
Cellular/Molecular

A Critical Role for Astrocytes in Hypercapnic Vasodilation
in Brain

X Clare Howarth,1,2,4* X Brad A. Sutherland,3* X Hyun B. Choi,1 X Chris Martin,2,4 Barbara Lykke Lind,5

X Lila Khennouf,5 Jeffrey M. LeDue,1 X Janelle M.P. Pakan,1 X Rebecca W.Y. Ko,1 Graham Ellis-Davies,6

X Martin Lauritzen,5,7 Nicola R. Sibson,2 X Alastair M. Buchan,3 and Brian A. MacVicar1

1Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, 2Cancer Research United
Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United
Kingdom, 3Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom, 4Department of
Psychology, University of Sheffield, Sheffield, S10 2TP, United Kingdom, 5Department of Neuroscience and Pharmacology and Center for Healthy Aging,
University of Copenhagen, DK-2200 Copenhagen N, Denmark, 6Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10028,
and 7Department of Clinical Neurophysiology, Rigshospitalet, DK-2600 Glostrup, Denmark

Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2 , arterial O2 , and brain activity and is largely constant in the
awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF
by 3%– 4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E2 (PgE2 ) plays
a key role for cerebrovascular CO2 reactivity, and that preserved synthesis of glutathione is essential for the full development of this
response. We combined two-photon imaging microscopy in brain slices with in vivo work in rats and C57BL/6J mice to examine the
hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PgE2 synthesis.
We demonstrate that hypercapnia (increased CO2 ) evokes an increase in astrocyte [Ca 2�]i and stimulates COX-1 activity. The enzyme
downstream of COX-1 that synthesizes PgE2 (microsomal prostaglandin E synthase-1) depends critically for its vasodilator activity on the
level of glutathione in the brain. We show that, when glutathione levels are reduced, astrocyte calcium-evoked release of PgE2 is decreased
and vasodilation triggered by increased astrocyte [Ca 2�]i in vitro and by hypercapnia in vivo is inhibited. Astrocyte synthetic pathways,
dependent on glutathione, are involved in cerebrovascular reactivity to CO2. Reductions in glutathione levels in aging, stroke, or schizo-
phrenia could lead to dysfunctional regulation of CBF and subsequent neuronal damage.
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Introduction
Astrocyte [Ca 2�]i transients have been shown to directly alter
diameters of cerebral arterioles in experiments using either direct

astrocyte stimulation or calcium uncaging in astrocytes of juve-
nile (Zonta et al., 2003; Mulligan and MacVicar, 2004; Gordon et
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Significance Statement

Neuronal activity leads to the generation of CO2 , which has previously been shown to evoke cerebral blood flow (CBF) increases via
the release of the vasodilator PgE2. We demonstrate that hypercapnia (increased CO2 ) evokes increases in astrocyte calcium
signaling, which in turn stimulates COX-1 activity and generates downstream PgE2 production. We demonstrate that astrocyte
calcium-evoked production of the vasodilator PgE2 is critically dependent on brain levels of the antioxidant glutathione. These
data suggest a novel role for astrocytes in the regulation of CO2-evoked CBF responses. Furthermore, these results suggest that
depleted glutathione levels, which occur in aging and stroke, will give rise to dysfunctional CBF regulation and may result in
subsequent neuronal damage.
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al., 2008), or adult animals (Takano et al., 2006). However, sev-
eral laboratories have published contradictory evidence on
whether, in adult animals, astrocyte [Ca 2�]i signaling is evoked
by synaptic activity leading to neurovascular coupling (Zonta et
al., 2003; Petzold et al., 2008; Schulz et al., 2012; Lind et al., 2013;
Otsu et al., 2015) or not (Nizar et al., 2013; Takata et al., 2013;
Bonder and McCarthy, 2014). More recently, astrocyte [Ca 2�]i

was shown to modify basal arteriole tone in adult animals
(Rosenegger et al., 2015). Therefore, it is still poorly understood
when, how, and under what conditions, astrocyte [Ca 2�]i signal-
ing contributes to the regulation of cerebral blood flow (CBF).

In this work, we investigated the mechanisms underlying CBF
responses to increased blood CO2 concentrations (hypercapnia)
and the potential contribution of astrocytes to those CBF re-
sponses. Arterial CO2 has a potent effect on CBF, with a 1 mmHg
variation eliciting a 3%– 4% CBF change (Hauge et al., 1980).
However, the mechanism coupling a change in CO2 to a change
in CBF is incompletely understood. There are parallels between
the vasoactive signals generated by astrocytes and those underly-
ing hypercapnia-evoked CBF responses. Astrocytes have been
shown to directly modify arteriole diameter when their intracel-
lular [Ca 2�]i increases, activating astrocytic phospholipase A2

(PLA2) (He et al., 2012) and thereby generating arachidonic acid
(AA) and several vasoactive metabolites including PgE2, which
causes vasodilation (Zonta et al., 2003; Takano et al., 2006; Gor-
don et al., 2008; Attwell et al., 2010). In addition to their roles in
neurovascular coupling, both PgE2 (Wagerle and Mishra, 1988;
Wagerle and Degiulio, 1994) and cyclooxygenase-1 (COX-1) ac-
tivity (Niwa et al., 2001) are involved in increasing CBF during
hypercapnia. We examined the potential link between astrocytes
and increased CBF during hypercapnia because astrocytes ex-
press the enzymes that are involved in synthesizing PgE2 from AA
during hypercapnia-induced CBF changes (Niwa et al., 2001).
For example, mRNA for both COX-1 and microsomal prosta-
glandin E synthase-1 (mPgES-1) are reported in transcriptome
studies to be highly expressed in astrocytes but not neurons (e.g.,
ptgs1, also known as COX-1, is 15-fold higher in astrocytes than
in neurons) (Cahoy et al., 2008; Zhang et al., 2014). Astrocytes are
immunoreactive for both the enzyme proteins COX-1 (Ta-
kano et al., 2006; Gordon et al., 2008) and mPgES-1 (see Fig. 3A
and Tachikawa et al., 2012). mPgES-1, the form of prostaglandin
E synthase expressed in astrocytes, requires the cofactor glutathi-
one (GSH) (Jakobsson et al., 1999; Murakami et al., 2000) that is
present in high levels in astrocytes (see Fig. 3B and Sun et al.,
2006; Bragin et al., 2010; Robillard et al., 2011). We investigated
whether hypercapnia can evoke an increase in astrocyte [Ca 2�]i

in vivo and, if so, whether this results in activation of a PgE2-
mediated vasodilation. In doing so, we demonstrate a novel,

GSH-dependent mechanism of CBF regulation, which involves
astrocytes and the GSH-sensitive release of PgE2.

Materials and Methods
Slice preparation
Four hundred �m hippocampal-neocortical slices were prepared from
male and female juvenile ( postnatal age 16 –21 d) Sprague Dawley rats.
Treatment of animals was approved by the University of British Colum-
bia Animal Care and Use Committee. As previously described (Gordon
et al., 2008), rats were anesthetized with halothane, decapitated, and the
brains removed into ice-cold slicing solution containing the following (in
mM): 2.5 KCl, 26 NaHCO3, 0.5 CaCl2, 10 MgSO4, 1.25 NaH2PO4, 10
glucose, 230 sucrose, saturated with 95% O2/5% CO2. The 400 �m trans-
verse hemi-sections were incubated at 32°C-34°C in aCSF containing the
following (in mM): 126 NaCl, 2.5 KCl, 26 NaHCO3, 2.0 CaCl2, 2.0 MgCl2,
1.25 NaH2PO4, 10 glucose, saturated with 95% O2/5% CO2 for 60 min.
For experiments, slices were at 22°C-24°C, aCSF was saturated with 20%
O2/5% CO2, balanced N2, and perfused at �2 ml/min. Healthy slices can
be maintained in 20% O2, which provides a pO2 at the low end of the
physiological range (Gordon et al., 2008). Astrocytes were loaded with
the caged IP3 compound, NV-IP3/AM (5 �g/ml), and/or the Ca 2� indi-
cator rhod-2/AM (10 �M, Invitrogen) as previously described (Mulligan
and MacVicar, 2004; Gordon et al., 2008). Slices were loaded with mono-
chlorobimane (MCB, Fluka) in the dark at room temperature for 30 min
as previously described (Robillard et al., 2011).

