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Investigation of possible phase 
transition of the frustrated spin-1/2 
J1-J2-J3 model on the square lattice
Ai-Yuan Hu1 & Huai-Yu Wang2

The frustrated spin-1/2 J1-J2-J3 antiferromagnet with exchange anisotropy on the two-dimensional 
square lattice is investigated. The exchange anisotropy is presented by η with 0 ≤ η < 1. The effects of 
the J1, J2, J3 and anisotropy on the possible phase transition of the Néel state and collinear state are 
studied comprehensively. Our results indicate that for J3 > 0 there are upper limits Jc3  and ηc values. 
When 0 < J3 ≤ Jc3  and 0 ≤ η ≤ ηc, the Néel and collinear states have the same order-disorder transition 
point at J2 = J1/2. Nevertheless, when the J3 and η values beyond the upper limits, it is a paramagnetic 
phase at J2 = J1/2. For J3 < 0, in the case of 0 ≤ η < 1, the two states always have the same critical 
temperature as long as J2 = J1/2. Therefore, for J2 = J1/2, under such parameters, a first-order phase 
transition between the two states for these two cases below the critical temperatures may occur. When 
J2 ≠ J1/2, the Néel and collinear states may also exist, while they have different critical temperatures. 
When J2 > J1/2, a first-order phase transition between the two states may also occur. However, for 
J2 < J1/2, the Néel state is always more stable than the collinear state.

In recent years, the study of frustration quantum spin systems has become very active on regular two-dimensional 
(2D) lattices, for examples, square lattice1–15, triangular lattice16–19, honeycomb lattice20–22, kagome lattice23–25 and 
so on. One of the most intensively studied frustrated 2D models is the spin-1/2 J1-J2 Heisenberg antiferroamgnet 
on the square lattice where the nearest-neighbor (NN) bonds (of strength J1 > 0) competes with 
next-nearest-neighbor (NNN) bonds (of strength J2 = αJ1 > 0)2–12. This model has been widely investigated 
focused on its ground states by means of various theoretical methods1–12, such as the effective field theory2, cluster 
mean field theory3, density matrix renormalization group4, 5, exact diagonalization5, 6, bond-operator theory8, 
spin-wave theory9, 10, the coupled cluster method11, 12 and so on. The J1 - J2 model on the two-dimensional square 
lattices usually shows two possible antiferromagnetic states. One is called Néel state or AF1 state, and the other is 
called collinear state or AF2 state. These investigations showed that the system was a Néel state at α .0 38 and a 
collinear state for α .0 6. In the range of 0.38 < α < 0.6, the square lattice system was nonmagnetic2–12, and the 
triangular lattice system might be a spin-liquid state19.

The 2D J1-J2 may be used to describe the magnetic properties of some real materials. Examples are the 
undoped precursors to the high temperature superconducting cuprates for small α values26, VOMoO4 for inter-
mediate α values27, and Li2 VOSiO 4 for large α values28. Meanwhile, experimental results indicated that for Li2 
VOSiO 4 the value of α can be changed from low to high by applying high pressure29.

For finite temperature, there is no long-range order for isotropic two-dimensional model30. Usually, an 
anisotropy is considered. This is because an anisotropy, no matter how faint, would cause a long-range order 
at finite temperature. Based on this fact, J. R. Viana et al. studied the phase diagram of an exchange ani-
sotropic J1-J2 model2. Their results indicated that between the paramagnetic and collinear phases the system 
underwent a first-order transition at low temperature and a second-order transition at high temperature. T. 
Roscilde et al. investigation showed that when an Ising type exchange anisotropy was induced, there would be 
Chandra-Coleman-Larkin transition and Berezinskii-Kosterlitz-Thouless transition9. Their results showed that 
the anisotropy could effectively tune the quantum fluctuation and frustration of the system. These investigations 
indicated that the anisotropy played an important role.

As a more complicated model, the next-next-nearest-neighbor (NNNN) exchange is added to the J1-J2 model, 
so as to form the J1-J2-J3 model31. It possesses more degrees of freedom to tune the quantum fluctuation and 
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frustration of the system compared to the J1-J2 model. Experimental investigations indicated that the AF2 and var-
ious transition behaviors exist in most of the iron-based superconductors. It was thought that further-neighboring 
interactions might be available and played an important role in determining the magnetic properties32. For exam-
ple, a nonzero coupling J3 between the NNNN was suggested to be important for the magnetic properties in iron 
chalcogenides such as FeTe33.

