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ABSTRACT: Molecular data storage offers the intriguing
possibility of higher theoretical density and longer lifetimes than
today’s electronic memory devices. Some demonstrations have
used deoxyribonucleic acid (DNA), but bottlenecks in nucleic acid
synthesis continue to make DNA data storage orders of magnitude
more expensive than electronic storage media. Additionally, despite
its potential for long-term storage, DNA faces durability challenges
from environmental degradation. In this work, we demonstrate
nongenomic molecular data storage using molecular libraries
redirected from chemical waste streams. This approach requires
no synthetic effort and can be implemented by using molecules that
have a minimal associated cost. While the technique is agnostic
about the exact molecular content of its inputs, we confirmed that
some sources contained poly fluoroalkyl substances (PFAS), which persist for long periods in the natural environment and could
offer extremely durable information storage as well as environmental benefits. These demonstrations provide a perspective on some
of the valuable possibilities for nongenomic molecular information systems.

■ INTRODUCTION
Molecular data systems have been proposed as a path to meet
some of the world’s ever-growing demands for information
storage while reaching greater information density, durability,
and sustainability than electromagnetic memory. However,
existing molecular storage methods are limited in information
capacity by practical scaling challenges associated with the cost
and complexity of their chemical synthesis. In this work, we
demonstrate that data storage can be achieved with chemicals
requiring no explicit synthesis, purification, or prior knowledge
of the molecular structure. We encoded digital data using
chemical waste sources containing mixtures of unknown
byproducts. This work highlights a path for molecular data
storage to utilize low-cost chemical waste while avoiding
complicated synthesis or purification. In order for any chemical
information system to succeed and scale, it will need to
overcome the synthesis, purification, and cost bottlenecks that
are associated with all previously reported demonstrations,
spanning from DNA1,2 to synthetic polymers3 to several
families of small molecules.4−6

Discussions of molecular information on them begin with
deoxyribonucleic acid (DNA), whose role in biology makes it a
natural candidate for synthetic molecular data systems.1

However, although the chemical synthesis of DNA has been
used and improved upon for decades, DNA oligomer synthesis
and purification are still material-intensive,7 resulting in low

yields and producing significant waste. In part, these challenges
are inherent to the serial nature of long polymers. For example,
even if the yield of a single base incorporation was 99%, the
yield of a 150-mer would be only 22%. To reduce such losses,
DNA synthesis chemistries commonly use 20× excess of
phosphoramidites and tetrazole-based activators, as well as an
excess of solvents to wash between each serial synthesis step.7

Material wastes from DNA synthesis include the protecting
group, dimethoxytrityl, which is 35% of the weight of each
phosphoramidite; tetrazole, which is explosive; acetonitrile;
amidites; pyridine; among others.8 In addition to costing
money and time, many of these inputs and intermediates that
do not make it into final products end up in waste streams,
with associated environmental and economic impacts. A
potential transition to enzymatic DNA synthesis could mitigate
some of these costs if new advances can achieve competitive
error rates, reliability, and throughput.2

Another theoretically valuable feature of DNA is its
durability. However, many environmental factors can cause

Received: November 19, 2023
Revised: March 31, 2024
Accepted: April 15, 2024
Published: April 25, 2024

Articlehttp://pubs.acs.org/journal/acsodf

© 2024 The Authors. Published by
American Chemical Society

19904
https://doi.org/10.1021/acsomega.3c09234

ACS Omega 2024, 9, 19904−19910

This article is licensed under CC-BY-NC-ND 4.0

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Selahaddin+Gumus"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dana+Biechele-Speziale"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katherine+E.+Manz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kurt+D.+Pennell"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brenda+M.+Rubenstein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+K.+Rosenstein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jacob+K.+Rosenstein"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.3c09234&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09234?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09234?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09234?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09234?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c09234?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/9/18?ref=pdf
https://pubs.acs.org/toc/acsodf/9/18?ref=pdf
https://pubs.acs.org/toc/acsodf/9/18?ref=pdf
https://pubs.acs.org/toc/acsodf/9/18?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.3c09234?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


