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Abstract
Characteristics of peripheral arterial disease (PAD) are the occlusion or stenosis of multiple

vessel sites caused mainly by atherosclerosis and chronic lower limb ischemia. To identify

PAD susceptible loci, we conducted a genome-wide association study (GWAS) with 785

cases and 3,383 controls in a Japanese population using 431,666 single nucleotide poly-

morphisms (SNP). After staged analyses including a total of 3,164 cases and 20,134 con-

trols, we identified 3 novel PAD susceptibility loci at IPO5/RAP2A, EDNRA and HDAC9 with

genome wide significance (combined P = 6.8 x 10−14, 5.3 x 10−9 and 8.8 x 10−8, respec-

tively). Fine-mapping at the IPO5/RAP2A locus revealed that rs9584669 conferred risk of

PAD. Luciferase assay showed that the risk allele at this locus reduced expression levels of

IPO5. To our knowledge, these are the first genetic risk factors for PAD.

Introduction
Peripheral artery disease (PAD) is characterized by the obstruction of the blood supply to
multiple sites including carotid, mesenteric, renal, upper and lower extremities mainly caused
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by atherosclerosis [1]. Chronic ischemic change of lower extremity arteries are the most com-
mon condition of the disease and cause serious impairment and reduced quality of life. People
with PAD are also known to have roughly a three-fold increase in risk of major cardiovascular
events and mortality compared with those without PAD [2–6]. PAD is now estimated to be
the third leading cause of death of atherosclerotic-related vascular disease. The number of
PAD patients has increased by more than 20% over the past decade, and its prevalence is
expected to increase worldwide [7]. Previously known risk factors for PAD include gender,
age and smoking, and is also associated with conditions such as hypertension, dyslipidemia,
and diabetes mellitus [8–10]. Although these conditions themselves have a genetic suscepti-
bility component, positive PAD family history has been shown to be an independent predic-
tor of the disease [11–14]. The Swedish twin registry reported a high risk of disease among
those whose twin had PAD and estimated the genetic effect and non-shared environmental
effect to account for 58% and 42% of the variation in incidence, respectively [11]. In addition
to sibling studies, a number of candidate gene and linkage analysis studies have been per-
formed in PAD, but are collectively still inconclusive [15]. Since PAD is considered a poly-
genic disease influenced by multiple environmental factors, a more systematic approach is
required to identify genetic factors. Here, we report three loci associated with PAD suscepti-
bility based on a GWAS conducted in a Japanese population.

Materials and Methods

Study populations
The majority of case and control samples included in this GWAS and follow-up stages were
obtained from BioBank Japan [16]. A subset of the replication case samples were obtained
from the Tokyo Medical University Hospital, The University of Tokyo Hospital and affiliated
hospitals from Sep 2009 to Sep 2014. Characteristics of the study subjects were summarized in
Table 1.

The BioBank Japan project (see URLs) commenced in 2003 for the collection of genomic
DNA, serum and clinical information from approximately 300,000 cases diagnosed with any of
47 diseases by a collaborative network of 66 hospitals in all areas of Japan. We used PAD cases
that were collected fromMay 2003 to December 2006 in BioBank Japan for GWAS analysis
after checking the clinical information. All the cases were diagnosed as PAD on the basis of the
clinical information. We included PAD patients with ABI index< 0.9 used or a Fontaine class
of IIa more or history of PAD therapy (stent, atherectomy and other surgical treatment). All
study subjects provided written informed consent to participate in this study. The consent was
obtained for the banking when we enrolled. The protocol was approved by the RIKEN Yoko-
hama Campus Ethics Committee, Research Ethics Committee/Human Genome, Gene Analysis
Research Ethics Committee of Graduate School of Medicine of the University of Tokyo, and
the University of Tokyo hospital, Tokyo Medical University's Ethics Committee, Ethics com-
mittee of Kansai Medical University, Ethics committee of Kyorin University, Ethics committee
of Ome Municipal General Hospital and Human Genome, Gene Analysis Research Ethics
Committee of Ibaraki prefectural Central Hospital.

