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Individuals with autism spectrum disorder (ASD) are exposed to a variety

of stressors owing to their behavioral traits. Cortisol is a hormone typically

associated with stress, and its concentration and response to stress are higher

in individuals with ASD than in controls. The mechanisms underlying cortisol

dysregulation in ASD have been explored in rodents. Although rodent models

have successfully replicated the major symptoms of autism (i.e., impaired

vocal communication, social interaction deficits, and restricted/repetitive

patterns of behavior), evidence suggests that the hypothalamic-pituitary-

adrenal (HPA) axis system differs between rodents and primates. We

developed an ASD model in the common marmoset (Callithrix jacchus),

a New World monkey, utilizing prenatal exposure to valproic acid (VPA).

In this study, we collected the salivary cortisol levels in VPA-exposed and

unexposed marmosets in the morning and afternoon. Our results revealed

that both VPA-exposed and unexposed marmosets showed similar diurnal

changes in cortisol levels, which were lower in the afternoon than in the

morning. However, heightened cortisol levels were observed throughout the

day in VPA-exposed marmosets. These results are consistent with those of

ASD in humans. Our results suggest that VPA-exposed marmosets show

similarities not only in their behavioral patterns and brain pathologies,

which we have reported previously, but also in hormonal regulation,

validating the usefulness of VPA-exposed marmosets also as a tool for ASD

stress research.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder with a prevalence of 1 in 44 (Maenner et al., 2021). The
major symptoms of ASD are impaired vocal communication,
deficits in social interaction, and restricted/repetitive behavior
patterns (American Psychological Association [APA], and
American Psychiatric Association [APA], 2013). Individuals
with ASD are exposed to a variety of stressors owing to their
behavioral traits, and overwhelming stress in ASD can trigger
secondary deficits, such as depression and sleep disorders.
Cortisol is a hormone typically associated with stress, and its
concentration and response to stress are higher in individuals
with ASD than in controls. The mechanisms underlying
cortisol dysregulation in ASD have been explored in rodent
models; however, differences in the regulatory system of the
hypothalamic-pituitary-adrenal (HPA) axis in rodents and
primates have been reported (Gibbs, 1986; Broadbear et al.,
2004; Goursaud et al., 2006; Bertani et al., 2010). For example,
rats are nocturnal and marmosets are diurnal like humans,
and the circadian rhythms of serum hormone levels in rats
and marmosets are different (Bertani et al., 2010). Cellular and
molecular properties in hypothalamus are largely conserved but
still show some differences in gene expression patterns (van
Eerdenburg and Rakic, 1994; Zhou et al., 2020). Furthermore,
in mice, cortisol suppresses heat production in adipose tissue,
but the same is unlikely to occur in primates (Luijten et al.,
2019). Considering translational research, the primate ASD
model appears to be preferable for studying the hormonal stress
response in ASD.

We have previously developed an ASD model for a New
World monkey, the common marmoset (Callithrix jacchus)
(Yasue et al., 2015, 2018; Watanabe et al., 2021). The marmosets
were prenatally exposed to valproic acid (VPA), which is
often used in rodent models of ASD. VPA epigenetically
alters gene expression in the developing fetal brain. VPA-
exposed marmosets demonstrated all three core symptoms
of ASD: (1) biased usage of vocal repertoires, (2) weak
social attention to unfamiliar conspecifics, and (3) deficits
in reversal learning (Watanabe et al., 2021; Nakagami et al.,
2022). In addition, when unfair rewards were given for the
same task between two marmosets (Yasue et al., 2018), VPA-
exposed marmosets continued the task even when it was
unfavorable to them, suggesting a lack of attention to the
coproducing species (weak inequity aversion). They also failed
to recognize differences between third-party reciprocal and non-
reciprocal exchanges, whereas VPA-unexposed marmosets (UE
marmosets) discriminated against these exchanges (Kawai et al.,
2014, 2019; Yasue et al., 2015). Furthermore, transcriptome
analyses have revealed that VPA-exposed marmosets replicate
a broad range of gene dysregulation in human idiopathic ASD,
whereas rodent models generally replicate only a smaller part of
the pathology (Watanabe et al., 2021). Especially, VPA-exposed

marmosets recapitulate human ASD well in the four major
cell types of the brain, consisting of neurons and three types
of glia, but less well in glia in rodents. Thus, VPA-exposed
marmosets appear to provide a suitable model for translational
research on ASD.