Theoretical studied indicated that the classical ground state of the J1-J2-J3 model allowed four ordered phases 
due to the competing interactions J2/J1 and J3/J1

34–36, i.e., Néel, collinear and two helicoidal states that were 
depicted in Fig. 1 of ref. 36. The nature of the zero temperature quantum phases in selected regions J1, J2, and J3 
had been also studied by some authors37, 38. For the J1-J2-J3 model, work has mainly been focused on its ground 
state properties34–38. Investigations concerning nonzero temperature have been comparatively much fewer. One 
work we can see was the phase diagram at J2 = 0 by Luca et al.39. Meanwhile, because of so many parameters, the 
properties of the J1-J2-J3 model have not been clearly known yet. A detailed investigation is still desired.

In this paper, we comprehensively study the magnetic properties of the J1-J2-J3 model at finite temperature by 
using the double-time Green¡¯s function (DTGF) method. As mentioned above, an anisotropy is necessary at 
finite temperature. Here an exchange anisotropy η is considered. Note that the model is isotropic at η = 1. Thus we 
consider the cases when 0 ≤ η < 1. The J1 and J2 values are set to be positive and the J3 value can be either positive 
or negative. Our results show that, as J3 < 0 and J2 = J1/2, both AF1 and AF2 states can exist and have the same 
critical temperature in the whole anisotropy range 0 ≤ η < 1, but as J3 > 0, this conclusion holds merely in a part 
of the anisotropy range. When J2 ≠ J1/2, the two states may also exist, but their critical temperatures differ from 
each other. In this case, the calculated free energies show that a first-order phase transition between the Néel and 
collinear states below critical point may occur.

Results
We discuss the properties at finite temperature. Therefore, when we say zero temperature, we actually mean that 
temperature is very close to zero, which is denoted by T = 0+.

Basic magnetic properties. First, we discuss the case of J3 > 0. Figure 1 plots the magnetization m as a 
function of temperature T at various parameter values. In Fig. 1(a), η = 0.5 and J3 = 0.1. When J2 ≤ 0.45, it is AF1 
configuration, and when J2 ≥ 0.6 the AF2 configuration. For the AF1 configuration, as J2 increases from zero, the 
competition between J2/J1 and J3/J1 emerges. Since we have fixed J1 = 1, this competition is actually between J2 and 
J3. For a fixed J3, the frustration becomes stronger with the increasing the value of J2. This leads to that TN and m 
decrease with the increase of J2. For the AF2 configuration, this case is contrary, i.e., the frustration decreases with 
increasing of J2. As a result, both TN and m increase with increasing J2 value. When 0.45 < J2 < 0.6, the system can 
be either AF1 or AF2 state, but with different TN values except J2 = 0.5.

Now we focus on the curve of J2 ≤ 0.5 in Fig. 1(a) that both configurations can exist and have the same 
order-disorder transition point for J3 = 0.1 and η = 0.5. Let us see whether at J2 = 0.5 this conclusion is true for any 
other J3 and η values. We change η values and fix J2 = 0.5 and J3 = 0.1, and the results are shown in Fig. 1(b). It is 

Figure 1. The sublattice magnetization m as a function of temperature T for different parameters. (a) η = 0.5, 
J3 = 0.1 and various J2 values. (b) J2 = 0.5, J3 = 0.1 and various η values. (c) η = 0.5, J3 = 0.3 and various J2 values.
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seen that, as η takes value from 0 to 0.8, the critical temperatures of the two states are always equal. When η > 0.8, 
numerical calculation shows that the system is always a paramagnetic (P) phase. As J3 value increases, the system 
will be P phase at J2 = 0.5 even η is less than 0.8. Figure 1(c) shows ~m T  curves for various J2 values when η = 0.5 
and J3 = 0.3. When J2 ≤ 0.4, it is AF1 state and when J2 ≥ 0.6, it is AF2 state. Around J2 = 0.5, the system is a para-
magnetic phase.