SNP genotyping
Samples were genotyped by the Illumina HumanHap610-Quad BeadChip for the cases and
Illumina HumanHap550v3 for controls. We applied stringent quality-control criteria and
tested 785 cases and 3,383 controls for 497,509 autosomal SNPs commonly available on both
BeadChips. In the GWAS, we applied SNP quality control (call rate of�0.99 in both cases and
controls and Hardy-Weinberg equilibrium test P� 1.0 × 10−6 in controls); 431,666 SNPs on all
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chromosomes passed the quality control filters and were further analyzed. All control samples
for the follow-up stage were genotyped using the Illumina HumanHap610-Quad BeadChip. To
confirm the accuracy of Illumine genotyping at rs9584669, we conducted direct genotyping
using Invader assay (Third Wave Technologies) [17] and found no inconsistency between the
results of Invader assay and Illumina genotyping. All cluster plots were checked by visual
inspection by trained personnel, and SNPs with ambiguous calls were excluded. For cases in
the follow-up stage, we used the multiplex PCR-based Invader Assay.

Statistical analyses
The analysis of the association between SNPs and PAD were assessed with the Cochran-Armi-
tage trend test. Significance level of the GWAS was set at 1.2 x 10−7 (0.05/431,666) after Bonfer-
roni correction for multiple testing. To further validate the results of the GWAS, we selected
the 500 SNPs with the most significant Cochrane-Armitage trend p values for replication anal-
yses in additional 1,150 cases and 16,752 controls. Of the selected 500 SNPs, 145 showed evi-
dence of strong linkage disequilibrium (r2 > 0.8) with other selected markers as assessed by the
Haploview software. We thus selected 355 SNPs for further genotyping. Combined analysis
was performed using the Mantel-Haenszel method. We examined the inflation of test statistics,
λgenomic control (λgc) by genomic control method [18]. We also conducted principal component
analysis (PCA) to assess population stratification using the GWAS data [19]. We obtained the
other genotype data from the Phase II HapMap database. Relationships between clinical pro-
files and genotype of the cases were examined by χ2 test for gender difference and coronary
risk factors, and one-way ANOVA for quantitative clinical parameters.

Fine-mapping
We carried out Sanger sequencing for a 100kb region around rs9584669 (chromosome position
(NCBI build 38); 97,658,003–97,758,002) using 48 case samples. We found a total of 249 SNPs
and conducted re-sequence using additional 48 case samples. We selected 191 SNPs of
MAF� 0.05 and chose 25 tag SNPs. We also analyzed the LD pattern and determined the LD
block using the Haploview software. We conducted invader assay for all tag SNPs using GWAS
case samples (n = 750) and a subset of GWAS control samples (n = 2,418). Statistical analysis
was performed using the Mantel-Haenszel method.

Cells
Human aortic smooth muscle cells (HASMC, Gibco

1

Invitrogen cell culture) were cultured in
Smooth Muscle Cell Medium (SMCM, ScienCell research laboratories) and maintained at
37°C in atmospheres of humidified air with 5%CO2.

Table 1. Characteristics of Study Subjects.

Sample Subjects Age ± SD Male % ABI ± SD BMI ± SD Smoking % HT % CAD% DM% HL%

GWAS PAD 70.4 ± 9.5 79.8 0.69 ± 0.20 22.6 ± 3.3 81.1 70.7 37.9 46.7 37.9

Controls 51.6 ± 16.6 55.4 - 22.5 ± 3.7 54.0 28.3 3.3 8.1 0

Replication PAD 70.6 ± 9.1 77.8 0.73 ± 0.22 22.7 ± 3.5 78.9 80.9 45.0 38.6 34.9

Controls 61.1 ± 12.8 43.9 - 22.2 ± 3.4 47.3 26.2 0 0 0

ABI; ankle-brachial index, BMI; body mass index, HT; hypertension, CAD; coronary artery diseases, DM; diabetes mellitus, HL; hyperlipidemia

doi:10.1371/journal.pone.0139262.t001
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Luciferase assay
We checked the H3K27Ac sequences of the IPO5/RAP2A region on chromosome 13q32.2
(UCSC genome browser; http://genome.ucsc.edu) and cloned genomic fragments for the
H3K27Ac sequences (chromosome position (NCBI build 38); 97,980,373–97,980,941 for IPO5
and 97,428,261–97,428,846 for RAP2A) to the multiple cloning site of the pGL3 basic vectors
(Promega). We confirmed a marked increase of luciferase activity compared to the empty
pGL3 basic vector. Then we prepared 25 base pair double stranded oligonucleotides (S1 Table)
including the target SNPs of interest (rs9584669, rs9556806, rs9805548, rs9556797, rs9556705,
rs4001162, rs9556799) and inserted each of them to the IPO5/RAP2AH3K27Ac sequence
cloned pGL3 vectors. We transfected these constructs in human aortic smooth muscle cells
(HASMC) using the nucleofectorTM system (Amaxa). Forty-eight hours after transfection, we
analyzed the luciferase activity using the dual- luciferase reporter assay system according to the
manufacturer’s protocol. (Promega Corporation, Wisconsin, USA) and luminomater (Centro
LB960, BERTHOLD TECHNOLOGIES GmbH & Co. KG). The relative firefly/Renilla lucifer-
ase value was calculated for each sample and standardized each value based on the value of the
IPO5/RAP2A H3K27Ac sequence cloned pGL3 vectors in the same experiment. The empty
pGL3-basic vector was used as a negative control. Each experiment was independently per-
formed three times and each sample was studied in duplicate. Student’s t-test was conducted to
estimate statistical difference of non-risk allele and risk allele activity.