DNA degradation or reactivity, which could result in
information loss. These factors include the pH, ionizing
radiation and ultraviolet light exposure, the salt concentration
of the medium, the presence of nucleases, and hydrolysis,
among others.9,10 Hydrolysis is the dominant mechanism for
instability and can lead to information loss through
depurination, deamination, and backbone cleavage. To
maintain the integrity of data stored in DNA, it needs to be
maintained in carefully controlled environments and dried,
frozen, or encapsulated. These treatments limit potential
commercial markets and can reduce the information density
by orders of magnitude.11

Some alternative research directions have explored non-
genomic molecules for information storage. For example,
alternative sequence-defined polymers offer different synthetic
paths and a larger library of monomers, which allow for a
greater information density using the same polymer length.12

(However, the upper limit of de novo sequencing of digitally
encoded polymers is currently on the order of 77 units.13)
Demonstrations of synthetic polymers have used oligo(triazole
amides),14 oligourethanes,15 poly(phosphodiester)s,16 poly-
(alkoxyamine amide)s,17 and poly(l-lactic-co-glycolic acid)s
(PLGAs),18 among others.

Small nonpolymeric molecules can also be used to encode
digital information. Previously, we demonstrated the use of
synthetic metabolite mixtures to store digital information,19

showing that digital data could be encoded in the presence or
absence of vitamins, nucleotides, amino acids, sugars, and other
small molecules. A similar encoding scheme was used by other
groups to encode digital data using mixtures of oligopeptides5

and fluorescent dyes.4 Further extending these methods, we
encoded larger digital data sets in organic small molecules
using combinatorial chemistry with multicomponent Ugi
products,6 and applied sparse encoding schemes for redun-
dancy and improved error tolerance,20 and worked toward
secret messaging on common objects.21 While these studies
have established the concept of small molecule-based data
storage, they usually still require the synthesis of a starting
chemical library, which can be time-consuming or cost-
prohibitive for larger data sets.

In this work, we demonstrate that molecular data storage can
be achieved without any synthesis or purification steps and that
data can even be stored using compounds that are available
from waste sources at no material cost. This is a general
approach that can work with sources whose exact chemical
makeup is unknown to the user. An overview of the data
storage process is shown in Figure 1, highlighting the ease and
scalability of the process. A digital image was encoded by using
complex mixtures of unknown waste chemicals. These waste
sources were organic synthesis byproducts and toxicology
research byproducts, which were later shown to include per-
and poly fluoroalkyl substances (PFAS), among other
compounds. In addition to providing improved cost and
resource efficiency, given appropriate chemical inputs, it can
also encode data using highly durable compounds whose
stability and lifetime can exceed that of DNA under ambient
conditions.

■ RESULTS
Turning Chemical Waste into Digital Data. To offer a

solution to the synthesis-related challenges and costs of
molecular data storage, we set out to encode data using
chemicals diverted from waste streams. Several waste sources
were obtained from two academic laboratories: one developing
organic synthesis methodology22 and one studying the
developmental effects of exposure to environmental contam-
inants.23 In contrast with most other molecular data storage
systems, prior knowledge of the chemical makeup of the source
materials was not required for their use. The samples were
diluted in dimethyl sulfoxide (DMSO), and a matrix-assisted
laser desorption ionization (MALDI) matrix was added to the
mixtures.

In previous work, we encoded information in small-molecule
samples using the presence or absence of each library element
to represent binary values of “1” and “0”.6 In this work, we
used seven waste samples as library elements, and thus, each
mixture could represent up to 7 bits of information. Since the
waste samples themselves contained many compounds, the
resulting encoded data was a set of “mixtures of mixtures”.
Figure 2 shows the process of encoding a 3249-pixel digital

Figure 1. Visualization of the overall process of encoding, writing, analysis, and recovery of data in molecular mixtures. Step 1 involves the encoding
of data, including the Turbo error correction bits and the application of a permutation matrix to disperse errors. Step 2 shows the mapping of the
encoded data to chemical library elements. Step 3 demonstrates the utilization of chemical analysis techniques to identify the chemical contents of
each spot. Step 4 involves the use of supervised learning to interpret the chemical contents and recover the data.
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image. To provide redundancy and support error correction,
the digital image was processed with a Rate 1/3 Turbo code24