Since TN value depends on the parameters, we have to know the details of the dependence. Figure 2(a),(b) plot 
TN as a function of J2 for various η and J3 values. It is seen from Fig. 2(a) that, when η = 0.5 and J2 = 0.5, the two 
states have the same critical temperature at J3 = 0.25, although the TN value is rather low. As J3 increases further, 
the system will be a P phase in the vicinity of J2 = 0.5, Fig. 1(c) showing one example. The range of J2 value where 
the system is P phase becomes larger with the increase of J3 value. It indicates that the increasing of the J3 value 
leads to a stronger frustration. In combination of Figs 2(a)and 1(a), it is drawn that for 0 ≤ J3 ≤ 0.25 the two states 
AF1 and AF2 have the same TN value at J2 = 0.5. These results reflect that, for a fixed η, there is an upper limit ηc 
below which the order-disorder points of the two states are the same. Note that the J c

3  value will change with the 
change of η.

In Fig. 2(b), J3 = 0.25 is fixed and the η varies. Similar to Fig. 2(a), for a fixed J3, there is an upper limit ηc value 
below which the two states have the same critical temperature at J2 = 0.5. Figure 2(c) shows the relation between 
the ηc and J c

3  values. It is a straight line and can be expressed by η = − +J2 1c c
3 . This line divides the panel into 

two regions, i.e., antiferromagnetic (AF) and P regions. In AF region, under the same J1, J2, J3 and η values, the two 
states have the same critical temperature. One example is the case of J3 = 0.25 and η = 0.5 shown in Fig. 2(a,b). In 
P region, the system is always a P phase. The examples are the curves with J3 ≥ 0.3 in Fig. 2(a) and that with 0.6 ≤ 
η < 1 in Fig. 2(b).

Figure 3 plots the critical temperature as a function of J2 for different J3 and η values. These panels are also 
phase diagrams. It is seen from Fig. 3(a) that the critical temperature increases with decreasing J3. As mentioned 
above, the frustration increases with increasing J3. For a fixed J3, the critical temperature decreases with the 
increase of η, see Fig. 3(b). It can be easily understood that a stronger anisotropy suppresses the quantum fluctu-
ation of the system so that raises the critical point. Figure 3(a,b) indicate that the smaller the J3 and η values, the 
weaker the frustration.

We plot in Fig. 3(c) a pair of lines with the same parameters. This in fact is a phase diagram. The two lines 
divide the figure into four regions. The upper region, marked by P, means that the system is in P state. The left and 
right regions are that the system is in AF1 and AF2 configurations, respectively. The lower region is where the 
AF1 and AF2 configurations can coexist. From Fig. 3(a,b), it is obvious that when the J3 and/or η values decrease, 
the pair of lines in Fig. 3(c), as well as their cross point, will move upwards, and the lower region will expand. On 
the contrary, as the J3 and/or η values increase, the pair of lines in Fig. 3(c), as well as their cross point, will move 
downwards, and eventually, the two lines will be apart, as shown in Fig. 2(a,b).

Figure 2. (a) and (b) The Néel temperature TN as a function of J2 at different J3 and η values. (a) η = 0.5 and 
different J3 values. (b) J3 = 0.25 and different η values. (c) The relationship between ηc and J c

3  values when 
J2 = 0.5. This panel is divided into two regions, i.e., AF and P regions. The AF region representation is that AF1 
and AF2 states have the same critical temperature at J2 = 0.5. For P region, it is a paramagnetic phase for AF1 
and AF2 states at J2 = 0.5.
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Figure 3(a,b) also explicitly show that, when J3 and η take values in AF region, the two states have the same 
critical temperature as long as J2 = 0.5. As the J2 value is not equal to 0.5, both configurations can exist in low 
temperature as in the lower region in Fig. 3(c), but have different TN values, see, for example, the points A and B 
in Fig. 3(c).

Please note that the solid and dashed lines are not symmetric with respect to J2 = 0.5 in Fig. 3(c), although it 
seems so. In fact, the value of the J2 does not have upper limit and the dashed line can extend to larger J2 values. 
Similarly, in Figs 2(a) and 3(a), each pair of the solid and dashed lines with the same η value is not symmetric with 
respect to J2 = 0.5, and neither is each pair lines with the same J2 value in Figs 2(b) and 3(b).