In this study, we collected the salivary cortisol from
marmosets in the morning and afternoon. Salivary
measurements of cortisol have been shown to closely mirror
those in the serum (Perogamvros et al., 2010; VanBruggen
et al., 2011). We found that VPA-exposed marmosets had
heightened basal cortisol levels, as do humans with ASD. Our
results suggest that VPA-exposed marmosets may be useful for
translational research on stress pathophysiology in ASD.

Materials and methods

Subjects

All experimental animal care procedures were conducted
under approved protocols according to the regulations of the
National Center of Neurology and Psychiatry (NCNP), Tokyo,
Japan. Ten UE marmosets (five males and five females) and
nine VPA-exposed marmosets (five males and four females)
were included in this study (Table 1). The ages of the
experimental animals range from 2- to 8-year-old. The mean
age was 4.7 ± 1.62 years (UE marmosets: 4.5 ± 1.43, VPA-
exposed marmosets: 4.9 ± 1.79). The subjects were born and
raised in family cages. Then, at least 3 months prior to the
experiment, they were transferred to individual stainless steel
home cages (Natsume Manufacturing Co., Ltd., Tokyo, Japan)
in order to avoid the confounding effect on cortisol levels due
to interactions with conspecifics of the same cage, which are
difficult to control. The subjects were kept at room temperature
of 29 ± 2◦C and maintained on a 12 h:12 h light:dark cycle
with free access to food and water. The lights in the breeding
room were turned on at 7:00 a.m. and turned off at 7:00 p.m.
daily. Marmosets in the facility were familiar with human
contact and approached experimenters to obtain food rewards
without hesitation.

Valproic acid treatment

Valproic acid marmosets were exposed to valproic acid
during their fetal stage, whereas UE marmosets were not (Yasue
et al., 2015). The dams of VPA-exposed marmosets were housed
in their cages. Their blood progesterone levels were monitored
periodically to determine the timing of pregnancy, as was
done for the UE dams. The VPA group received 200 mg/kg
intragastric sodium valproate via an oral catheter daily on days
60 to 66 after conception, for a total of seven treatments. This
period was determined based on the administration period
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TABLE 1 Subject information.

Animal ID Siblings Age (year) Sex Group

11111 8 Female UE

12043 $ 7 Female VPA

12044 $ 7 Female VPA

12062 7 Female VPA

13019 6 Female UE

14002 5 Female VPA

14030 # 5 Male VPA

14031 # 5 Male VPA

14078 5 Male UE

15033 % 4 Male UE

15034 % 4 Male UE

15041 4 Female UE

15049 + 4 Female UE

15050 + 4 Male UE

16043 3 Male VPA

16086 3 Female UE

16089 3 Male UE

16152 3 Male VPA

17024 2 Male VPA

2- to 8-year-old (n = 10 males, n = 9 females) adult marmosets were used in this study.
The mean age of subjects (n = 19) in the study was 4.7 ± 1.62 years. Animals with the
same symbol in the “siblings” column are littermates.

(E12 of the rat fetus) used to produce VPA-exposed rodent
models of ASD. All VPA dams received the medication without
vomiting and showed no signs of abnormal pregnancy or
delivery. The dams of UE marmosets were administered neither
VPA nor a solvent during this period to prevent miscarriage.
VPA marmosets displayed no malformations or body weight
differences compared with UE marmosets.