Two-photon imaging and uncaging in acute brain slices
A two-photon laser-scanning microscope (Zeiss LSM510-Axioskop-2
fitted with a 40�-W/1.0 numerical aperture objective lens) coupled to a
Chameleon ultra II Ti:sapphire laser (�140 fs pulses 80 MHz, Coherent)
provided excitation of rhod-2 and was used to uncage IP3. Images were
acquired 50 –100 �m below the slice surface. Rhod-2 fluorescence imag-
ing and two-photon uncaging were performed using laser settings and
emission filters as previously described (Gordon et al., 2008). MCB was
excited at 780 nm and detected with a PMT at 512–562 nm as previously
described (Robillard et al., 2011). Arterioles (defined as vessels with di-
ameter �10 �m, surrounded by a visible layer of smooth muscle cells)
were imaged by acquiring the transmitted laser light and using IR-DIC
optics.

Glutathione and PgE2 measurements
Protocols in suppliers’ instructions were followed for the PgE2 ELISA and
glutathione assays. When measuring PgE2 release from acute brain slices,
TTX (1 �M, Alamone Labs) was added to dampen neuronal activation.
PgE2 release from acute brain slices was measured using a Specific Pa-
rameter PgE2 ELISA kit (R&D systems). Measurements of tissue gluta-
thione levels were made using a specific total glutathione assay kit from
either BioVision or Assay Designs.

Immunohistochemistry
Rats were anesthetized with halothane, given an intraperitoneal injection
of urethane (0.5 ml of 30% urethane per 50 g body weight), and perfused
with saline (0.9% NaCl in 0.1 M phosphate buffer) followed by 4% PFA
(in 0.1 M PBS). The brain was extracted, postfixed (10% sucrose in 4%
PFA) overnight, and cryoprotected (30% sucrose in PBS) overnight. Us-
ing a cryostat, 40 �m serial sections in the horizontal plane were collected
throughout the brain. Free-floating sections were blocked with 10% nor-
mal goat serum (Jackson ImmunoResearch Laboratories) and 0.4% Tri-
ton X-100 in PBS for 1 h and incubated in PBS containing 0.1% Triton
X-100 and primary antibodies against PgE2 synthase (anti-mPgES-1)
(Olajide et al., 2014; Tuure et al., 2015) (Agrisera, catalog #AS03 031,
1:200) as well as an astrocyte phenotypic marker (anti-GFAP (Lathia et
al., 2008) (Sigma, catalog #G3893, clone #G-A-5, 1:500) overnight at 4°C.
Tissue was rinsed and incubated in AlexaFluor-488 goat anti-mouse
and AlexaFluor-546 goat anti-rabbit secondary antibodies (Invitro-
gen: diluted 1:500 in PBS, 2.5% normal goat serum and 0.4% Triton
X-100) for 1.5 h at room temperature. The tissue was rinsed, mounted
onto slides, and coverslipped using Fluorsave mounting medium
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(Calbiochem). Images were acquired with an Olympus Fluoview
FV1000 confocal microscope.

Drugs
trans-ACPD (tACPD), clonidine, norepinephrine (NE; Sigma), and
PgE2 (Cayman Chemicals) were bath applied for 5–10 min. SC560
(Sigma) was preincubated for 30 min (Blanco et al., 2008) followed by
bath application and buthionine sulfoximine (BSO; Sigma) was preincu-
bated for 2.5 h (Sun et al., 2006) followed by bath application throughout
the experiment. NV-IP3/AM was synthesized by G. Ellis-Davies.

Animals: in vivo blood flow measurements in rats
All procedures were approved by the University of Oxford Ethical Review
Committee and complied with the requirements of the Animals (Scien-
tific Procedures) Act, 1986, United Kingdom. Animals were housed in an
animal housing facility in a 12 h alternating light:dark cycle with ad
libitum access to food and water. Male Wistar rats were used (256 –367 g).

Intracerebral injection
For surgical procedures, rats were anesthetized with 4% isoflurane and
maintained at 1.5%–2% isoflurane in 30% O2 and 70% N2. Each rat was
placed in a stereotaxic frame and the skull exposed. A burr hole was
drilled at 1 mm caudal and 4.2 mm lateral to bregma, and the dura mater
was finely dissected away to expose the cortex. Twenty �l of 80 mg/ml
BSO (Pileblad and Magnusson, 1989) or 0.9% saline was infused by a
microinfusion pump at a rate of 2 �l/min into the right whisker barrel
cortex at a depth of 2.3 mm from the brain’s surface. This dose of BSO has
previously been shown to adequately reduce GSH within 24 h of admin-
istration (Pileblad and Magnusson, 1989), and we showed that BSO ad-
ministered in this way could decrease GSH levels in the ipsilateral cortex
by 45%, 24 h after injection (see Fig. 5C), and in the ipsilateral striatum
by 31% (GSH measured in saline-treated: 0.61 � 0.03 mM, BSO-treated:
0.42 � 0.08 mM, p � 0.045, n � 7 per group, mean � SEM). After the
infusion, bone wax was placed over the burr hole and the wound was
closed with 3– 0 sutures. Animals recovered for 24 h before assessment of
GSH levels (n � 7 per group) or evoked blood flow responses (n � 6 –10
per group).

Whisker pad stimulation and hypercapnia: in vivo blood
flow measurements
At 24 h after BSO/saline treatment, animals had their left femoral
artery cannulated for blood gas measurement and were tracheoto-
mized and ventilated with 1.25% isoflurane in 30% O2 and 70% N2. A
laser Doppler probe (Perimed) to monitor relative CBF was placed
over the right whisker barrel cortex (where the intracerebral injection
was made) and bipolar stimulating electrodes were placed in the left
whisker pad. For some experiments, a local field potential (LFP) elec-
trode for neuronal activity was also placed on the exposed cortex to
monitor neuronal activity. All animals had a steady-state blood gas
(Table 1) before beginning experiments.

An electrical stimulus (10 Hz, 16 s duration, 1.6 mA, 0.3 ms pulse-
width, 60 s interstimulation interval) to evoke a blood flow response in
the right whisker barrel cortex was performed for 10 trials per animal.
Following this, animals were exposed to 10% CO2 for 30 s at 3 min
intervals repeated 4 or 5 times to induce hypercapnic blood flow re-
sponses. Animals were killed and the cortex dissected for measurement of
GSH levels.

For SC560 experiments, naive rats were anesthetized with isoflurane.
Anesthesia was induced with 4% isoflurane and maintained during sur-
gery with 2% isoflurane. During stimulation, anesthesia was maintained
with 1.25% isoflurane. Isoflurane was carried in 30% O2 and 70% N2.