Next, we discuss the case of J3 < 0. Figure 4 plots m as a function of T for various parameters. From Fig. 4(a,b), 
when J2 is near zero, it is AF1 state, and when J2 is near 1, the AF2 state. As the J2 is around 0.5, the state can be 
either AF1 or AF2. A remarkable feature for minus J3 value is that the AF1 and AF2 states always have the same 
critical temperature for 0 ≤ η < 1 as long as J2 = 0.5, which are explicitly shown in Fig. 4(c,d) by some examples. 
While for J3 > 0, only when the parameters are in the region AF in Fig. 2(c) can the two configurations have the 
same TN values.

Figure 5 illustrate the critical point TN as a function of J2 value under different J3 and η parameters. 
Figure 5(a),(b) are similar to Fig. 2(a),(b) and Fig. 3(a),(b). However, a pair of lines with the same parameters in 
Fig. 5(a),(b) have always a cross point at J2 = 0.5. Figure 5(c) is similar to Fig. 3(c), and the discussion is either 
similar.

Possible phase transition at J2 = J1/2. We have known from the discussion above that AF1 and AF2 may 
have the same critical temperature at 0 ≤ η < 1 when J2 = 0.5. A question naturally arises from this feature that 
which configuration is more stable at J2 = 0.5. In the following, we manage to answer this question. The two con-
figurations are different from each other, and so are their entropies at a fixed temperature. Therefore, the internal 
energy cannot be used to determine which one is more stable at each temperature. Under the same volume and 
temperature, the state with lower free energy is more stable.

The free energy can be evaluated numerically by means of the internal energy via = −F T E T( ) (0)  
∫ ′′ −

′ dTT E T E

T0
( ) (0)

2
, where E(T) represents the internal energy of the system, which is defined as the thermostatisti-

cal average of Hamiltonian, E = (<H>)/(N)40. Computing internal energy involves the calculation of the trans-
verse (∑ < >+ −S Si j i j, ) and longitudinal (∑ < >S Si j i

z
j
z

, ) correlation functions. We do not present the lengthy 
derivation. The formulism was presented in ref. 41.

In the following, the influence of J3 and η on the possible phase transition between AF1 and AF2 states are 
studied. In this section, we discuss the case of J2 = J1/2.

Figure 6 plots the free energy as a function of temperature for different η values at J3 = 0.01. Figure 6(a) shows 
that at η = 0 the free energy of AF1 is always less than AF2 at finite temperature. When temperature close to zero, 
their free energies seem the same, but actually, FAF1(0+) < FAF2(0+). Therefore, in this case, AF1 is more stable in 

Figure 3. The Néel temperature TN of AF region (see Fig. 2(c)) as a function of J2 at different J3 and η values. 
(a) η = 0.5 and various J3 values. (b) J3 = 0.25 and various η values. (c) The enlargement of the region of J2 in the 
vicinity of J2 = 0.5 when η = 0.5 and J3 = 0.1.
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the range of T ≤ TN. As η increases from zero, the free energy curves of the two states become closer gradually, see 
Fig. 6(b). When η increases to η1 = 0.0051, the difference between the free energies of the AF1 and AF2 is negligi-
ble, see Fig. 6(c). This situation will last until η2 = 0.0196, see Fig. 6(d). This case means that at J3 = 0.01 the system 

Figure 4. Sublattice magnetization as a function of temperature under various parameter values. (a) η = 0.5, 
J3 = −0.1 and J2 value varies. (b) η = 0.5, J3 = −0.5 and J2 value varies. (c) J2 = 0.5, J3 = − 0.1 and η value varies. 
(d) η = 0.5, J2 = 0.5 and J3 = −02, −0.3, −0.4.

Figure 5. The Néel temperature TN as a function of J2 at different J3 and η values. (a) η = 0.5 and 
J3 = − 0.2, −0.6, −1. (b) J3 = −0.5 and η = 0.2, 0.4, 0.8. (c) It is the case of J3 = −0.2 in (a).
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can be in either the AF1 or AF2 state or the coexistence of them for η1 ≤ η ≤ η2. When η increases further from 
η2. The free energy curves of the two states begin to separate. Then, the FAF1(T) curve drops faster than FAF2(T) 
curve at T ≤ TN, see Fig. 6(e),(f). On the whole, as η increases from zero, the two F(T) curves moves downwards.