Software
For general statistical analysis, we used R statistical environment version 2.10.0. or PLINK1.05
[20]. To draw the LD map, we used Haploview software [21]. To make regional maps, we used
Locus zoom software.

URLs
BioBank Japan project; http://biobankjp.org/. HapMap project, http://hapmap.ncbi.nlm.nih.
gov/. PLINK 1.05, http://pngu.mgh.harvard.edu/~purcell/plink/. R software, http://www.r-
project.org/; LocusZoom, http://csg.sph.umich.edu/locuszoom/; eQTL database, http://www.
hsph.harvard.edu/liming-liang/software/eqtl/.

Results

GWAS
To identify novel PAD susceptible loci, we performed a GWAS for PAD with a Japanese popu-
lation consisting of 785 cases and 3,383 controls. We evaluated the presence of population
stratification by comparison to HapMap samples using principal component analyses and
found that all cases and controls clustered among the Asian population and almost all subjects
fell into the two main known clusters of the Japanese general population (S1 Fig). We exam-
ined the association between SNP genotypes and PAD using the Cochran-Armitage trend test
(S2 Table). Fig 1a indicated-log10 P values of the 431,666 SNPs we examined. In this GWAS,
no SNP reached the threshold for statistical significance based on a Bonferroni correction
(P< 1.2 x 10−7). The inflation of test statistics, λgenomic control (λgc) was 1.04 (Fig 1b). To further
explore the suggestive loci, we decided to focus on the top 500 SNPs ranked by p-value in the
GWAS which was reduced to 355 loci after considering linkage disequilibrium (LD). We then
genotyped another panel of 1,150 cases and 16,752 controls, and 13 SNPs showed a p< 0.0001
(S3 Table). For these loci, an additional 1,229 cases were examined, expanding the total number
of PAD cases to 3,164 (S4 Table). By combination of P values for these association analyses, we
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identified three loci that were associated with PAD, in close proximity to the genes IPO5/
RAP2A, EDNRA and HDAC9 (Table 2, Fig 2).

We explored the possibility of confounding effects by age, gender, and classical risk factors
including diabetes, hypertension, smoking, and hyperlipidemia within the patient group using
one-way ANOVA and x2 test for three significant SNPs, and found no obvious relation

Fig 1. Manhattan plot (a) and quantile-quantile plot (b) of the GWAS.

doi:10.1371/journal.pone.0139262.g001
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between genotypes and these factors. This indicated that these three SNP loci were independent
of these lifestyle for PAD in the Japanese population (S5 Table).

Fine mapping of 13q32 locus
As the identified SNPs on the top locus are located within the flanking region of two genes, we
further investigated which gene might relate to the disease susceptibility through fine mapping
followed by in vitro functional analysis. To narrow down the IPO5/RAP2A locus on chromo-
some 13q32.2, we performed direct sequencing of the region with 48 case samples, and identi-
fied 249 SNPs within a 100kb LD region. Among them, we selected 24 tag SNPs that represent
this locus for further fine-mapping. Association analysis of these tag SNPs with 750 cases and
2405 controls revealed rs9584669 to have the strongest p value (Cochran-Armitage trend test)
(S6 Table). Genotyping also revealed that six SNPs with the 13q32.2 genomic region
(rs9556806, rs9805548, rs9556797, rs9556705, rs4001162, rs9556799) were in absolute LD with
this SNP (rs9584669).