(Figure 2b) and a permutation matrix (Figure 2c). To assist
with the recovery of the data, a training set of all 27 = 128
enumerated binary mixtures was concatenated with the
encoded data set (Figure 2d). The whole data set, including
the training and test data, was rearranged as a 1521 × 7 matrix,
where each column corresponded to a unique library element
(one of the seven waste mixtures). Each row of the matrix was
mapped to a unique location on a standard metal MALDI
target data plate. For each element of the matrix, if the value
was 1, an acoustic liquid handler was instructed to dispense 30
nL of the appropriate waste mixture to the designated location.
If the value was 0, then no transfer was performed. This
process resulted in 1521 mixtures of subsets of the 7 sources;
in each mixture, the presence (1) or absence (0) of each waste
source encoded the data. The mixtures were dried overnight,
leaving crystalline spots behind. This process is scalable to
thousands of unique mixtures per data plate.6

Reading Back Data from the Encoded Waste
Mixtures. To recover the digital data from the chemical
samples, each mixture on the data plate was analyzed with a
Fourier transform ion cyclotron resonance (FT-ICR) MALDI
mass spectrometer in positive ionization mode. Each spectrum
contained a varying number of peaks based on the complexity
of the mixture. The training set of 27 = 128 enumerated
combinations of the library elements was used to train
supervised learning algorithms to identify the presence of
each library element in each location on the data plate.

The analysis began by extracting candidate features from the
training samples by averaging all of the training spectra and
identifying the locations of the most significant peaks in the
averaged spectrum. For each of the 7 library elements, this list
of candidate peaks was ranked by discrimination power, using
the area under each peak’s receiver operating characteristics
curve (AUC/ROC). The highest-ranked features were used to
train supervised learning classifiers for each library element.
The trained classifiers were then applied to the remaining data
mixture spots and used to make soft decisions about the

Figure 2. Writing and reading processes of the encoded data. (a) Encoded sustainability logo. (b) 1/3 Turbo error correction bits incorporated
into the data set. (c) Permutation matrix was applied. (d) Training set was included at the top. (e) Raw data prediction after readout. (f) Data set
was unpermuted. (g) Recovery of the encoded image before error correction. (h) Recovered image after error correction.

Figure 3. MALDI positive ionization mass spectrum for a sample that encodes the 7 bits of information “1101010”. Below the spectrum is a
visualization of 10 features that the classifier models have associated with the presence of each of the 7 library elements. A blue bar indicates the
presence of the individual feature in this particular spectrum, and a black bar represents the absence of that feature.
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presence or absence of each library element. The classifiers
predicted whether each library element was present (1 atom)
or absent (“0”) in each data mixture. Figure 3 shows an
example of one spectrum obtained during the analysis. This
spectrum contains thousands of data points and hundreds of
peaks. The classifiers associate each of the library elements
with a “fingerprint” of some subset of spectral features that
correlate with the presence of that library element in the
training mixtures. In Figure 3, we annotate the top 10 features
that the model associated with the presence of each library
element. Four of the seven library elements are present, and
this spectrum encodes the 7 bits of information “1101010”.

For the supervised classifier models, we tested two common
architectures, logistic regression and random forest regression,
with varying levels of complexity. Since the data is encoded
with redundancy and error tolerance, it is interesting to
consider what level of complexity is required to achieve full
recovery of the data payload (Figure 4). Seven classifier models

were trained, with one binary classifier for each library element.
The parameters for each model are as follows: the single peak
threshold used 1 classifying peak from the largest 50 features,
the logistic regression model used 4 classifying peaks from 50
features, and the random forest regression models used 2, 10,
and 300 trees with 1000, 1000, and 3000 features, respectively.
Although the library mixtures are highly complex, even a
simple logistic regression with 4 peaks achieved 86% raw
accuracy, which was sufficient to achieve perfect recovery of