Rats had their left femoral artery and vein cannulated, and were also
tracheotomized and ventilated. A laser speckle camera (Moor Instru-
ments) was used to monitor relative CBF over a thin skull window over
the right whisker barrel cortex while an LFP electrode for neuronal ac-
tivity was inserted through a burr hole. Bipolar stimulating electrodes
were placed in the left whisker pad. Animals had a steady-state blood gas
before and after drug administration (Table 2). An electrical stimulus (10
Hz, 16 s duration, 1.6 mA, 0.3 ms pulsewidth, 60 s interstimulation
interval) to evoke a blood flow response in the right whisker barrel cortex
was performed for 10 trials per animal. Following this, animals were
exposed to 10% CO2 for 30 s at 3 min intervals repeated four times to
induce a hypercapnic blood flow response. Animals were then adminis-
tered 5 mg/kg SC560 or 10% DMSO (vehicle) intravenously. SC560 is a
highly lipophilic COX-1 inhibitor and distributes widely into tissues
(Teng et al., 2003), and this dose was chosen for maximal target efficiency
(Zhang et al., 2003). After 20 min, the effect of COX-1 inhibition on the
evoked CBF responses to whisker stimulation and hypercapnia was
measured.

Animals: in vivo calcium imaging
For in vivo experiments, all procedures involving animals were approved
by the Danish National Ethics Committee according to the guidelines set
forth in the European Council’s Convention for the Protection of Verte-
brate Animals used for Experimental and Other Scientific Purposes. The
8- to 10-week-old male C57BL/6J mice were used.

In vivo calcium imaging
For experiments involving mice, anesthesia was induced with bolus in-
jections of the �2-adrenergic receptor agonist xylazine (10 mg/kg i.p.)
and the NMDA-receptor antagonist ketamine (60 mg/kg i.p.). Anesthe-
sia was maintained during surgery with supplemental doses of ketamine
(30 mg/kg/20 min i.p.). Upon completion of all surgical procedures,
anesthesia was switched to continuous infusion with �-chloralose
(50 mg/kg/h i.v.).

Calcium activity during hypercapnia was measured in vivo in eight
C57BL/6J mice. A craniotomy over the somatosensory cortex was cov-
ered with agarose and partly sealed with a glass coverslip. Oregon Green
Bapta-1/AM (OGB; Invitrogen) was dissolved in DMSO and Pluronic
F-127 (10%, BASF Global) and diluted in aCSF to yield a final dye con-
centration of 0.8 mM. It was mixed with the astrocyte marker sulforhod-
amine 101 (SR101; Sigma-Aldrich, 100 �M) (Nimmerjahn et al., 2004)
and was pressure injected (4 – 6 psi, 4 s) into the somatosensory cortex
through a micropipette at a depth of 100 –150 �m below the cortical
surface. Ca 2� imaging was performed using a commercial two-photon
microscope (SP5 multiphoton/confocal Laser Scanning Microscope;
Leica), and a Mai Tai HP Ti:sapphire laser (Millennia Pro, Spectra Phys-
ics) with a 20� 1.0 NA-water-immersion objective (Leica). The excita-
tion wavelength was 820 nm. The emitted light was filtered to retain both
red and green light using a TRITC/FITC filter.

The hypercapnia challenge was presented as follows: Following 1 min
baseline recording, 10% CO2 in air was applied for 30 s and imaging
continued for subsequent 4 min. Five trials were performed with 3 min
between trials. For each animal, a second field of view was selected and
the hypercapnia challenge repeated. Blood gases were taken after each
experiment, and all mice had pCO2 in the range 30 – 40 mmHg and pO2

in the range 95–130 mmHg.

Data collection, analysis, and statistics
In vitro data. An image (512 � 512 pixels) was collected in 7.86 –12.68 s,
using 8-line averaging. Measurements of lumen diameter and Ca 2�

Table 1. Blood gases for BSO experiment (Nota Bene blood gases taken 24 h after
drug but before hypercapnia and whisker stimulation experiments)a

Treatment pH pCO2 (mmHg) pO2 (mmHg)

Saline 7.47 (0.01) 34.5 (2.3) 161 (4)
BSOb 7.46 (0.01) 35.8 (1.5) 154 (7)
aData are mean (SEM).
bAn inhibitor of �-glutamylcysteine synthetase.

Table 2. Blood gases for SC560 intravenous experiment (Nota Bene blood gases
taken before and after drug administration)a

Condition Treatment pH pCO2 (mmHg) pO2 (mmHg)

Predrug DMSO 7.47 (0.01) 33.5 (1.5) 164 (5)
SC560 7.45 (0.01) 36.8 (1.2) 140 (5)

Postdrug DMSO 7.46 (0.01) 34.1 (0.6) 156 (6)
SC560 7.45 (0.03) 37.1 (2.1) 140 (5)

aData are mean (SEM).
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changes were performed offline with Zeiss LSM (version 3.2) software
and ImageJ (National Institutes of Health). As previously described
(Gordon et al., 2008), fluorescence signals were defined as F/F0 (%) �
[(F1 � B1)/(F0 � B0)]100, where F1 and F0 are fluorescence at a given
time and the mean fluorescence during the control period, respectively.
B1 and B0 are the corresponding background fluorescence signals, taken
from the neuropil. Pseudo-color images show absolute changes in fluo-
rescence (ImageJ, 16-color linear Lut). Experimental values are mean �
SEM; n is the number of experiments conducted or, for calcium changes,
number of astrocytes analyzed. Either a two-tailed Student’s t test or a
one-way ANOVA with a Newman–Keuls post hoc test for comparison
between multiple groups was used, and p 	 0.05 was considered statisti-
cally significant. As these were novel experiments, the effect size was
unknown before the experiment. Therefore, sample size estimates were
based on our previous experience. Experiments were alternately per-
formed under control or treatment conditions with slices chosen at ran-
dom for each experiment. Data were excluded from analysis if any of the
following occurred during imaging: unstable baseline vessel diameters or
astrocyte calcium levels, or movement leading to significant focus
changes during the experiment. To perform statistical analysis, data were
assumed to be normally distributed.

In vivo data. All laser Doppler and LFP data were collected in Spike 2
software, whereas laser speckle data were collected using Moor FLPI
software. Quantification of CBF changes and electrophysiology were per-
formed in MATLAB (The MathWorks, version 7.12). To obtain the re-
gion of interest (ROI) for calculation of CBF changes using laser speckle
imaging, a principal components analysis was used to identify the focal
point of the change in response to stimulation. The same region of inter-
est was used within each animal’s data. Experimental values are the
mean � SEM, and n is the number of animals. To perform statistical
analysis, data were assumed to be normally distributed. An F test was
used to compare variances of groups being statistically compared. For
CBF data, a one-tailed t test with Welch’s correction (as groups had
significantly different variances) was used to compare means between
groups. A two-tailed t test was used to compare means of groups for both
GSH analysis (see Fig. 5C) and electrophysiology data in response to
whisker pad stimulation (Welch-corrected for SC560 experiment, see
Fig. 6C). For electrophysiology data collected during hypercapnia chal-
lenge experiments, a two-way ANOVA with Bonferroni correction for
multiple comparisons was used to compare means between groups. p 	
0.05 was considered statistically significant. For experiments involving
rats, due to effect sizes being unknown before experiment, sample size
estimates were based on previously published sample sizes (e.g., Niwa et
al., 2001). Assignment of animals was alternated between treatment and
control groups, and neither experiments nor analysis were blinded.
Three animals were excluded from all data analysis (1 for SC560 and 2 for
BSO) due to technical problems with experimental equipment.

