC-12) also have absorption features in the vicinity of the ν27 and ν28 

isoprene peaks. We specifically employ ν28 in computing ΔTb as it is the stronger of the two 

bands and less subject to such interferences. Nevertheless, variability in these other 

atmospheric species (and in factors such as surface-atmosphere thermal contrast, surface 

elevation, and satellite viewing angle) can still affect the ΔTb-isoprene relationship19, and 

are therefore accounted for in the estimation process described in the following section.

While other biogenically-derived VOCs with terminal =CH2 groups may also absorb in the 

vicinity of the isoprene peaks, Fu et al.19 showed that the relevant primary biogenic species 

(including monoterpenes) with published absorption cross sections have much weaker 

absorption signals (< 0.01 K) than does isoprene at ν28. Since we focus here on isoprene 
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hotspots, we assume such effects to be minor for our analysis. Relevant absorption cross-

sections for key non-HCHO isoprene oxidation products (methyl vinyl ketone, methacrolein, 

isoprene hydroxyhydroperoxides) have not been reported, but available analogs indicate that 

their spectral impact is likewise minor for analyses here (Supplementary Fig. 19). See 

Supplementary Note VIII for further discussion.

Extended Data Table 1 shows spatial correlations between the resulting CrIS ΔTb 

measurements and simulated isoprene columns from the GEOS-Chem CTM over key source 

regions. Here and below, all satellite-model comparisons reflect monthly mean values at the 

~1330 LT CrIS overpass with daily cloud screening. Correlations span r = 0.43–0.72. For 

comparison, Hu et al.70 report r = 0.5–0.7 between simulated and measured isoprene in the 

US Midwest. A model-aircraft comparison over the US Southeast yields similar correlations 

(below). The CrIS ΔTb values thus spatially correlate with isoprene predictions over known 

source regions to a degree commonly found for model-measurement comparisons of 

isoprene itself.

ANN training and forward prediction

We describe here a supervised feedforward (i.e., non-cyclic) ANN82 to derive isoprene 

columns from the CrIS ΔTb observations. The approach employs a multilayer perceptron 

with training via Levenberg-Marquardt backpropagation83 to account for the interfering 

effects mentioned above based on contemporaneous observations of other relevant surface 

and atmospheric properties.

Given a set of input variables x (in our case, ΔTb and related parameters summarized in 

Extended Data Table 2), an ANN can be used to approximate an output f(x) (in our case, 

Ωisoprene) that depends on x in an unknown and possibly non-linear way. This approximation 

occurs via a transfer function, Y(W, x), where W represents the weights of the function Y.

The weights are determined here with a synthetic data set, constructed based on a full year 

of simulated radiances from the Earth Limb and Nadir Operational Retrieval (ELANOR) 

model84, which also serves as the operational forward model for the Tropospheric Emission 

Spectrometer (TES). ELANOR model inputs include temperature and water vapor profiles 

(using assimilated meteorological data from NASA GMAO) and climatological non-

isoprene trace gas profiles (from the MOZART CTM85). Isoprene profiles are taken from 

daily mid-afternoon (1200–1500 LT) GEOS-Chem predictions with 100% (1σ) Gaussian 

noise applied. We then apply global sampling (afternoon overpass, following the along-track 

separation of measurements from the global sampling strategy of TES86, land scenes only) 

to arrive at a representative input dataset of appropriate size for ANN training. Finally, the 

resulting radiances are simulated (using temperature-dependent isoprene absorption look-up 

tables) for 3 satellite viewing angles (selected randomly for each scene). The full synthetic 

dataset comprises ~165,000 simulated spectra, from which we compute ΔTb as above.

We then train the ANN to predict isoprene column densities based on six predictors (each 

taken as a firm constraint): ΔTb, water vapor column density (ΩH2O), column nitric acid 

density (ΩHNO3), thermal contrast (taken as the difference between the surface skin and 2-

meter air temperature), surface pressure, and satellite viewing angle. Alternate ANNs 
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accounting for additional potential interferents (such as CFCs and ammonia) were tested but 

ultimately discarded as they contributed little additional power to the isoprene predictions. 

No location-specific information is included in the training: the network thus describes the 

general, global relationship between ΔTb, isoprene columns, and associated factors that is 

mechanistically defined by the underlying spectroscopy. This is a key distinction from OE 

retrievals which incorporate varying amounts of prior information depending on the scene-

specific sensitivity.