the data payload after Turbo decoding (Figure 4). Based on
simulations, the Rate 1/3 Turbo code was able to correct up to
14% raw bit error rates. Indeed, after Turbo decoding, we
achieved 100% recovery of the encoded image (Figure 2h).
Recovery of Data. With the largest random forest

regression model tested, the overall raw bit error rate was
approximately 2%, but these errors were not uniformly
distributed. As shown in Figure 5a, each of the chemical
library elements was identified with more than 93% accuracy.
However, the individual accuracies varied significantly; the
total error from library element 7 was 0.07%, while the error
from library element 6 was 6.39%. There were some spatial
trends as well, with errors overrepresented near the left edge of
the plate, where 2% of the mixtures were responsible for 17%
of the total errors (Figure 5b). This could be attributed to
mechanical errors or alignment errors in either the liquid
handler or the mass spectrometer.

■ DISCUSSION
In this study, we demonstrated that molecular data storage can
be achieved using inputs that do not require synthesis,
purification, or even prior knowledge of their molecular
contents. Using unpurified waste chemicals, we encoded a
3249-pixel digital image payload, plus redundancy for error
correction (9751 raw bits including coding redundancy).
Complete recovery of the data was successful despite not
knowing the identity or concentration of the compounds
within each sample. This construction is possible because
training samples are included alongside the molecular data
samples. With a training overhead of 8.41% (128 out of 1521
spots), we trained models that achieved a raw bit error rate as
low as 2.04%, which was well below the 14% raw error rate
tolerated by the Turbo code. There is always a trade-off
between error correction capabilities and total payload
capacity. Previous molecular data storage demonstrations
have used Reed-Solomon25,26 and fountain codes,27 but here,
we chose to use Turbo codes for their ability to tolerate
potentially higher error rates from complex, unknown library
mixtures.

To appreciate the contents of the waste input samples, the
seven library elements were subsequently analyzed using
nontargeted mass spectrometry analysis (Figure S1). The
complexity of the waste sources varied significantly, with each
sample containing between 13 and 109 identified compounds.
Some of the waste inputs were quite similar to each other,
containing up to 90% overlap in the lists of identified
compounds. Conceptually, it should not matter how many
similarities exist between the library elements as long as they

Figure 4. Comparison of logistic and random forest regression models
for recovering encoded data. The raw bit accuracy was determined by
comparing the binary representation of the encoded sustainability
logo with that of the decoded logo prior to Turbo decoding. Since the
data was encoded with redundancy and error tolerance, any model
that exceeded 86% raw bit accuracy was sufficient to recover the data
payload with 100% accuracy.

Figure 5. (a) Raw bit accuracy (before error correction) for each individual waste mixture and (b) visualization of the physical location of the raw
bit errors on the MALDI plate. The color bar represents the number of errors on a blue-to-red scale, where blue represents fewer errors and red
represents the highest number of errors.
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also have identifiable differences. The ability to tolerate a wide
range of complex unknown mixtures suggests possibilities for
encoding data by using many different environmental and
industrial inputs as library sources.

Two library samples contained several compounds belong-
ing to the PFAS class, which are highly stable fluorinated
hydrocarbon compounds that are persistent in the environ-
ment. As a class, PFAS are less chemically reactive and more
stable than DNA under ambient conditions. DNA degradation
can occur through several mechanisms,11,28 and the rate of
DNA degradation increases substantially with temperature or
pH.29 In contrast, many PFAS are stable up to 200−600 °C
and certain PFAS also can tolerate very high pH before
significant degradation.30 PFAS are nicknamed “forever
chemicals” owing to their long half-lives of up to 1000 years
under ambient conditions.31,32 The presence of PFAS in these
samples suggests that library inputs that are partly or entirely
composed of PFAS compounds could be chosen to produce
data sets that are extremely stable and may retain their form for
longer than DNA. Additionally, there could be value created by
removing these contaminants from the environment and using
them for long-term molecular data storage.