For in vivo calcium imaging, frame size was 256 � 256 pixels (189 –207
ms/frame) during recordings. The Ca 2� changes were evaluated as the
average change in fluorescence relative to baseline levels in ROIs. The
ROIs were placed based on morphology over neuronal or astrocytic
soma, or neuropil. Because of movement of astrocytes during hypercap-
nia, within or out of focus, ROIs were evaluated based on the level of
SR101 loading in the red channel. If a significant change occurred, the
ROI was disregarded in all following assessments. An increase in fluores-
cence within an ROI was classified as a calcium response if the mean
fluorescence value within the period of hypercapnia was �2 SDs of base-
line activity. The delay of the Ca 2� response was found by subtracting the
signal onset time from the time hypercapnia was introduced to the ani-
mal. To estimate response start and termination time, a fit was made to
the data and the first- and second-order derivatives were calculated. The
response onset time was found by taking the maximum peak of the
second order derivative of the fitted data. The duration of the Ca 2�

response was then found by subtracting the response onset time from the
response termination time. The response termination time was defined
as the time point when the fitted data went below mean baseline Ca 2�

levels or the recording ended. Experimental values are expressed as
mean � SEM. A paired t test was used for the calcium imaging data, each
animal served as its own control. p 	 0.05 was accepted as statistically

significant. For experiments involving mice, as there have been no pre-
vious studies reporting astroglial calcium changes during hypercapnia, it
was impossible to estimate an expected value for change in fluorescence
or its SD. Hence, no sample size calculation could be performed. How-
ever, we expected similar calcium changes to those we observe for low-
frequency whisker stimulation, and so sample sizes were based on our
previous experiments (6 – 8 mice). Calcium signals obtained during hy-
percapnia exceeded an SNR of 4:1, and hypercapnia-induced calcium
responses were recorded in every animal tested. As all mice were sub-
jected to hypercapnia, there was no randomization method used. Con-
trol measurements of calcium activity (i.e., activity without application
of hypercapnia) were taken at random time points during the experi-
ment. Analysis of calcium changes was not blinded, assessment of these
changes was based on a MATLAB program, which analyzes the image
sequences in an unbiased manner, rather than by visual inspection.

Results
Increased CO2 evokes [Ca 2�]i responses in astrocytes in vivo
Elevation of tissue CO2 concentration, which can be caused by
neuronal metabolism, is known to dilate cerebral blood vessels in
a process dependent on PgE2 (Wagerle and Mishra, 1988;
Wagerle and Degiulio, 1994) formation via COX-1 activity (Niwa
et al., 2001). However, the cells that both are responsible for
sensing CO2 and that also express the enzymes for synthesizing
PgE2 (COX-1 and PgES) have not been resolved. Astrocytes can
produce PgE2, but it is unknown whether astrocytes generate
[Ca 2�]i signals in response to CO2. Therefore, we tested whether
an increase in inspired CO2 (hypercapnia) in vivo evokes astro-
cyte [Ca 2�]i when it also triggers CBF increases.

Two-photon laser scanning microscopy (2PLSM) in vivo was
used to examine the simultaneous responses of both neurons and
astrocytes to hypercapnia in the intact brain as a first step to
investigate which cell type might be the primary sensor of CO2

(Fig. 1). Remarkably, we found consistent and significant in-
creases in [Ca 2�]i in the soma and endfeet of astrocytes in cortical
layers II/III of mouse (Fig. 1) during the period of hypercapnia.
The dramatic increases that we observed in astrocytes were of
significantly higher amplitude (Fig. 1A–C; p 	 0.01) than in-
creases in [Ca 2�]i observed in neuronal soma during the period
of hypercapnia. The number of astrocytes with [Ca 2�]i responses
was also much greater in hypercapnia compared with the number
showing spontaneous calcium activity (control time period:
Fig. 1D; p 	 0.01). Although neurons could display increased
[Ca 2�]i during hypercapnia, with onset times within seconds
(Fig. 1B,C,E), there was no significant difference in the number
of neurons with [Ca 2�]i responses during hypercapnia compared
with the number showing spontaneous calcium activity (control
time period: Fig. 1D). Measurements taken in the neuropil where
there were no defined cell bodies, and it is difficult to separate
signals in fine astrocyte processes from neuronal processes did
not show correlated changes in [Ca 2�]i signals during hypercap-
nia (Fig. 1D). The astrocyte [Ca 2�]i responses (Fig. 1B,E,F) ap-
pear to occur within a similar timescale as the increased CBF
evoked by hypercapnia (as measured by laser speckle contrast
imaging and laser Doppler flowmetry in rat; see Fig. 5A, D, re-
spectively). During hypercapnia, an increased number of astro-
cyte soma (Fig. 1D) displayed increased [Ca 2�]i with onsets
within seconds (Fig. 1B,E) and variable durations of tens of sec-
onds (Fig. 1B,F). While there were no differences between the
three groups (astrocyte soma, neuronal soma, and neuropil) with
regards to the delay of the hypercapnia-induced Ca 2� responses
(average Ca 2� response delay [Fig. 1E]: neuron soma � 12.14 �
1.19 s (n � 33), neuropil � 12.83 � 4.18 s (n � 3), and astrocyte
soma � 14.57 � 1.55 s (n � 47)), the average Ca 2� response
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Figure 1. Astrocyte [Ca 2�]i transients are evoked by CO2 in vivo. A, Example still images of mouse cortical layer II/III from 2PLSM. OGB is used as a calcium indicator (Ai–Aiii) and sulforhodamine 101 (SR101,
Aiv, average image for whole recording) is used to stain astrocytes. Color scale refers to images Ai–Aiii. White arrows indicate astrocytes that show a Ca 2� response to CO2 of at least twice its baseline Ca 2�

fluctuation. In this case, CO2 stimulus begins at t�0 s and is applied for 36 s. Aiii, Recovery of immediate CO2 induced Ca 2� transient. Scale bars, 40�m. Bi, Biii, Further example images of mouse cortical layer
II/III from 2PLSM showing example ROI placement. Merge images showing OGB and SR101 (Bi, Biii). Red ROI1 indicates astrocyte endfoot. Red RO12 indicates astrocyte soma (layer II: n �181, 8 mice). Green
ROI indicates neuron soma (layer II: n �153, 8 mice). Blue ROI indicates neuropil (layer II: n �104, 8 mice). Scale bar, 20 �m. Example time series (Bii, Biv) of [Ca 2�]i response in astrocyte and neuron soma
ROIs (as indicated in Bi, Biii). Blue box represents time during which expired CO2 level is increased. C, Mean Ca 2� response in ROIs. Colors represent ROIs located as shown in Bi. D, Percentage of ROIs for each cell
type that showed a Ca 2� response with and without a hypercapnia stimulus. For no hypercapnia (control), n � 170 astrocyte somas, n � 148 neuronal soma, and n � 96 neuropil ROIs, n � 8 mice. Colors
represent description in B. E, Delay from hypercapnia start time to start of Ca 2� response in ROI. F, Duration of Ca 2� response in each ROI in response to CO2 stimulus. E, F, Box plots represent the mean (small
square). Edges of the box represent 25% and 75% of data. End lines indicate maximum and minimum values. Data are mean � SEM. **p 	 0.01. ***p 	 0.001.
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duration (Fig. 1F) was found to be significantly longer in astro-
cytes than in neurons: neuron soma � 119.41 � 8.82 s (n � 33),
astrocyte soma � 155.47 � 8.32 s (n � 47) (p 	 0.05, ANOVA).

Astrocytic [Ca 2�]i signals evoke subsequent GSH-dependent
PgE2 release
Having demonstrated in vivo that hypercapnia evokes an increase
in astrocyte [Ca 2�]i, we then used a combination of 2PLSM and
PgE2 measurements using ELISA in acute brain slices to deter-
mine the mechanistic links between astrocyte [Ca 2�]i responses
and CBF regulation. Using a biochemical model, we investigated
the role of GSH in the generation of PgE2.