The curves with larger η values are in Fig. 7. When η is reaches η3 = 0.825, the free energy curves of the two 
states tangent at an intermediate temperature point, see Fig. 7(a). Except at the tangency point, FAF1 is always less 
than FAF2. AF1 is more stable. Note that in this paper we only discuss the temperature range where T ≤ TN. As η 

Figure 6. The free energy F(T) curves at J3 = 0.01 for different η values. (a) η = 0, (b) η = 0.002, (c) 
η = η1 = 0.0051, (d) η = η2 = 0.0196, (e) η = 0.3 and (f) η = 0.5.

Figure 7. The free energy F(T) curves at J3 = 0.01 for different η values. (a) η3 = 0.825, (b) η = 0.84, (c) 
η4 = 0.8515, (d) η = 0.855, (e) η5 = 0.8589 and (f) η = 0.9. Note that in (b) the temperatures of the two cross 
points are denoted as T1 and T2, respectively.
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increases from η3, the free energy curves of the two states begin to have two cross points, see Fig. 7(b), the temper-
atures of which are denoted as T1 and T2, respectively. At 0 ≤ T < T1 and T2 < T ≤ TN, FAF1 < FAF2, i.e., AF1 is more 
stable. At T1 < T < T2, FAF1 > FAF2, i.e., AF2 is more stable. At each cross point, an AF1-AF2 phase transformation 
may occur and it is a first-order phase transition.

When the value of η is up to η4 = 0.8515, we have FAF1(0+) = FAF2(0+) and the free energy curves of the two 
states touch at their ends, see Fig. 7(c). It is seen from Fig. 7(b),(c) that η4 is the upper limit where the two cross 
points appear. Therefore, as η > η4, the two cross points will disappear and there is only one cross left, see Fig. 7(d). 
This situation will last until η5 = 0.8589, see Fig. 7(e). Therefore, when η4 < η < η5, at temperature close to zero, 
FAF1(0+) > FAF2(0+), the AF2 is more stable. Very close to the critical temperature, FAF1(T) < FAF2(T), the AF1 is 
more stable. At the cross point, a first-order phase transition between AF1 and AF2 states may occur. At η = η5, 
the touch point of the two curves is just at the TN, FAF1(T) = FAF2(T), see Fig. 7(e). When η > η5, FAF1 is always 
greater than FAF2, so that AF2 is more stable, see Fig. 7(f).

Next, we discuss the case of J3 < 0. Figures 8 and 9 plot the free energy as a function of temperature for dif-
ferent η values when J3 = −0.01. Their results are similar to Figs 6 and 7. It is seen that FAF1 is always less than 
FAF2 when 0 ≤ η < η1 = 0.0053, see Fig. 8(a,b). When η1 ≤ η ≤ η2 = 0.0204, the difference between FAF1 and FAF2 
is negligible, i.e., FAF1 = FAF2, see Fig. 8(c),(d). When η2 < η ≤ η3 = 0.0849, FAF1 is still less than FAF2 at T ≤ TN, 
see Fig. 9(a). As η3 < η < η4 = 0.8623, there are two cross points for the free energy curves of the two states, see 
Fig. 9(b),(c). Similar to Fig. 7(b),(c), at 0 ≤ T < T1 and T2 < T ≤ TN, FAF1 < FAF2, i.e., AF1 is more stable. At the 
temperature range in between, AF2 is more stable. At the two cross points, a first-order phase transition between 
AF1 and AF2 may occur. At η = η4, FAF1(0+) = FAF2(0+). As η increases from η4 to η5 = 0.8967, the two cross points 
will disappears and the free energy curves of the two states only one cross point left, see Fig. 9(d),(e). It indicates 
that at η4 < η < η5, FAF1(0+) > FAF2(0+), the AF2 is more stable. Near critical temperature, FAF1(T) < FAF2(T), so that 
the AF1 is more stable. For η = η5, at temperature close to TN, FAF1(T) = FAF2(T), see Fig. 9(e). When η > η5, FAF1 is 
always greater than FAF2, i.e., AF2 is more stable, see Fig. 9(f).