Functional analysis of the associated SNP on chr.13q32
Since none of these 7 SNPs within this associated region account for a change in amino acid
sequence of the protein, we investigated whether these SNPs would affect IPO5 and/or RAP2A
expression using a reporter gene analysis in human aortic smooth muscle cells (HASMC). We
used this cell because abundant expression of both IPO5 and RAP2AmRNA were observed in
quantitative RT-PCR experiments. Fig 3 showed that only clones containing the rs9584669
SNP non-risk allele had an approximately 1.5-fold greater transcriptional activity than those
containing the risk allele in the IPO5 promoter construct. From this result, we hypothesized
that the rs9584669 SNP genomic locus physically interacts to the promoter region of IPO5 in a
long range looping manner, and the transcriptional repressive factor(s) which interacts
strongly with the genomic complex includes the risk SNP suppress transcription of IPO5. No
allelic difference was observed in other IPO5 promoter constructs and the RAP2A promoter
constructs (S3 Fig). These results indicate that the associated SNP affected the transcription
level of IPO5, but not RAP2A.

Table 2. Summary of Association with the Risk of PAD.

dbSNP ID Chr. Gene Phase Number of samples MAF OR 95%CI P

Cases Controls Cases Controls

rs9584669 13 IPO5/RAP2A GWAS 785 3383 0.04 0.06 0.60 0.45–0.79 2.76 x 10−4

Replication 2379 16751 0.03 0.05 0.57 0.48–0.66 2.10 x 10−11

Combined* 3164 20134 0.03 0.05 0.58 0.50–0.66 6.78 x 10−14

rs6842241 4 EDNRA GWAS 785 3372 0.36 0.30 0.76 0.68–0.85 2.36 x 10−6

Replication 2342 16750 0.33 0.30 0.88 0.83–0.93 9.09 x 10−5

Combined* 3127 20122 0.34 0.30 0.85 0.80–0.90 5.32 x 10−9

rs2074633 7 HDAC9 GWAS 785 3382 0.43 0.38 1.24 1.11–1.38 1.41 x 10−4

Replication 2363 16751 0.41 0.38 1.13 1.06–1.20 7.63 x 10−5

Combined* 3148 20133 0.41 0.38 1.16 1.10–1.22 8.43x 10−8

ID; identifier, Chr.; chromosome, MAF; minor allele frequency, OR; odds ratio, CI; confidence interval.

*; P value was calculated by Mantel-Haenszel test.

doi:10.1371/journal.pone.0139262.t002
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Fig 2. Regional plots of susceptible loci on 13q32.2 (a), 4q31.2 (b), and 7p21.1 (c). Estimated LD
structure of the genomic region in the JPT HapMap samples is shown as light-blue lines, and the genomic
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Discussion
Importin-5 (IPO5) is a member of the importin beta family [22] and is mainly localized in the
cytoplasm, especially in the nuclear pore complex. This protein transports nuclear localization
signal (NLS)-containing cargo from cytoplasm to nucleus in the presence of nucleoside tri-
phosphates and the small GTP binding protein Ran [23]. One important role of IPO5 is to pro-
mote excretion of apolipoprotein A-1 [24], a major protein component of HDL particles and
mediates transport of lipids from peripheral tissues as part of the reverse cholesterol transport
pathway. Apolipoprotein A-1 also controls off-load of cholesterol esters from HDL particles to
liver through scavenger receptor B1 and to LDL via cholesterol ester transfer protein. Through
these processes, HDL reduces the accumulation of plaque inside of blood vessel intima [25].
Since a clinical feature of PAD involves atherosclerotic change of the mid to small arteries,
potential of HDL function may be key to preventing disease progression. In this sense,
rs9584669 allele may reflect anti-atherosclerotic ability of each individual.

Another significant SNP, rs68422241, was located in the 5’ flanking region of the endothelin
receptor type A gene (EDNRA). EDNRA encodes a receptor for endothelin-1 [26], a peptide
that plays a role in potent and long-lasting vasoconstriction [27] and pro-inflammatory effects
[28]. Endothelin-1 mediates activation of vascular smooth muscle cells (VSMC) and showed
increased expression in human atherosclerotic lesions [29, 30], indicating that endothelin-1
contributes to the pathogenesis of chronic inflammation associated with atherosclerosis.
Endothelin-1 also induces the release of inflammatory cytokines, including interleukin (IL)-6,
IL-1β and C-reactive protein, from VSMC and/or monocytes [31–33]. Signaling of a receptor
for endothelin-1, EDNRA, mediates activation and proliferation of VSMC, and its selective

locations of genes within the regions of interest were annotated using the UCSCGenome Browser and are
shown as arrows. SNPs are colored according to their LD with the tag SNP. Diamonds in red represent the
most significantly associated SNP in each region in the GWAS.