Unlike in the in vivo situation, it is difficult to reliably evoke

astrocyte [Ca 2�]i signals and vasodilations by applying CO2 to
acute brain slices. Thus, we needed an alternative method of ele-
vating astrocyte [Ca 2�]i in acute brain slices. Although the adult
mouse (Sun et al., 2013) and rat (Duffy and MacVicar, 1995) have
been shown to not express functional mGluR5, bath application
of the mGluR agonist tACPD is known to increase astrocyte
[Ca 2�]i in younger animals (Mulligan and MacVicar, 2004).
Therefore, tACPD was used to evoke reliable, reproducible astro-
cyte [Ca 2�]i elevations in acute brain slices from juvenile rats. To
evoke widespread increases in astrocyte [Ca 2�]i, hippocampal-
neocortical slices were perfused with tACPD, an mGluR agonist.
Application of tACPD (100 �M) to brain slices (from juvenile
rats) caused a generalized increase in astrocyte [Ca 2�]i, observed

Figure 2. Astrocyte [Ca 2�]i signals evoke COX-1- and GSH-dependent vasodilations in vitro. A, 2PLSM imaging: example Ca 2� and arteriole diameter changes in response to tACPD with and
without BSO. Images represent overlay of pseudo-colored Ca 2� changes and transmitted light images. Dotted line indicates initial vessel diameter. Scale bar, 10 �m. B, Mean time course of increase
in astrocyte [Ca 2�]i in response to tACPD. Colored box represents time of tACPD application. Control, n � 56 from 26 rats; BSO, n � 39 from 18 rats. C, Mean tACPD-evoked increase in astrocyte
[Ca 2�]i. tACPD, n � 56 from 26 rats; tACPD � SC560, n � 12 from 7 rats; tACPD � BSO, n � 39 from 18 rats. D, Mean tACPD-evoked PgE2 release, measured by ELISA. Within a group, each
experiment (n) uses tissue from a different rat (i.e., control, n � 8 from 8 rats). E, Mean tissue GSH concentration; data from 4 rats for each group. F, Mean time course of tACPD-evoked change in
lumen diameter. Colored box represents time of tACPD application. Control, n � 31 slices from 26 rats; BSO, n � 21 slices from 18 rats. G, Mean changes in lumen diameter evoked by tACPD and
clonidine. tACPD, n � 31 slices from 26 rats; SC560 � tACPD, n � 7 slices from 7 rats; BSO � tACPD, n � 21 slices from 18 rats; clonidine, n � 8 slices from 8 rats; BSO � clonidine, n � 8 slices
from 7 rats. H, Mean changes in lumen diameter evoked by PgE2 and NE. PgE2, n � 5 slices from 4 rats; BSO � PgE2, n � 3 slices from 3 rats; NE, n � 14 slices from 11 rats; BSO � NE, n � 8 slices
from 7 rats. Data are mean � SEM. **p 	 0.01. ***p 	 0.001. n, number of experiments conducted or, for calcium measurements, number of astrocyte ROIs analyzed.
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using 2PLSM (Fig. 2A–C), that provided us with the ability to
measure subsequent synthesis of PgE2. Applying tACPD resulted
in the formation and efflux of PgE2, as measured by ELISA (Fig.
2D). The first step in the conversion of AA to PgE2 in astrocytes is
via COX-1 (Fig. 7) (Takano et al., 2006; Gordon et al., 2008;
Font-Nieves et al., 2012). Neurons, in contrast, express COX-2
but not COX-1 (Nogawa et al., 1997). In support of a central role
for COX-1, we found that, although the tACPD-evoked increase
in astrocyte [Ca 2�]i was unaltered (Fig. 2C) in the presence of
the COX-1 inhibitor SC560 (Smith et al., 1998; 100 nM: Blanco et
al., 2008), the resulting formation and efflux of PgE2, as measured
by ELISA, was abolished (p 	 0.001; Fig. 2D). Thus, astrocyte
COX-1 activity is required for the subsequent PgE2 release in
acute brain slices, which is triggered by astrocyte [Ca 2�]i signals.

Downstream of COX-1 the synthesis of PgE2 involves the en-
zyme mPgES-1 (Tachikawa et al., 2012), a form of prostaglandin
E synthase expressed in astrocytes (Fig. 3A) (Tachikawa et al.,
2012) that requires the cofactor GSH (Jakobsson et al., 1999;
Murakami et al., 2000). It is known that GSH is present in high
levels in astrocytes (Sun et al., 2006; Bragin et al., 2010; Robillard
et al., 2011), as detected by staining of brain tissue with MCB, a
GSH-sensitive dye (Fig. 3B). Therefore, we investigated whether
PgE2 formation was reduced when GSH levels were depressed.
We examined whether there is a reduction in astrocyte [Ca 2�]i-
evoked PgE2 release in hippocampal slices after treatment with
BSO (an inhibitor of �-glutamylcysteine synthetase) for 2.5 h
(Sun et al., 2006), which reduced the tissue GSH concentration by
27% (p � 0.009; Fig. 2E). When GSH levels were decreased,
although there was no change in basal PgE2 efflux (Fig. 2D) or in

the amplitude of tACPD-evoked astrocyte
[Ca 2�]i signals (Fig. 2A–C), strikingly the
tACPD-evoked PgE2 efflux was reduced
by 64% (p 	 0.001; Fig. 2D).

Astrocyte [Ca 2�]i signals evoke COX-1
and GSH-dependent vasodilations in
brain slices
As COX-1 activity (Niwa et al., 2001) and
PgE2 release (Wagerle and Mishra, 1988;
Wagerle and Degiulio, 1994) have been
shown to lead to increased CBF in re-
sponse to hypercapnia, we examined
whether COX-1-dependent PgE2 release
evoked by astrocyte [Ca 2�]i signals trig-
gered by either tACPD application or IP3

uncaging resulted in vasodilations.
Bath perfusion of tACPD induced ar-

teriolar dilation in acute brain slices (Fig.
2A,F,G), which was abolished in the pres-

ence of SC560 (p 	 0.01; Fig. 2G), whereas the amplitude of
evoked astrocyte [Ca 2�]i signals was unchanged (p � 0.05; Fig.
2C). Thus, combined with the results discussed above, these data
confirm that astrocyte COX-1 activity and subsequent PgE2 re-
lease are required for vasodilations in acute brain slices that are
triggered by astrocyte [Ca 2�]i signals.

As previously discussed, downstream of COX-1, the synthesis
of PgE2 involves the astrocyte-expressed, GSH-dependent, en-
zyme mPgES-1 (Tachikawa et al., 2012). Therefore, a role for
astrocytes in the regulation of arteriole diameter would be sup-
ported if [Ca 2�]i-evoked vasodilations were attenuated when
GSH levels were depressed. We examined whether there is a re-
duction in subsequent vasodilations in hippocampal slices after
treatment with BSO. When GSH levels were decreased, tACPD-
evoked astrocyte [Ca 2�]i signals were unaltered (Fig. 2A–C).
However, the vasodilations triggered by these [Ca 2�]i signals
were abolished (Fig. 2A,F,G; p 	 0.01). Vasoconstrictions
evoked by NE (100 �M) or the �2 agonist clonidine (10 �M),
which act directly on arteriole smooth muscle cells (Busija and
Leffler, 1987), were unchanged in the presence of BSO (Fig.
2A,G,H), indicating that arterioles were not damaged by the BSO
treatment. Furthermore, BSO treatment did not alter the vasodilation
evoked by either 1 �M PgE2 (Fig. 2H) or high [K�] (10 mM), which
causes vasodilation by hyperpolarizing arteriole smooth muscle cells
(Filosaetal.,2006)(K�:8.6�2.3%,n�5slicesfrom5rats;BSO�K�:
6.5 � 0.8%, n � 6 slices from 3 rats, p � 0.37).

Astrocyte [Ca 2�]i increases can be triggered by two-photon
uncaging of IP3 within the cell body of an astrocyte. Using this

Figure 3. Astrocytes express mPGES-1 and contain high levels of GSH. A, Immunohistochemistry showing astrocytic expression of GSH-dependent mPGES-1 in the CA3 of the hippocampus.
Astrocyte marker, GFAP (red), mPGES-1 (green), and merge (yellow). Scale bar, 20 �m. B, MCB-loaded hippocampal-neocortical slices. Astrocytes (identified by SR101, red, white arrowheads)
contain higher levels of GSH (as indicated by MCB staining, green) than neurons (white arrows). Merge (yellow). Scale bar, 20 �m.