We have seen from Figs 6–9 that at J2 = 0.5, there are various cases of the relationship, depending on the 
parameters J3 and η, between the free energies of the two configurations below the TN. All possible relation-
ships are presented in Fig. 10(a). There are six regions in Fig. 10(a). Some of them are very narrow. Therefore, 
we illustrate in Fig. 10(b),(c) two enlargements. Figure 10(b) is the enlargement of the region −1 ≤ J3 ≤ 0.5 
and 0 ≤ η ≤ 0.06 in Fig. 10(a), and Fig. 10(c) is the enlargement of the region − 0.1 ≤ J3 ≤ 0.2 and 0.6 ≤ η < 1 in 
Fig. 10(a). The six regions are marked by I to VI, respectively.

In region I, the free energy of AF1 is always less than that of AF2. The examples are the curves in Fig. 6(a),(b) 
and Fig. 8(a),(b). This region is denoted as FAF1 < FAF2.

In region II, the difference between the free energies of the two states is negligible. So it is denoted as 
FAF1 = FAF2. The examples are the curves in Fig. 6(c),(d) and Fig. 8(c),(d).

In region III, it is again that FAF1 < FAF2. The examples are the curves in Fig. 6(e),(f) and Fig. 8(e),(f).
In region IV, the F(T) curves of the two states have two cross points. The examples are the curves in Figs 7(b) 

and 9(b). The feature is that at temperatures close to zero, FAF1(0+) < FAF2(0+), in range of intermediate tempera-
ture, FAF1(T) > FAF2(T), and near the TN, FAF1(T) < FAF2(T). Therefore, as temperature is near zero, the state of the 

Figure 8. The free energy F(T) curves at J3 = −0.01 for different η values. (a) η = 0, (b) η = 0.002, (c) 
η = η1 = 0.0053, (d) η = η2 = 0.0204, (e) η = 0.2 and (f) η = 0.5.
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system should be AF1. As temperature rises, it is possible to occur a first-order phase transformation from the 
AF1 to AF2 at the first cross point, and then another first-order transition can happen from the AF2 to AF1 at the 
second cross point.

Figure 9. The free energy F(T) curves at J3 = − 0.01 for different η values. (a) η3 = 0.849, (b) η = 0.857, (c) 
η4 = 0.8623, (d) η = 0.87, (e) η5 = 0.8967 and (f) η = 0.95. Similar to Fig. 7(b), the temperatures of the two cross 
points in (b) are also denoted as T1 and T2, respectively.

Figure 10. (a) The comparison of the free energies of the two states below the TN in the J3 and η parameter 
space. There are six regions. (b) The enlargement of the region  − 1 ≤ J3 ≤ 0.5 and 0 ≤ η ≤ 0.06 in Fig. 10(a). (c) 
The enlargement of the region  −0.1 ≤ J3 ≤ 0.2 and 0.6 ≤ η < 1 in Fig. 10(a). The upper boundary line of region 
VI is just the line in Fig. 2(c). In regions I and III, FAF1 < FAF2. In region II, FAF1 = FAF2. In region IV, the free 
energy curves of the two states have two cross points. In region V, the free energy curves of the two states have 
one cross point. In region VI, FAF1 > FAF2.
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The region IV is rather narrow. Its J3 value range is between −0.039 and 0.1, as marked in Fig. 10(c), and its η 
value range is between 0.6955 and 0.8741.

In region V, the F(T) curves of the two states have one cross point. The examples are curves in Figs 7(d) and 
9(d). The feature is that at temperatures close to zero, FAF1(0+) > FAF2(0+), and near the TN, FAF1(T) < FAF2(T). 
Therefore, as temperature is near zero, the state of the system should be AF2, and as temperature rises, it is possi-
ble to occur a first-order phase transformation from the AF2 to AF1 at the cross point below the TN.

In region VI, the free energy of AF1 is always greater than that of AF2, i.e., FAF1 > FAF2. The examples are the 
curves in Figs 7(f) and 9(f).

The boundary line between regions II and III can be expressed by J3 = − 25η + 0.5. The boundary line between 
regions I and II can be expressed by J3 = − 100η + 0.5. The upper boundary line of region VI is just the line in 
Fig. 2(c). It should be mentioned that in calculation, we take the η value up to η = 0.9999, as marked in Fig. 10(c).