This study shows that digital information can be encoded in
molecular mixtures without prior knowledge of their molecular
contents and that the digital data can be fully recovered using
chemical analysis. The absence of any explicit library synthesis
steps is in contrast to previously demonstrated molecular data
storage systems that are based on DNA, synthetic polymers, or
small molecules. Despite advanced microarray synthesis
platforms, DNA data storage still costs $0.001 per bit,33

compared to $0.000000000001 per bit for modern electronic
storage. In this work, we demonstrated data storage using
molecules that had no associated cost. On a larger scale, there
may be costs associated with the transportation and storage of
chemical waste streams.

There are a wide range of different molecular information
storage approaches, with trade-offs between density, capacity,
complexity, and speed.20 This work lies at one extreme,
representing what it could mean to write molecular data
without any library synthesis at all. This clearly creates some
asymmetries, potentially making it more difficult to read back
the data and limiting the information density to the limits of
the chemical printing and chemical analysis tools used for
writing and reading.

It is also important to recognize the limitations of encoding
data by using waste streams as input sources. Although this
approach lowers some material costs, writing data still incurs
costs from liquid handling and has similar throughput and
latency as other molecular data storage approaches. If scaled
up, it would be important to maintain consistency of the
source material streams, and some waste streams may be
inappropriate for this approach if they are too dilute, acutely
hazardous, complex, or similar to one another. Even if many of
the molecules in a sample are very stable, some degradation is
inevitable over time and some components in a given library
element may cross react with components of another library
element. Our approach of including every distinct combination
of library elements in training samples and embedded error
tolerance should allow for some degradation and potential
cross reactivity to be naturally accommodated when it is time
for the data to be read.

This demonstration should be taken as an illustration of one
way that molecular data storage can be generalized to

accommodate nearly any chemical input source, even those
that have impurities or variable contents. This work highlights
opportunities for molecular data storage to contribute
positively to a circular economy while also providing low-
cost and long-term durability.

■ METHODS
Materials. A total of seven waste chemical mixtures were

used. Five of the waste mixtures were obtained from Dr. Ming
Xian’s lab in the Chemistry Department at Brown, and two of
the biological waste samples were obtained from Dr. Jessica
Plavicki’s lab in the Pathology and Molecular Medicine
Department at Brown University. All samples obtained were
byproducts that were collected after their respective experi-
ments had concluded and would have otherwise been deemed
waste. Dimethyl sulfoxide (DMSO, anhydrous, 99.9%,
MilliporeSigma) was used as a solvent to dilute all of the
solutions in the library. Analytical grade α-cyano-4-hydrox-
ycinnamic acid (HCCA, 99.0%, MilliporeSigma) was used as
the matrix material for all MALDI samples.
Library Preparation. Each waste mixture was filtered

through a 0.2-μm nylon syringe filter before being dissolved in
DMSO. The waste chemicals from Dr. Xian’s lab were
dissolved in DMSO using a 1:2 ratio of DMSO to waste
mixture. The waste chemicals from Prof. Plavicki’s lab were
dissolved in DMSO using a 3:1 ratio of DMSO to waste
mixture. Each waste mixture was finally diluted in MALDI
matrix solution (20 mg of HCCA in 1 mL of DMSO) using a
1:2 ratio of matrix solution to waste mixture. They were
pipetted into a 384-well plate, with each row representing a
distinct waste mixture.
Data Plate Preparation. The digital image of a

sustainability logo (57 × 57 pixels) was encoded using a
Rate 1/3 Turbo code, multiplied by a permutation matrix,
concatenated with the training set, and converted into a one-
dimensional binary vector. The training spots are a set of 27 =
128 enumerated binary mixtures, which is represented in the
binary vector as 128 × 7 = 896 bits. The assembled one-
dimensional (1-D) vector was reshaped into an M × N matrix,
where M represents the number of waste mixtures and N
represents the number of independent mixtures. For each true
(“1”) value in the matrix, 30 nL (12 2.5 nL droplets) of the
mth waste mixture was transferred from the 384-well library
plate to the nth location on a metal MALDI plate using an
acoustic liquid handler (Echo 550, Beckman Coulter). This
implies that each location was a mixture of up to 7 library
elements and contained up to 210 nL. Once all transfers are
complete, the data plate was left to dry in a fume hood
overnight. The resulting dried mixture spots were typically 1
mm in diameter.
Mass Spectrometry. Mass spectra were acquired with a