Figure 4. Astrocyte [Ca 2�]i transient-evoked vasodilations are GSH dependent in vitro. A, Mean IP3-evoked increases in
astrocyte [Ca 2�]i. Control, n � 21 from 6 rats; �BSO, n � 11 from 4 rats. B, Mean time course of increase in astrocyte [Ca 2�]i.
Dotted line indicates time of photolysis of caged IP3. n as described in A. C, Mean lumen diameter change in response to uncaging
of IP3. Uncage IP3, n � 11 slices from 6 rats; �BSO, n � 6 slices from 4 rats. Data are mean � SEM. **p 	 0.01. n, number of
experiments conducted or, for calcium measurements, number of astrocyte ROIs analyzed.
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technique, we directly examined the effect of decreasing GSH
levels on astrocyte [Ca2�]i-evoked arteriole dilations. Astrocytes in
hippocampal slices from juvenile rats were bulk-loaded with the
caged IP3 compound, NV-IP3/AM. Two-photon photolysis was
used to uncage IP3 within an astrocyte soma specifically, gener-
ating a [Ca 2�]i increase within the soma, processes, and endfeet.
This local increase in [Ca 2�]i could evoke an increase in [Ca 2�]i

in nearby astrocytes (Fig. 4A,B represents local and propagated
responses) and elicited vasodilation of the neighboring arteriole
(Fig. 4C). Although astrocyte [Ca 2�]i signals were unaltered fol-
lowing BSO treatment to reduce GSH levels (p � 0.1; Fig. 4A,B),
dilations were not observed and vasoconstrictions were now
evoked (p � 0.008; Fig. 4C). Thus, when GSH levels are reduced,
astrocyte [Ca 2�]i signals can no longer evoke vasodilations nor-
mally triggered by the release of PgE2.

In vivo hypercapnia-evoked CBF responses are
GSH dependent
Having determined in acute brain slices the vasodilatory mol-
ecules underlying astrocyte [Ca 2�]i-evoked vasodilations, we
examined whether these same enzymes and molecules were
involved in the CBF response, which occurs downstream of
CO2-evoked astrocyte [Ca 2�]i responses in vivo. Hypercapnia
in vivo evoked a CBF increase in the barrel cortex of adult rat
(Fig. 5 A, B, D, E), whereas neural activity was unchanged
(Fig. 5F ). The calculated area under the curve (AUC) of the
CBF response was significantly attenuated by SC560 ( p �
0.032; Fig. 5 A, B), confirming that COX-1 plays a critical role
in hypercapnia-evoked CBF increases in vivo (Niwa et al.,
2001).

We examined the impact of decreased tissue GSH levels on CO2-
evoked CBF increases in vivo. To lower GSH levels in vivo, BSO was
injected into rat barrel cortex. After 24 h, tissue GSH levels in the
ipsilateral cortex were reduced by 45% (Fig. 5C; p � 0.018). Treat-
ment with BSO reduced the hypercapnia-evoked CBF response (Fig.
5D,E; AUC reduced by 65%, p � 0.048). Neural activity was no
different in BSO-treated rats compared with saline-treated rats (Fig.
5G). Combining all the data described so far suggests that hypercap-
nia-evoked, astrocyte [Ca2�]i-related, CBF increases require PgE2

release and, thus, are compromised when brain GSH levels are
reduced.

This finding was specific to hypercapnia-evoked CBF increases.
We examined the impact of decreased tissue GSH levels in vivo on
functional hyperemia in the somatosensory cortex. Whisker pad
stimulation (10 Hz) evoked a blood flow increase in the barrel cortex
(Fig. 6A). In agreement with previous findings (Niwa et al., 2000),
inhibiting COX-1 with SC560 had no effect on either the CBF re-
sponse to whisker pad stimulation (Fig. 6A,B; p � 0.10) or evoked
neural activity (LFP) (Fig. 6C; p � 0.91). Furthermore, the AUC of
the stimulation-evoked CBF response was not significantly different
in BSO-treated animals (Fig. 6D; p � 0.14) compared with saline-
treated animals, demonstrating that the CBF response is not GSH-
sensitive. The magnitude of the neural response to whisker pad
stimulation was unaffected by BSO (Fig. 6E; p � 0.68). These results
indicate that, under these experimental conditions, COX-1 and GSH
play little, if any, role in the CBF response to somatosensory stimu-
lation. These findings confirm that several different pathways exist
that account for CBF regulation under differing conditions and in
response to different stimuli.

Figure 5. CO2 evoked CBF responses in vivo are GSH dependent. A, Mean traces of local CBF response to hypercapnia, measured by laser speckle contrast imaging, in vehicle (DMSO)- (blue) and
SC560- (red) injected animals. n � 7 rats for each group. Colored box represents time of CO2 application. Data shown as fractional change with baseline of 0 (baseline taken during 60 s prechallenge)
and a pretreatment peak of 1 (black dotted line on graph). B, Mean AUC of CBF response to hypercapnia in the presence of vehicle (DMSO) or SC560 (normalized to pretreatment maxima for each
animal). n � 7 rats for each group. C, Tissue GSH levels 24 h after injection of BSO or saline into the barrel cortex (n � 7 rats). D, Mean trace of local CBF response to hypercapnia, measured by laser
Doppler flowmetry, in saline- (blue) and BSO- (red) injected rats. n � 6 rats in each group. E, Mean values of AUC of CBF response to hypercapnia. n � 6 rats in each group. F, G, Neural activity. Power
in frequency bands. F, During baseline (Base) and in response to hypercapnia (HCN) for saline- (blue) and BSO- (red) treated animals. n � 3 rats. G, Hypercapnia (HCN)/baseline (Base). Treatment
with BSO does not change the effect of hypercapnia on neural activity. n � 3 rats. Data are mean � SEM. * p 	 0.05.
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Discussion
We demonstrate a novel mechanism of CBF regulation involving
astrocytes, which is GSH dependent. Previously, Niwa et al. (2001)
demonstrated that hypercapnia-evoked CBF increases are princi-
pally COX-1 dependent. In this study, we examined the mechanism
of such CBF regulation, both upstream and downstream of
hypercapnia-evoked increases in COX-1 activity (Fig. 7). We dem-
onstrate in vivo that, upstream of evoked COX-1 activity, CO2 in-
creases [Ca2�]i in astrocytes. These data demonstrate a new signal
(hypercapnia) that activates astrocyte calcium and specifically iden-
tify the involvement of astrocytes in the regulation of CBF in re-
sponse to changes in arterial CO2.