doi:10.1371/journal.pone.0139262.g002

Fig 3. Luciferase assay for rs9584669-IPO5 promotor constructs. A clone containing the rs9584669 SNP non-risk allele had an approximately 1.5-fold
greater transcriptional activity than those containing the risk allele in H3K27Ac mark for IPO5 and was evaluated using the student's t-test. NR and R indicate
non-risk and risk alleles, respectively. (+) shows the result after six hours of stimulation by Ionomycin and PMA.

doi:10.1371/journal.pone.0139262.g003
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inhibitors prevent endothelial dysfunction, structural vascular change in atherosclerosis, and
also inhibit cholesterol induced atherosclerosis [34–36]. Furthermore, other studies indicated
that EDNRA antagonists also reduced the adhesion of inflammatory cells to endothelial cells
through inhibition of adhesion molecule expression [37, 38]. Together with our genetic evi-
dence, these known findings also suggest that the endothelin-1—EDNRA cascade has an
important role in the development and progression of PAD. It is of note that a functional
genetic variant of EDNRA was also associated with other vascular diseases including coronary
artery disease [39], intra cranial aneurysm [40] and ischemic stroke [41].

We also found an association with a SNP, rs2074633, near the HDAC9 gene encoding his-
tone deacetylase-9. Histone deacetylase (HDAC) is a component of multiprotein complexes
and modulate transcription events; thus, the HDAC family plays a critical role in transcrip-
tional regulation and cell cycle progression [42]. HDAC9 classifies as a class IIa enzyme and is
known to shuttle between the nucleus and the cytoplasm [43]. Another function of this protein
is related to tissue remodeling via the stress-response pathway [44–46]. A genetic variant in
HDAC9 is also associated with large vessel ischemic stroke, carotid atherosclerosis and coro-
nary artery disease [41, 47, 48]. Since severe intimal thickness of mid to small arteries are char-
acteristics of PAD, combined with these previous findings, it is possible that HDAC9 may be
involved in the pathogenesis of this disorder and its progression.

Through a GWAS and a subsequent replication study in Japanese subjects, we identified
three novel PAD susceptible loci near the genes IPO5/RAP2A, EDNRA andHDAC9. Because
of the genetic difference among ethnicity, the relevance of our findings to other ethnic groups
remains to be clarified. Another limitation might be that, we might miss some positive results
because of the relatively small sample size at initial GWAS stage. To our knowledge, our study
is the first to identify these loci for PAD through GWAS. We believe that knowledge of genetic
risk factors and their molecular cascade associated with PAD will contribute to a better under-
standing of the pathogenesis and aid in early detection of PAD.

Supporting Information
S1 Fig. (a) Principal components analysis (PCA) of population in the GWAS. The relatedness
among cases and controls for GWAS along with the European (CEU), African (YRI), and East-
Asian (JPT and CHB) data from the HapMap project was analyzed. The individuals were plot-
ted in a two-dimensional graph,with the first (x axis) and the second (y axis) components of
the Eigenvector factors. (b) The relatedness, along with the East-Asian (JPT and CHB) data
from the HapMap project was analyzed.
(PDF)

S2 Fig. LD structure at chr. 13q32.2 locus Linkage disequilibrium plot for rs9584669 includ-
ing all SNPs within 100kb region. Tag SNPs are circled.
(PDF)

S3 Fig. Result of Dual reporter Luciferase assay for IPO5 (a) and RAP2A (b). No allelic diffr-
ence of transcriptional activity was observed in all the 13SNPs.
(PDF)

S1 Table. Oligo nucleotide sequences used for luciferase assay.
(XLSX)

S2 Table. Results of GWAS. OR; odds ratio, P values were caluculated Cochran-Armitage
trend test.
(XLSX)
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S3 Table. Association results of 355 loci ranked by p-value in the GWAS. OR; odds ratio,
NG; no good; Combined P value was calculated Mantel-haenszel test.
(XLSX)

S4 Table. Association results of the 13 SNPs. ID; identifier, Chr; chromosome, OR; odds
ratio, CI; confidence interval; Combined P value was calculated by Mantel-Haenszel test.
(XLSX)

S5 Table. Association between conventional risk factors for PAD and 3 SNPs in cases.HT,
hypertension; DM, diabetes mellitus; HL, hyperlipidemia; BI, brain infarction; CAD, coronary
artery disease, � For age, mean ± SD is shown.
(XLSX)

S6 Table. Association study of tag SNPs at chromosome 13q32 region. ID; identifier, MAF;
minor allele frequency, OR; odds ratio, �; P value was calculated by Cochran-Armitage trend
test.
(XLSX)
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