Salivary collection and assay

Saliva was sampled to measure cortisol levels twice daily
at 7:30 a.m. and at 6:30 p.m., as described in previous
research (Kaplan et al., 2012). Animals were not captured
by the experimenter and saliva was collected under free-
ranging conditions in their home cages. A thin cotton swab
(Matsumotokiyoshi Co., Ltd., Chiba, Japan) was used to collect
saliva from the marmosets. The marmosets were fully trained to
bite cotton swabs in their home cages before the experiments.
The cotton swabs were dipped in powdered sugar to ensure that
the bites would last sufficiently long (approximately 3–5 min)
(Kaplan et al., 2012). A 2.0-mL Costar Spin-X centrifuge tube
with a nylon filter (0.22 µm) was filled with the swabs and
centrifuged at 10,000 rpm for 5 min to extract the liquid portion
of the sample. The collected samples were stored in a −80◦C
freezer until further use. Saliva samples were collected three
times per individual, with no two collections occurring in the

same month. The duration of the experiment was 3 months,
from June to August in 2019. Cortisol levels (µg/dl) were
measured using an AIA-360 Automated Immunoassay Analyzer
with AIA-pack cortisol test cups (Tosoh Corporation, Tokyo,
Japan) and averaged per subject across all saliva collections
either in the morning or the evening.

Statistical analysis

Two-factor repeated-measures ANOVA and student-t test
were performed using JMP 16 software (SAS Institute, Cary, NC,
United States) when the data were determined to be normally
distributed by the Shapiro–Wilk test or by the F-test. If we found
that the data showed a non-normal distribution, a mixed design
ANOVA by a downloadable program (ARTool) (Wobbrock
et al., 2018) was performed using R. P-values less than 0.05 were
considered statistically significant.

Results

Salivary samples were successfully collected by
experimenters while the marmosets were in their home
cages. They showed no signs of aggression or aversion during
sampling. No significant effect of sex on salivary cortisol levels
was observed in both UE and VPA-exposed groups in the
morning and evening. Therefore, we analyzed the data for male
and female together.

Figure 1 shows group salivary cortisol levels (mean ± SD)
measured in the morning (7:30 a.m.) and afternoon (6:30 p.m.).
Two-factor repeated measures ANOVA showed a significant
difference in the group factor [F(1,17) = 9.3153, p = 0.0072] and
time factor [F(1,17) = 100.8143, p < 0.0001]. We did not find
any significant difference in interaction effects [F(1,17) = 4.0257,
p = 0.0610]. These results suggested that the VPA-exposed
marmosets maintained diurnal changes with high cortisol
levels in the morning that fell throughout the afternoon, and
that salivary cortisol levels in the VPA-exposed group were
significantly higher than those in the UE group at the times
examined in this study.

We have also examined the correlation between age and
salivary cortisol level. Although no statistically significant
correlation between age and cortisol level was found at any
time of day or in any group, there was a positive correlation
in UE marmosets in the afternoon (r = 0.58) and a weak
positive correlation in VPA-exposed marmosets (r = 0.32). In
the morning, no correlation between age and salivary cortisol
level was found for both groups.

Unfortunately, we found that among the VPA-exposed
marmosets used in the current experiment, only three VPA-
exposed marmosets were involved in the task presented in
the previous papers (Yasue et al., 2015, 2018; Nakagami et al.,
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FIGURE 1

Salivary cortisol levels in the morning (7:30 a.m.) and afternoon
(6:30 p.m.) in the valproic acid-exposed (VPA group) and
unexposed (UE group) marmosets. Values are expressed as
mean ± standard deviation (n = 10 for UE group, n = 9 for VPA
group, **p < 0.01, ***p < 0.001).

2022). Among these three animals, one marmoset showed the
lowest morning salivary cortisol level (23.1 µg/dL). This level
was half that of the other two VPA-exposed marmosets and
was similar to the average level of the UE marmoset. This
VPA-exposed marmoset had the best performance in three
social tasks (social gazing, inequity aversion, and third-party
reciprocity) among these three VPA-exposed marmosets. These
anecdotal observations suggest that there may be a relationship
between cortisol levels and levels of social impairment in VPA-
exposed marmosets.

Of the animals in this experiment, there were two pairs of
siblings in UE marmosets and two pairs in VPA marmosets
(Table 1). None of these pairs had cortisol levels biased in one
direction relative to the mean in both morning and evening
(data not shown), suggesting that the results in this study were
not biased due to the inclusion of siblings.