In vitro, using brain slices from juvenile animals in which it
is possible to examine calcium signals by bulk loading a cal-
cium indicator dye, we confirm that increased astrocyte
[Ca 2�]i results in the subsequent release of PgE2 and vasodi-
lation which are COX-1 activity-dependent (Fig. 7). Our as-
sumption that the evoked response in juvenile rat slices is the
same as in adult rat with respect to COX-1 dependence is
supported by the fact that the same COX-1 dependence has
been shown in adult mice (Takano et al., 2006). We demon-
strate that these findings hold in vivo, confirming previous
findings in adult mice (Niwa et al., 2001). Astrocytic endfeet,
which are apposed to cerebral vascular smooth muscle, ex-
press all the machinery necessary for PgE2 synthesis (COX-1)
(Takano et al., 2006; Gordon et al., 2008), mPgES-1 (Fig. 3A)
(Tachikawa et al., 2012), and GSH: (Fig. 3B) (Sun et al., 2006;

Bragin et al., 2010; Robillard et al.,
2011), providing further evidence for
the involvement of astrocytes in the
regulation of CBF responses to hyper-
capnia. mPgES, an enzyme selectively
expressed in astrocytes compared with
neurons (Tachikawa et al., 2012), is the
enzyme responsible for producing PgE2

downstream of COX-1 activity. Intrigu-
ingly, the formation of PgE2 is regulated
by the availability of GSH in astrocytes,
as PgES requires GSH as a cofactor (Ja-
kobsson et al., 1999; Murakami et al.,
2000). In vitro, we demonstrate that as-
trocyte [Ca 2�]i-evoked vasodilations
are attenuated when GSH levels are de-
pleted, whereas in vivo, we demonstrate
that CO2-evoked CBF increases occur
via a GSH-dependent mechanism. As
astrocytes contain high levels of GSH
(Fig. 3B) (Sun et al., 2006; Bragin et al.,
2010; Robillard et al., 2011), the depen-
dence of the CO2-evoked CBF response
on GSH is further evidence of astrocytic
involvement. Together, our findings
suggest a novel mechanism of astrocyte-
evoked CBF regulation, which is GSH
dependent. We propose that increased
CO2 levels evoke [Ca 2�]i responses in
astrocytes, subsequently activating a
signaling pathway, involving COX-1
and the GSH-dependent PgES, which
results in the release of the vasodilator
PgE2. Thus, an increase in CO2 results in
an astrocyte-driven, GSH-dependent
vasodilation (Fig. 7).

This GSH-dependent mechanism of CBF regulation exists
alongside other COX-1 and GSH-insensitive mechanisms. For
example, we found no effect of blocking COX-1 activity or of
lowering GSH levels on CBF responses following 10 Hz whisker
pad stimulation. Although it is possible that an astrocyte calcium
response (and, thus, a GSH-sensitive mechanism of CBF regula-
tion) may be evoked by an intense sensory stimulus (Schulz et al.,
2012; Sekiguchi et al., 2016), our results are in agreement with
previous work suggesting that COX-1 is involved in CBF re-
sponses to hypercapnia (Niwa et al., 2001) but not sensory stim-
ulation (Niwa et al., 2000). Although we saw no evidence that this
pathway was important for functional (neuronal activity-
evoked) increases in CBF under our experimental conditions,
astrocytes appear to be an important intermediary for physiolog-
ical (hypercapnia-evoked) increases in CBF. Our findings suggest
that CBF regulation may involve astrocytes, and their [Ca 2�]i

signals, under certain conditions and not under others.
Previous studies have provided evidence for several mecha-

nisms linking astrocyte [Ca 2�]i, increases and changes in CO2

concentration. For example, within the respiratory center, in-
creased astrocyte [Ca 2�]i, and astrocytic release of ATP can be
triggered by CO2-evoked decreases in pH (Gourine et al., 2010).
This [Ca 2�]i, increase may be the result of increased Na�/HCO3

�

cotransport and reversal of Na�/Ca 2� transport (Turovsky et al.,
2016). It is unknown whether this mechanism also occurs within
the cortex. Alternatively, increased CO2 can evoke hemichannel-
mediated release of ATP (Huckstepp et al., 2010), which may act

Figure 6. CBF responses to whisker pad stimulation in vivo are independent of GSH. A, Mean time course of local CBF
response to whisker pad stimulation, measured by laser speckle contrast imaging, in vehicle (DMSO)- (blue) and SC560-
(red) injected rats. Colored box represents time of stimulation. Dotted black line indicates pretreatment peak of 1. B, Mean
AUC of the CBF response to whisker pad stimulation. n � 7 rats for each group. C, Mean neural response (LFP) magnitude
to whisker pad stimulus (summed over total 16 s length of stimulus). Responses are normalized to the first pulse response
for each rat. n � 4 DMSO-treated rats; n � 3 SC560-treated rats. D, Mean AUC of the whisker pad stimulation-evoked CBF
response in saline- (blue) and BSO- (red) injected rats. n � 10 rats for each group. E, Mean neural response (LFP)
magnitude to whisker pad stimulation (summed over total 16 s length of stimulus). Responses are normalized to the first
pulse response for each rat. n � 3 rats in each group. Data are mean � SEM.
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on astrocytic purinergic receptors to elicit an increase in [Ca 2�]i

(Pelligrino et al., 2011). Depending on the mechanism linking
increases in CO2 to astrocyte [Ca 2�]i responses, therefore, astro-
cytes could act as either a pH or CO2 sensor. Although it is beyond
the scope of this paper to determine the link between an increase
in CO2 and the increase in astrocyte [Ca 2�]i, we have demon-
strated that the depletion of GSH levels leads to a reduction in the
ability of astrocytes to release PgE2 following such a rise in
[Ca 2�]i, and so reduces their ability to evoke vasodilation in re-
sponse to hypercapnia. This occurs because astrocytes express
GSH-dependent mPgES-1.

Our finding that CBF responses to increased CO2 are GSH-
sensitive suggests that global CBF regulation, which is sensi-
tive to the partial pressure of arterial CO2 (Ainslie and Duffin,
2009), will be affected in conditions where GSH levels are
depleted. Alterations in the redox status of brain tissue that are
ultimately linked to cellular GSH levels have been observed in
numerous neurological and psychiatric disorders (Slivka and
Cohen, 1993; Tohgi et al., 1995, 1999; Ansari and Scheff, 2010;
Zhang et al., 2012; Kulak et al., 2013). Therefore, the impact of
changes in GSH levels on the sensitivity of astrocyte regulation
of vasodilation could contribute to several CNS pathologies.
Thus, it is critical to understand the signaling pathways under-
lying changes in CBF, both in health and disease.

It has previously been shown that, in addition to astrocytic
production of PgE2 via COX-1/mPgES activity, neurons
(which express COX-2 but not COX-1) (Nogawa et al., 1997;
Lecrux et al., 2011), are capable of producing COX-2-derived
PgE2 (which contributes to neurovascular coupling) (Lecrux
et al., 2011; Lacroix et al., 2015). In this study, we used a
pharmacological approach to increase astrocyte [Ca 2�]i and
to inhibit either the de novo synthesis of glutathione or the
activity of COX-1, specifically, to demonstrate that, down-

stream of an increase in astrocyte [Ca 2�]i, COX-1 activity and
glutathione are required for vasodilation to occur. However,
as this pharmacological approach lacks cellular specificity, a
contribution of neuronally produced PgE2 to the hypercapnia-
evoked CBF response cannot be completely excluded. Never-
theless, our conclusion that astrocyte COX-1-derived PgE2,
rather than neuronal COX-2-derived PgE2, is involved in the
CBF response to hypercapnia is in agreement with previous
findings (Niwa et al., 2001). Future studies could use an
astrocyte-specific genetic strategy (such as cell-specific knock-
out) (Casper et al., 2007) to confirm that hypercapnia-evoked
vasodilations, occurring downstream of astrocyte [Ca 2�]i re-
sponses, are dependent on astrocyte glutathione levels and
COX-1 activity.