We assessed multiple network architectures and found the best performance for a three-layer 

model containing two (6- and 3-neuron) hidden layers and one (single-neuron) output layer 

using hyperbolic tangent (sigmoid) and linear transfer functions, respectively. The training 

occurs on 10 random extractions of the synthetic data set (after clustering to ensure 

representative sampling across the full range of isoprene column densities), with each 

extraction subsetted for training (50%), validation (30%), and testing (20%). The validation 

subset is used to determine when training can cease, and the testing subset is used 

subsequently to independently confirm network performance. Output from the resulting 10 

networks are then averaged to provide the final ANN prediction.

Finally, we apply the trained ANN to the space-borne CrIS ΔTb measurements to derive 

global isoprene distributions for January, April, July, and October 2013. Temperature and 

water vapor data are taken from the MERRA-2 reanalysis81 and interpolated to the CrIS 

overpass time, while nitric acid column observations are from the CrIS CLIMCAPS87 

product. All input variables are cloud-screened as described above prior to calculation of the 

gridded (2° × 2.5°) 1330 LT monthly mean. Less than 1% of the employed input variables 

fall outside the range used for ANN training (none of which occur over isoprene source 

regions), confirming that our training set is well-generalized.

Unlike a conventional OE retrieval, the ANN-based approach does not provide an estimate 

of the measurement vertical sensitivity (i.e., averaging kernel) and associated uncertainty for 

every individual scene. However, the ANN training statistics provide a quantification of the 

overall network performance, and therefore of the expected uncertainties for isoprene 

column abundances inferred from CrIS data. We find here that the six-predictor ANN can 

reproduce 93% of the variance in the isoprene total columns across the full synthetic data set 

(Extended Data Fig. 8d). The performance of each of the 10 networks relative to the 

independent testing set is similar (r2 = 0.92–0.93, slopes ~1.0). This explanatory skill is lost 

when ΔTb is withheld from training (r2 = 0.28; Extended Data Fig. 8e)—confirming that the 

ANN predictive power is driven by the isoprene spectral signal rather than by the ancillary 

variables.

The relative uncertainty of the ANN predictions varies as a function of both isoprene amount 

and thermal contrast (Extended Data Fig. 8f). For elevated isoprene columns (>1×1016 

molec cm−2) the prediction uncertainty is typically less than 30%, even with very low 

thermal contrast. Uncertainty increases for lower isoprene amounts, exceeding 50% for 

columns below 2×1015 molec cm−2, and for columns below 5×1015 molec cm−2 at low 

thermal contrast (0–5 K; Extended Data Fig. 1c shows thermal contrast maps for Jan, Apr, 
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Jul, and Oct). These can be considered limits of detection for the 1330 LT monthly-mean 

isoprene columns derived from CrIS.

The statistical performance of the ANN as summarized above does not necessarily represent 

the full uncertainty of the CrIS isoprene measurements, since other factors (e.g., cross-

section or radiative transfer errors, uncertainties in ancillary datasets used for water vapor, 

temperature, and HNO3, uncertainties in the vertical profiles of isoprene used to train the 

ANN, residual cloud impacts) may also contribute. We therefore evaluate the CrIS isoprene 

columns using i) the previously published and validated OE retrievals and ii) independent 

atmospheric measurements, as described below and in the main text.

CrIS evaluation via aircraft-model intercomparison

Direct evaluation of the CrIS isoprene measurements is difficult due to lack of either i) 

ground-based isoprene column observations in isoprene hotspot regions, or ii) a statistically 

sufficient ensemble of full airborne profiles over isoprene source regions at the satellite 

overpass time. Instead, we perform here an indirect validation (Fig. 2b) using measurements 

from two aircraft campaigns over the US Southeast: SENEX (Southeast Nexus; 27 May – 10 

July 201325) and SEAC4RS (Studies of Emissions and Atmospheric Composition, Clouds 

and Climate Coupling by Regional Surveys; 1 August – 23 September 201326). In each case, 

we employ the GEOS-Chem model as an intercomparison platform to quantify the level of 

consistency between CrIS and the in-situ aircraft data. Since any model isoprene bias should 

manifest in a consistent way relative to independent observational datasets for the same 

region and time period, the consistency between the CrIS/GEOS-Chem regression and the 

aircraft/GEOS-Chem regression reflects the agreement between the CrIS and in-situ 

isoprene datasets88,89.

To perform this intercomparison, we sample the model at the time and location of the 

aircraft measurements (which are restricted to ±2 hours from the CrIS overpass time). 

Results discussed in the main text are aggregated to the model resolution and averaged 

vertically for each campaign by calculating a density-weighted mean boundary layer (P > 

800 hPa) number density for each latitude × longitude grid cell.