Fourier transform ion cyclotron resonance (FT-ICR) mass
spectrometer in positive ion mode. To obtain accurate peak
assignment, a mass calibration is performed through electro-
spray ionization (ESI) before each run using sodium
trifluoroacetate as a reference. Samples were ionized by using
matrix-assisted laser desorption ionization (MALDI). The
sample run was automated, and the typical spectra were
acquired for 1.5 s. During the automation process, the
instrument serially addresses each crystallized spot and takes
about 4 h to record all 1536 spots on a plate. Each
measurement is made by ionizing a portion of a sample with
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a laser configured to take 500 shots at 1000 Hz, over a scan
area of 500−900 μm with a medium focus and ×4 averaging.
Nontargeted Analysis of the Chemical Library

Elements. After the chemical data experiment was complete,
we performed a separate nontargeted analysis of the waste
samples. All instrument parameters, including the chromatog-
raphy scheme, source settings, full scan parameters, and data-
dependent (dd) MS2 settings, for both negative and positive
ESI, are provided in detail (Table S1). Data was collected on a
high-resolution Thermo QExactive HF-X Orbitrap MS
equipped with a Vanquish ultrahigh-performance liquid
chromatograph. We analyzed the samples two times: once
with positive electrospray ionization (ESI, +) and once in
negative ESI (ESI, −). For both ionization modes, we used the
same chromatography scheme. Sample components were
separated on a Thermo Hypersil Gold Vanquish C18 column
(100 × 2.1 × 1.9 μm3) with two mobile phases. Mobile phase
A consisted of 2 mM ammonium acetate in 5% acetonitrile,
and Mobile phase B consisted of 2 mM ammonium acetate in
100% acetonitrile. The total run time was 15 min. Data was
acquired using data-dependent (dd) MS2 acquisition. Frag-
mentation was performed in an HCD collision cell filled with
N2 (produced by a Peak Scientific Nitrogen Generator, Genius
NM32LA). All spectral data files were saved in the. RAW file
format, and NTA/SSA was performed in the Thermo
Compound Discoverer (CD) 3.3 software. For ESI,+, and
ESI,− data, peaks were detected with 10 ppm mass tolerance,
1,000,000 minimum peak intensity, and a signal-to-noise
threshold of 1.5. Compounds were grouped with 5 ppm mass
tolerance and 0.1 min retention time tolerance. Compound
annotations were assigned using the following data sources in
ranked order: mzCloud search, mzVault search, mass list
search, predicted compositions, and ChemSpider search. The
peak area for each putatively identified compound detected
was exported to Microsoft Excel after processing the raw data
and prior to data filtering.

Compounds that were identified to have a minimum of 70%
spectral match, as determined by mzCloud, were summed to
determine the relative complexity of each element. We found
that complexity varied significantly between each library
element (Figure S1). We discovered that two samples
contained several compounds belonging to the PFAS family,
including perfluoro-1-octanesulfonic acid (PFOS), perfluoro-1-
butanesulfonic acid (PFBS), perfluoro-1-hexanesulfonic acid
(PFHxS), and perfluorononanoic acid (PFNA) (all Level 1
annotations on the Schymanksi Scale),34 which are highly
stable fluorinated hydrocarbon compounds that are persistent
environmental contaminants. Moreover, we identified that
three of the library elements’ most abundant peaks came from
an identical compound, and in some elements, only 2
compounds were unique to that mixture.
Data Plate Analysis. Spectra from the FT-ICR mass

spectrometer were exported for analysis in Python. The
dedicated training spots were used to train 7 binary classifiers,
one per library element. Logistic regression models or random
forest models were trained as described in the main text. At
different levels of complexity, the models used between 1 and
20,000 spectral features as inputs. After training binary
classifiers on the 128 training spots, the models were applied
to predict the presence or absence of the 7 library elements in
the remaining 1393 spots. To recover the digital image
payload, the classifiers’ prediction matrix was unpermuted,
reshaped, and Turbo decoded using the CommPy toolkit.24
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