Note that saliva sampling in this study was from marmosets
that were in individual cages, so the results of this study may
include isolation-related stress. We considered the possibility
that the time between the animals’ transfer to the single cage
and the sampling start point could affect the results of this
study. First, there was no significant difference in the time
from isolation to the experiment between UE and VPA-exposed
marmosets (p = 0.8659, student t-test). We also examined
temporal changes of cortisol level in samples at three time
points taken from each animal separately in the morning
and afternoon. A mixed design ANOVA showed a significant
difference only in the group factor [F(1,16) = 7.6731, p = 0.0131]
in the morning cortisol level, but not in the time factor and

interaction effects in the morning or afternoon. The results
indicate that there is no specific pattern of variation in cortisol
level among three samples over 3 months in either UE or VPA,
suggesting the effect of isolation time before the experiment is
minimal in both groups.

Discussion

This study revealed that both UE- and VPA-exposed
marmosets showed a similar diurnal change in cortisol levels,
which was lower in the afternoon than in the morning. This
is consistent with the circadian rhythm of cortisol levels in
humans (Smyth et al., 1997). However, heightened cortisol
levels were observed in VPA-exposed marmosets throughout the
day. Previous studies have shown that VPA-exposed marmosets
use phee calls (isolation call) more frequently than do UE
marmosets (Yamaguchi et al., 2010; Watanabe et al., 2021). This
suggests that VPA-exposed marmosets may be in a constant state
of stress, such as anxiety.

Studies of cortisol levels in humans with ASD have shown
inconsistent results (Tordjman et al., 2014). The discrepancies
in their results may be related to study methods (plasma cortisol
measures vs. urinary or salivary measures), and sample sizes.
We thus compared our results with those of five studies that
used a sufficient number of cases with salivary sampling in
humans (more than 20 cases in both control and ASD groups).
Four of those reports showed elevated cortisol concentrations
(Corbett et al., 2008; Kidd et al., 2012; Spratt et al., 2012;
Tordjman et al., 2014). One report commented on the high
variability of cortisol concentration in ASD cases (Corbett
et al., 2009). In studies examining diurnal variation, two reports
observed cortisol increases in the morning and evening (Corbett
et al., 2008; Tordjman et al., 2014), while another observed
cortisol increases only in the morning (Kidd et al., 2012).
Thus, our results are consistent with these reports. VPA-
exposed marmosets replicated the abnormal endocrine function
observed in people with ASD.

Among rodent models of ASD, BTBR mice and VPA-
exposed male rats showed heightened serum cortisol levels
(Schneider et al., 2008; Benno et al., 2009; Frye and Llaneza,
2010; Silverman et al., 2010; Ferraro et al., 2021), similar
to VPA-exposed marmosets and people with idiopathic ASD.
In contrast, transgenic ASD model mice (MeCP2 and FMR1
mutant) showed no elevated levels of cortisol (McGill et al.,
2006; Qin and Smith, 2008). It can be difficult, however, to
collect specimens for cortisol measurement in rodents without
stressing the animals. To avoid this problem, blood is often
collected from the heart immediately after euthanasia via acute
decapitation. Collection of salivary cortisol or plasma cortisol
using the tail cutting technique also requires restraint and is
unsuitable for measuring basal cortisol levels (Fenske, 1997;
Kim et al., 2018). Blood sampling through an intravenous
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catheter in large vessels can be applicable for plasma cortisol
measurement on freely moving rodents (Nyuyki et al., 2012).
However, this technique is still invasive and not suitable for
long-term cortisol level monitoring. In this study, we established
a method to collect saliva from marmosets after acclimatization
by training. The current procedure using marmosets will allow
the repeated examination of cortisol levels in ASD models in
the same individuals, both at basal levels and in the stress
response, and will contribute to a reduction in the number of
experimental animals.

This study revealed that VPA-exposed marmosets
reproduced the variability of cortisol levels in human ASD.
Marmosets are cooperative and highly social primates and are
considered a suitable model animal to study stress in social life,
and they also show higher social function deficits as in cases of
ASD (Yasue et al., 2015, 2018; Watanabe et al., 2021; Nakagami
et al., 2022). Further examination of cortisol levels in VPA-
exposed marmosets would provide a new avenue for studying
the biology of stress faced by individuals with ASD and for
developing novel therapeutic interventions.
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