OMI HCHO and NO2 data

We use here the Quality Assurance for Essential Climate Variables (QA4ECV) version 1.0 

Level 2 HCHO product from the OMI satellite sensor29,90. OMI is a near-UV-visible 

spectrometer onboard NASA’s EOS Aura satellite, which has an equator overpass time 

(1340 LT) close to that of Suomi-NPP. The HCHO slant column density is determined via 

fitting of OMI radiances and subsequently converted to vertical column densities using a 

modeled shape factor. The QA4ECV retrieval uses a single, extended fitting interval (328.5–

359.0 nm), whereas the precursor BIRA HCHO retrieval employed a smaller window with 

prefits for O2-O2 and BrO slant columns. While the QA4ECV data have yet to be fully 

validated, recent work has demonstrated its improved performance over the earlier BIRA 

retrieval91. Zhu et al.92 previously found the BIRA v14 HCHO retrieval to exhibit a 12% 

low bias (with use of an accurate shape factor) relative to aircraft measurements, and 

subsequent analysis has supported these findings93. We find here that a global QA4ECV 
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versus BIRA v14 comparison for the timeframe of our analysis yields a slope of 1.1–1.4 

(0.9–1.8 over our targeted subregions), and we therefore do not apply any bias correction to 

the QA4ECV HCHO data. Repeating our analysis using instead the bias-corrected BIRA 

v14 dataset (Supplementary Figs. 20–22) leads to no substantive differences in our core 

results.

Standard data processing and screening procedures are followed. We restrict the data to solar 

zenith angle < 70° and cloud fraction < 0.4. The OMI data is then gridded to the 2 × 2.5° 

GEOS-Chem resolution. For all comparisons the model is sampled according to the OMI 

HCHO observation operator (i.e. averaging kernel) at the time and location of the satellite 

overpass.

Tropospheric NO2 column data are from the OMI QA4ECV v1.1 monthly NO2 product31,94. 

The QA4ECV retrieval employs updated NO2 spectral fitting that accounts for liquid water 

absorption and includes an intensity offset correction31. This improves the quality of the 

product, particularly over clear-sky ocean scenes91. OMI QA4ECV tropospheric NO2 

columns exhibited good agreement (bias = −2% and root-mean-square difference = 16%) as 

compared to ground-based column measurements in China31. Comparisons in this work are 

performed with respect to monthly-mean GEOS-Chem tropospheric NO2 columns sampled 

at the time of the satellite overpass, with no observation operator applied.

DATA AVAILABILITY:

The CrIS Level 1B data used in this work is publicly available at http://disc.gsfc.nasa.gov/

datacollection/SNPPCrISL1BNSR_1.html. The isoprene column data employed in this work 

are available at https://doi.org/10.13020/v959-dr15. The airborne data are publicly available 

for SENEX at http://esrl.noaa.gov/csd/projects/senex/ and for SEAC4RS at http://www-

air.larc.nasa.gov/missions/seac4rs/index.html. OMI QA4ECV HCHO and NO2 data are 

publicly available at http://www.qa4ecv.eu/ecvs.

CODE AVAILABILITY:

GEOS-Chem model code is publicly available at www.geos-chem.org. The LBLRTM79,80, 

which is used to calculate the molecular absorption look-up tables employed in ELANOR84, 

is publicly available at http://rtweb.aer.com/lblrtm.html.
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Extended Data

Extended Data Fig. 1 |. Simulated spectral signals near 900 cm−1 for the CrIS sensor.
a, Brightness temperature (Tb) difference for simulated spectra with and without isoprene 

(black), nitric acid (red), ammonia (blue), and CFC-12 (yellow), and a 10% perturbation in 

water vapor (green). Red and blue arrows indicate the ν28 on-peak and off-peak spectral 

points used to calculate ΔTb. Simulations were performed with LBLRTM79,80 for an 

isoprene profile with 5 ppb in the boundary layer (P > 800 hPa) that decays exponentially 

aloft, and AFGL US standard atmosphere profiles of temperature, water vapor, and nitric 

acid. b, Relationship between ΔTb and isoprene column density, shaded by thermal contrast, 

for the full synthetic dataset used in this work. c, Global distribution of surface-atmosphere 

thermal contrast at the time of the CrIS overpass. Maps are derived from time-interpolated 

GMAO temperatures for January, April, July, and October.
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Extended Data Fig. 2 |. CrIS isoprene measurements over Amazonia as derived using ANN- and 
OE-based approaches.
Data are shown for September 2014 and displayed as absolute columns.