Possible phase transition at J2 ≠ J1/2. When J2 value is apart from 0.5, the two states can also coexist, as 
revealed by Figs 3 and 5. In these cases, the system should also be in the state with the lower free energy at any 
temperature. Then if the F(T) curves of the AF1 and AF2 states have cross points, there may occur phase transi-
tion between the two states.

Figure 11 plots the free energy as a function of temperature for different J2 values when J3 = 0.1 and η = 0.5. 
Two features are obvious in Fig. 11(a) to (d). One is that as J2 value increases, the TN value of AF1 decreases and 
that of AF2 increases, which agrees with Fig. 3(a). The other is that on the whole, with the J2 value increasing, the 
F(T) curve of AF1 shifts upward and that of AF2 downward. As J2 = 0.4, the whole F(T) curve of AF2 is well above 
that of AF1, see Fig. 11(a), and so AF1 state is more stable. The F(T) curves of the AF1 and AF2 gradually become 
closer, see Fig. 11(b). At J2 = 0.5, the TN values of both states are the same, as shown by Fig. 3(a), but the F(T) 
curve of the AF1 is still below that of AF2. At J2 = 0.5125, the free energies of the two states at zero temperature is 
negligible, i.e., FAF1(0+) = FAF2(0+). As J2 > 0.5125, FAF1(0+) > FAF2(0+), and the two curves have a cross below the 
TN, see Fig. 11(c). Thus, at temperature close to zero, the AF2 is more stable, and with temperature rising, there 
may occur a first-order transition from the AF2 to AF1 at the cross point. This case remains until J2 = 0.5658. As 
J2 > 0.5658, the whole F(T) curve of AF1 becomes well above that of AF2, see Fig. 11(d), and so AF2 state is always 
more stable.

The case of negative J3 value is illustrated in Fig. 12 where J3 = −0.1 and η = 0.5. The overall behavior in Fig. 12 
is quite similar to that in Fig. 11. Two features are obvious in Fig. 12(a) to (d). One is that as J2 value increases, the 
TN value of AF1 decreases and that of AF2 increases, which agrees with Fig. 5(a). The other is that on the whole, 
with the J2 value increasing, the F(T) curve of AF1 shifts upward and that of AF2 downward. As J2 = 0.3 to 0.48, 
the whole F(T) curve of AF2 is well above that of AF1, see Fig. 12(a) and (b), and so AF1 state is more stable. 
Meanwhile, the F(T) curves of the AF1 and AF2 gradually become closer. At J2 = 0.5, the TN values of both states 
are the same, as shown by Fig. 5(a), but the F(T) curve of the AF1 is still below that of AF2. At J2 = 0.5078, the 
free energies of the two states at zero temperature is negligible, i.e., FAF1(0+) = FAF2(0+). As 0.5078 < J2 ≤ 0.5865, 
FAF1(0+) > FAF2(0+), and the two curves have a cross below the TN, see Fig. 12(c). Thus, at temperature close to 
zero, the AF2 is more stable, and with temperature rising, there may occur a first-order transition from the AF2 to 

Figure 11. The free energy F(T) curves at η = 0.5 and J3 = 0.1 for various J2 values. (a) J2 = 0.4, 0.45, (b) 
J2 = 0.46, 0.47, (c) J2 = 0.51, 0.53, 0.54, (d) J2 = 0.55, 0.6.
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AF1 at the cross point. As J2 > 0.5865, the whole F(T) curve of AF1 becomes well above that of AF2, see Fig. 12(d), 
and so AF2 state is more stable.

For the case of J2 ≠ J1/2, regardless of whether J3 is greater than or less than zero, we can obtain three conclu-
sions. (1) The higher the TN, the lower the FAF2(0+), and the larger the difference between TN s of AF1 and AF2 
states, the larger the difference between FAF1(0+) and FAF2(0+). (2) For J2 <  0.5, FAF1(T) is always less than FAF2(T), 
i.e., in this case, AF1 is always more stable. (3) When J2 > 0.5, one should distinguish three cases. (1) When 
0.5 < J2 < J2,c1, FAF1(T) is still less than FAF2(T). (2) When J2,c1 < J2 < J2,c2, FAF1(0+) becomes greater than FAF2(0+), 
and the free energy curves of the two states have a cross point, at which a first-order phase transition between 
AF1 and AF2 states may occur. (3) When J2 > J2,c2, FAF1(T) is always greater than FAF2(T). The J2,c1 and J2,c2 values 
depend on J3 value.