In conclusion, we demonstrate a novel mechanism by
which astrocytes detect hypercapnia and, via [Ca 2�]i signals,
increase CBF in response to CO2. Astrocytes are therefore
poised to detect the metabolic activity of neurons and to mod-
ify vascular tone appropriately to deliver glucose and O2. This
important pathway may be impaired in conditions in which
oxidative stress reduces GSH levels in astrocytes, leading to
impaired CBF responses and altered vascular readouts of neu-
ral activity.
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Rudin M, Helmchen F (2012) Simultaneous BOLD fMRI and fiber-
optic calcium recording in rat neocortex. Nat Methods 9:597– 602.
CrossRef Medline

Sekiguchi KJ, Shekhtmeyster P, Merten K, Arena A, Cook D, Hoffman E,
Ngo A, Nimmerjahn A (2016) Imaging large-scale cellular activity in
spinal cord of freely behaving mice. Nat Commun 7:11450. CrossRef
Medline

Slivka A, Cohen G (1993) Brain ischemia markedly elevates levels of the
neurotoxic amino acid, cysteine. Brain Res 608:33–37. CrossRef
Medline

Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, Talley
JJ, Masferrer JL, Seibert K, Isakson PC (1998) Pharmacological analysis
of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci U S A 95:
13313–13318. CrossRef Medline

Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X,
Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial cal-
cium signaling differs between young and adult brain. Science 339:197–
200. CrossRef Medline

Sun X, Shih AY, Johannssen HC, Erb H, Li P, Murphy TH (2006) Two-
photon imaging of glutathione levels in intact brain indicates enhanced
redox buffering in developing neurons and cells at the cerebrospinal fluid
and blood-brain interface. J Biol Chem 281:17420 –17431. CrossRef
Medline

Tachikawa M, Ozeki G, Higuchi T, Akanuma S, Tsuji K, Hosoya K (2012)
Role of the blood-cerebrospinal fluid barrier transporter as a cerebral
clearance system for prostaglandin E(2) produced in the brain. J Neuro-
chem 123:750 –760. CrossRef Medline

Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M
(2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci
9:260 –267. CrossRef Medline

Takata N, Nagai T, Ozawa K, Oe Y, Mikoshiba K, Hirase H (2013) Cerebral
blood flow modulation by basal forebrain or whisker stimulation can
occur independently of large cytosolic Ca 2� signaling in astrocytes. PLoS
One 8:e66525. CrossRef Medline

Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I (2000) Molecular
identification of cytosolic prostaglandin E2 synthase that is functionally
coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosyn-
thesis. J Biol Chem 275:32775–32782. CrossRef Medline

Teng XW, Abu-Mellal AK, Davies NM (2003) Formulation dependent
pharmacokinetics, bioavailability and renal toxicity of a selective
cyclooxygenase-1 inhibitor SC-560 in the rat. J Pharm Pharmacol Sci
6:205–210. Medline

Tohgi H, Abe T, Saheki M, Hamato F, Sasaki K, Takahashi S (1995)
Reduced and oxidized forms of glutathione and alpha-tocopherol in
the cerebrospinal fluid of parkinsonian patients: comparison between
before and after L-dopa treatment. Neurosci Lett 184:21–24. CrossRef
Medline

Tohgi H, Abe T, Yamazaki K, Murata T, Ishizaki E, Isobe C (1999) Increase
in oxidized NO products and reduction in oxidized glutathione in cere-
brospinal fluid from patients with sporadic form of amyotrophic lateral
sclerosis. Neurosci Lett 260:204 –206. CrossRef Medline

Howarth, Sutherland et al. • Glutathione-Dependent Cerebral Blood Flow Control J. Neurosci., March 1, 2017 • 37(9):2403–2414 • 2413

http://dx.doi.org/10.1126/science.1190721
http://www.ncbi.nlm.nih.gov/pubmed/20647426
http://dx.doi.org/10.1111/j.1748-1716.1980.tb06647.x
http://www.ncbi.nlm.nih.gov/pubmed/6782831
http://dx.doi.org/10.1371/journal.pone.0042194
http://www.ncbi.nlm.nih.gov/pubmed/22876307
http://dx.doi.org/10.1113/jphysiol.2010.192088
http://www.ncbi.nlm.nih.gov/pubmed/20736421
http://dx.doi.org/10.1073/pnas.96.13.7220
http://www.ncbi.nlm.nih.gov/pubmed/10377395
http://dx.doi.org/10.1089/ars.2012.4858
http://www.ncbi.nlm.nih.gov/pubmed/22938092
http://dx.doi.org/10.1523/JNEUROSCI.0651-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26311764
http://dx.doi.org/10.1523/JNEUROSCI.2140-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19091986
http://dx.doi.org/10.1523/JNEUROSCI.4943-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21734275
http://dx.doi.org/10.1073/pnas.1310065110
http://www.ncbi.nlm.nih.gov/pubmed/24218625
http://dx.doi.org/10.1038/nature02827
http://www.ncbi.nlm.nih.gov/pubmed/15356633
http://dx.doi.org/10.1074/jbc.M003505200
http://www.ncbi.nlm.nih.gov/pubmed/10869354
http://dx.doi.org/10.1038/nmeth706
http://www.ncbi.nlm.nih.gov/pubmed/15782150
http://www.ncbi.nlm.nih.gov/pubmed/10632605
http://dx.doi.org/10.1161/01.RES.88.6.600
http://www.ncbi.nlm.nih.gov/pubmed/11282894
http://dx.doi.org/10.1523/JNEUROSCI.3285-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23658179
http://www.ncbi.nlm.nih.gov/pubmed/9092596
http://dx.doi.org/10.1016/j.jep.2014.01.027
http://www.ncbi.nlm.nih.gov/pubmed/24491645
http://dx.doi.org/10.1038/nn.3906
http://www.ncbi.nlm.nih.gov/pubmed/25531572
http://dx.doi.org/10.1016/j.semcdb.2011.02.010
http://www.ncbi.nlm.nih.gov/pubmed/21329762
http://dx.doi.org/10.1016/j.neuron.2008.04.029
http://www.ncbi.nlm.nih.gov/pubmed/18579080
http://dx.doi.org/10.1111/j.1471-4159.1989.tb09256.x
http://www.ncbi.nlm.nih.gov/pubmed/2809598
http://dx.doi.org/10.1371/journal.pone.0020676
http://www.ncbi.nlm.nih.gov/pubmed/21655192
http://dx.doi.org/10.1523/JNEUROSCI.1780-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26424891
http://dx.doi.org/10.1038/nmeth.2013
http://www.ncbi.nlm.nih.gov/pubmed/22561989
http://dx.doi.org/10.1038/ncomms11450
http://www.ncbi.nlm.nih.gov/pubmed/27121084
http://dx.doi.org/10.1016/0006-8993(93)90770-N
http://www.ncbi.nlm.nih.gov/pubmed/8495346
http://dx.doi.org/10.1073/pnas.95.22.13313
http://www.ncbi.nlm.nih.gov/pubmed/9789085
http://dx.doi.org/10.1126/science.1226740
http://www.ncbi.nlm.nih.gov/pubmed/23307741
http://dx.doi.org/10.1074/jbc.M601567200
http://www.ncbi.nlm.nih.gov/pubmed/16624809
http://dx.doi.org/10.1111/jnc.12018
http://www.ncbi.nlm.nih.gov/pubmed/22978524
http://dx.doi.org/10.1038/nn1623
http://www.ncbi.nlm.nih.gov/pubmed/16388306
http://dx.doi.org/10.1371/journal.pone.0066525
http://www.ncbi.nlm.nih.gov/pubmed/23785506
http://dx.doi.org/10.1074/jbc.M003504200
http://www.ncbi.nlm.nih.gov/pubmed/10922363
http://www.ncbi.nlm.nih.gov/pubmed/12935431
http://dx.doi.org/10.1016/0304-3940(94)11158-F
http://www.ncbi.nlm.nih.gov/pubmed/7739798
http://dx.doi.org/10.1016/S0304-3940(98)00986-0
http://www.ncbi.nlm.nih.gov/pubmed/10076903


Turovsky E, Theparambil SM, Kasymov V, Deitmer JW, Del Arroyo AG,
Ackland GL, Corneveaux JJ, Allen AN, Huentelman MJ, Kasparov S, Ma-
rina N, Gourine AV (2016) Mechanisms of CO2/H � sensitivity of astro-
cytes. J Neurosci 36:10750 –10758. CrossRef Medline
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