Extended Data Fig. 3 |. Global distribution of isoprene columns, emissions, and lifetime as 
predicted by GEOS-Chem.
Predicted columns (left column), emissions (middle column), and lifetime (z < 500 m; right 

column) are shown at 1330 LT for January, April, July, and October 2013.
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Extended Data Fig. 4 |. Statistical uncertainty in the global distribution of monthly mean 
isoprene:HCHO ratios as a function of isoprene and NOx regime.
a, Relative 95% confidence interval in the mean ratio for each isoprene and tropospheric 

NO2 bin. b, Number of observations in each bin.
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Extended Data Fig. 5 |. Global distribution of isoprene column densities derived from CrIS.
Plotted are the mean (left column) and relative standard deviation (right column) across the 

10 ANNs for January, April, July, and October 2013.
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Extended Data Fig. 6 |. 
Boundaries of the four regions examined in the seasonal bar plots shown in Figs. 5 and 6.
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Extended Data Fig. 7 |. Measured and simulated HCHO columns.
Plotted are the HCHO columns measured by OMI (left column) and simulated by GEOS-

Chem (right column) at ~1330 LT for January, April, July, and October 2013.
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Extended Data Fig. 8 |. CrIS cloud screening and ANN performance.
a, Function used for cloud screening CrIS L1B data prior to ΔTb calculation. The black line 

shows the modeled clear-sky difference between the 900 cm−1 brightness temperature and 

surface skin temperature, as a function of water vapor column density (calculated using 

LBLRTM79,80). The solid red line is the linear approximation used here, and the dashed red 

line represents a less stringent threshold used to test the sensitivity of the results to our cloud 

screening approach. Panels b and c show the sensitivity of the CrIS brightness temperature 

differences (b) and isoprene columns (c) to cloud screening. Data shown represent the 

median relative differences between the base-case results (derived using the solid red line 

panel a) and those derived using the less stringent cloud screening threshold (dashed red line 

in panel a). Scatterplots show the predicted versus true isoprene columns for (d) the six-

predictor ANN and (e) an ANN in which ΔTb is withheld as a predictor variable. Red dots 

show the mean of the 10 ANN predictions, and blue error bars show the standard deviation 
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across the predictions. f, The relative uncertainty (based on the difference between the mean 

ANN predicted value and the true value) for the six-predictor ANN, binned as a function of 

thermal contrast and isoprene column density.

Extended Data Table 1 |

Spatial correlation between monthly-mean CrIS ΔTb and monthly-mean 1330 LT isoprene 

columns predicted by GEOS-Chem at 2° × 2.5° resolution for select regions.

Reqion Month ΔTb:GEOS-Chem isoprene correlation, r # data points

Australia January 0.54 323

Central Africa April 0.43 357

US Southeast July 0.72 90

Amazonia October 0.57 340

Extended Data Table 2 |

Data sources for the six input parameters used for ANN training and retrievals.

Input parameter Source for training set Source for ANN-based retrieval

ΔTb ELANOR simulation CrIS L1B radiances

H2O vapor column Assimilated meteorology (GMAO; TES-like 
sampling)

Assimilated meteorology (GMAO; CrIS 
collocation)

HNO3 column MOZART CTM CrIS CLIMCAPS

Thermal contrast Assimilated meteorology (GMAO; TES-like 
sampling)

Assimilated meteorology (GMAO; CrIS 
collocation)

Pressure Assimilated meteorology (GMAO; TES-like 
sampling)

Assimilated meteorology (GMAO; CrIS 
collocation)

Satellite view angle Randomly defined CrIS satellite pointing angle

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Global distribution of brightness temperature differences (ΔTb) and isoprene columns.
Left column: monthly-mean ΔTb observations from CrIS. Middle column: isoprene column 

densities derived from the CrIS observations. Right column: isoprene column densities 

simulated by GEOS-Chem. Data are plotted for January, April, July, and October 2013 at 

~1330 LT (1200–1500 LT mean, with daily cloud screening applied). Ocean scenes are 

excluded from the isoprene maps as they are not part of the ANN training dataset (see 

Methods).
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Fig. 2. |. Comparison of the CrIS artificial neural network (ANN) isoprene columns with other 
datasets.
a, Comparison of ANN- and optimal estimation (OE19)-derived isoprene estimates. Both are 

derived from cloud-screened CrIS radiances for September 2014; ANN results employ 

GEOS-Chem HNO3 as CrIS HNO3 data were unavailable for this timeframe. The maps 

display columns normalized to their domain means, with the scatterplot comparing the 

absolute columns (absolute columns are mapped in Extended Data Fig. 2). b, Evaluation of 