Discussions
In this paper, by means of the double-time Green’s function method, the finite-temperature magnetic properties 
of the frustrated spin-1/2 J1-J2-J3 antiferromagnet on the 2D square lattice have been investigated under random 
phase approximation. Our results have shown for the case of J3 > 0 that the Néel state and collinear state have the 
same critical temperature at J2 = J1/2 when the J3 and η take value in the range of < ≤J J0 c

3 3  and 0 ≤ η ≤ ηc. Beyond 
this range, it is a paramagnetic phase at J2 = J1/2. For J3 < 0, under the condition of 0 ≤ η < 1, the critical tempera-
ture of AF1 is always equal to AF2 as long as J2 = J1/2. For the case of J2 ≠ J1/2, our results indicate that both states 
can exist, while they have different critical temperatures. Thus a possible phase transition between the Néel state 
and collinear state with the case of J2 = J1/2 and J2 ≠ J1/2 has been also discussed, respectively.

In order to discuss explicitly which state is more stable, free energy as a function of temperature is calculated.
For J2 = J1/2, our results show that there are six cases of the relationship between the free energies of the 

AF1 and AF2 states depending on the J3 and η values, see Fig. 10. In regions I and III, FAF1(T) < FAF2(T), AF1 
state is more stable. In region II, the difference between the free energies of the AF1 and AF2 is negligible, i.e., 
FAF1(T) = FAF2(T). In this case, the system can be in either the AF1 or AF2 state or a coexistence of them. In region 
IV, the two free energy curves have two cross points. In the temperature range between the two cross points, AF2 
is more stable, while outside of this range, AF1 is more stable. In region V, the two free energy curves have one 
cross point. At temperature close to zero, AF2 is more stable, and above the cross point, AF1 is more stable. In 
region VI, FAF1(T) > FAF2(T), AF2 state is more stable.

For the case of J2 ≠ J1/2, when J2 < J1/2, the AF1 is always more stable than AF2 below TN. But for J2 > J1/2, 
there are three cases. (1) When J2 takes value in the vicinity of J1/2, the AF1 is more stable. (2) When the J2 value 
increases further, a first-order phase transition between these two states may occur. Therefore, in this case, when 
temperature approaches zero temperature, the AF2 is more stable. Near the critical point, the AF1 state is more 
stable. (3) When the J2 value continues increase, the AF2 is more stable.

Figure 12. The free energy F(T) curves at η = 0.5 and J3 = −0.2 for various J2 values. (a) J2 = 0.3, 0.4, (b) 
J2 = 0.42, 0.48, (c) J2 = 0.505, 0.52, 0.58, (d) J2 = 0.6, 0.7.
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Model and Method
The Hamiltonian of J1-J2-J3 model can be written as
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where Si
x, Si

y and Si
z represent the three components of the spin-S operator for a spin at site i. The denotations <i, 

j>, ≪i, j≫ and [i, j] mean the summations over the NN, NNN and NNNN lattice sites, respectively. The symbol 
η denotes the anisotropic parameters with 0 ≤ η < 1. Spin quantum number is S = 1/2 and the lattice is the 2D 
square one. In this paper, we set J1 = 1 and J2 > 0.

For the sake of convenience, we let Boltzmann constant kB = 1 so that all the quantities, including Hamiltonian 
parameters, temperature T, and sublattice magnetization m = 〈Sz〉, become dimensionless. 〈Sz〉 is the assembly 
statistical average of spin operator Sz.

We use the DTGF method and introduce the following Greens function (GF)42
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Here, u is a parameter40. After solving the Green’s function by means of the method of equation of motion, 
u will be ultimately set as zero to give the expression of magnetization40. We derive the equation of motion of 
the Green’s function by a standard procedure40, 42. In the course of derivation, the higher order Green functions 
appearing in the equation of motion have to be decoupled. In this paper, we apply random phase approximation 
(RPA)40, 42 to decouple the higher order GFs,
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The Néel points of the two configurations are expressed by
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