CrIS ANN isoprene measurements using aircraft observations and GEOS-Chem model 

output. Top row: monthly-mean July 2013 isoprene columns as measured by CrIS (~1330 

LT) and simulated by GEOS-Chem (1200–1500 LT mean). Bottom two rows: ambient 

isoprene concentrations as measured during the SENEX (June-July 2013; middle row) and 

SEAC4RS (August-September 2013; bottom row) aircraft campaigns and simulated by 

GEOS-Chem along the flight tracks. Data are plotted as campaign-average density-weighted 

boundary layer number densities (P > 800 hPa). In both a and b, error bars indicate the 
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standard deviation across the 10 ANN-based columns (see Methods), red dashed lines 

indicate the range in slopes across ANNs, and black dashed lines indicate the 1:1 relation. 

Stated slope uncertainties and gray shaded regions represent the bootstrapped standard error 

of regression.
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Fig. 3 |. Dependence of atmospheric isoprene columns on emissions and lifetime.
a, The global ensemble of monthly-mean ~1330 LT (1200–1500 LT mean) GEOS-Chem 

isoprene columns predicted for 2013 versus the corresponding isoprene emissions. b, The 

predicted isoprene:HCHO column ratio shown as a function of isoprene lifetime, 1/[OH], 

and [OH] (all for z < 500 m). Both plots are shaded by the modeled tropospheric NO2 

column.
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Fig. 4 |. Global distribution of the isoprene:HCHO ratio (a proxy for 1/OH; Fig. 3) as a function 
of isoprene and NOx.
a, the observed relationship based on CrIS and OMI. b, the simulated relationship from 

GEOS-Chem. In both cases the plotted ratios represent monthly mean values at 1330 LT 

(1200–1500 LT mean) and are binned by isoprene and tropospheric NO2 column amounts. 

Data shown reflect scenes with elevated surface temperature (> 293K at satellite overpass) 

and where the isoprene and HCHO measurements are above detection limit (2 × 1015 molec 

cm−2).
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Fig. 5 |. Seasonality of space-based isoprene over Amazonia and southern Africa.
Left panels (a, c) map the CrIS and GEOS-Chem isoprene columns, OMI and GEOS-Chem 

tropospheric NO2 columns, and space-based and GEOS-Chem isoprene lifetimes (τisop, 

calculated from the isoprene:HCHO ratios via the Fig. S3 transfer functions) for January, 

April, July, and October 2013. The CrIS isoprene and space-based isoprene lifetimes are 

shown for snow-free, above detection limit scenes (Ωisoprene, ΩHCHO > 2 × 1015 molec cm
−2). Right panels (b, d) show the regional mean CrIS (black; error bars indicate the range 

across ANN predictions) and GEOS-Chem (red) isoprene columns for western South 

America (b, regions defined in Extended Data Fig. 6) and southern Africa (d). Results for 

western tropical South America are compared to in-situ mixing ratios (cyan points and error 

bars show the 1200–1500 LT mean and standard deviation) measured from May 2014-

January 2015 in the central Amazon Basin33. In-situ data were unavailable for most of July, 

so the July CrIS values are compared to the in-situ mean for June 2014. Southern Africa 

results are compared to monthly isoprene emissions from a detailed regional inventory43.
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Fig. 6 |. Seasonality of space-based isoprene over the US Southeast and Australia.
Left panels (a, c) map the CrIS and GEOS-Chem isoprene columns, OMI and GEOS-Chem 

tropospheric NO2 columns, and space-based and GEOS-Chem isoprene lifetimes (τisop, 

calculated from the isoprene:HCHO ratios via the Fig. S3 transfer functions) for January, 

April, July, and October 2013. The CrIS isoprene and space-based isoprene lifetimes are 

shown for snow-free, above detection limit scenes (Ωisoprene, ΩHCHO > 2 × 1015 molec cm
−2). Right panels (b, d) show the regional mean CrIS (black; error bars indicate the range 

across ANN predictions) and GEOS-Chem (red) isoprene columns for the US Southeast (b, 

regions defined in Extended Data Fig. 6) and southeast Australia (d). US Southeast results 

are compared to 10-year mean (1999–2008) isoprene concentration measurements from 

Atlanta, Georgia48 (cyan; error bars indicate the 10-year standard deviation). Southeast 

Australian results are compared to measurements from the Sydney Particle Study49. January 

and April CrIS values are compared to summer (1 February-7 March 2011) and autumn (14 

April-14 May 2012) campaign means, respectively.
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