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A B S T R A C T

Viral diseases exhibit spatial and temporal variation, and there are many factors that can affect their occurrence. The identification of these factors is critical in the
efforts to predict and lessen viral disease burden. Because viral infection is able to spread to humans from the environment, animals, and other humans, the One-
Health framework can be used to investigate the critical pathways through which viruses are transported and transmitted. A holistic approach, incorporating publicly
available clinical data for human, livestock, and wildlife disease occurrence, together with environmental data reported in federal and state databases such as
parameters related to land use, environmental quality, and weather, can enhance the understanding of variations in disease patterns, leading to the design and
implementation of surveillance systems. An example analysis approach is presented for Michigan, United States, which is a state with large urban centers as well as a
sizeable rural and agricultural population. Analysis of publicly available data from 2017 indicates that gastrointestinal (GI) and influenza-associated illnesses in
Michigan may have been related with agricultural land use to a higher extent than with developed land use during that year. Meanwhile, hepatitis A virus appears to
be most closely related with developed land use in dense population areas. GI illnesses may be related to precipitation, and this relationship is strongest in the
springtime, although GI illnesses are most common in the winter months. Integration of human-related clinical data, animal disease data, and environmental data can
ultimately be used for prioritization of the most critical locations and times for viral outbreaks in both urban and rural environments.

1. Introduction

The burden of viral disease is a global challenge, and the surveil-
lance and reporting of viral disease is one way in which to manage and
mitigate outbreaks. In the United States, the Centers for Disease Control
(CDC) publish surveillance statistics regarding the rate and occurrence
of disease for a number of human viruses, and annual summaries of
these surveillance statistics are published in various forms. The
Summary of Notifiable Diseases (SoND) is an annual report containing
information on those diseases for which “regular, frequent, and timely
information regarding individual cases is considered necessary for the
prevention and control of the disease or condition”, a list of which is
updated regularly. The CDC also maintains the National Outbreak
Reporting System (NORS), which includes information on the number
of disease cases and outbreaks for a number of infectious agents, in-
cluding certain viruses. Influenza statistics, meanwhile, are reported
most frequently by the CDC via published FluView Weekly Influenza
Surveillance Reports, documenting the number of cases of influenza
and influenza-like illnesses in the United States. In assessing national
viral disease burden, it is necessary to analyze data from all of these
sources.

Fig. 1 presents the number of disease cases by month for influenza A
as reported by FluView, West Nile virus and hepatitis A virus as

reported by SoND, and norovirus, sapovirus, and rotavirus as reported
by NORS from 2012 to 2016 [1–7]. Each of the six viruses exhibit
different times of year in which disease cases are more prevalent. In-
sect-transmitted viruses such as West Nile virus are more common in
the warmer months from July to September. Meanwhile, the water-
borne viruses (norovirus, sapovirus, rotavirus, and hepatitis A virus) all
exhibit different trends. Perhaps most notable is the distinction between
norovirus, which is most common in the winter from January to March,
and sapovirus, which is most common in autumn from September to
November. Norovirus and sapovirus are closely related, both being
members of the Caliciviridae family, yet they have strikingly different
seasonal infection trends. Hepatitis A virus, on the other hand, does not
show significant variation throughout the year. Rather, rates of infec-
tion are relatively constant from one month to the next.

In addition to temporal variations, virus outbreaks also exhibit
spatial variations, with certain areas being more commonly affected
than others. The aforementioned CDC sources also publish information
regarding the disease cases for each individual state. Fig. 2 presents
heatmaps of disease cases relative to state population for the six viruses
mentioned above. West Nile virus appears to be more prevalent in the
plains states of the central United States, while norovirus is most
common in the Midwest and New England. Moreover, there is no sig-
nificant spatial differentiation for hepatitis A virus from one region to
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another, mimicking its temporal trends. Rotavirus and sapovirus,
meanwhile, tend to be concentrated in specific states, suggesting that
outbreaks are the most common drivers of occurrence of these diseases.
It is important to note, however, that these statistics are only a measure
of reported cases, and that the actual incidence of viral disease could be
significantly higher than the reported statistics indicate. For example,
the CDC estimates that the rates of hepatitis A virus are approximately
twice as high as reported incidence rates indicate [8].

Viral disease data have also been collected for the State of Michigan.
Viral disease has been demonstrated to impact human, animal, and
environmental health within the state of Michigan. Numerous human

outbreaks due to multiple viral agents have been reported. These out-
breaks include coronavirus in Lenawee County in 1966 [9], norovirus
in Macomb County in 1979 [10] and in Ottawa County in 2008 [11],
hepatitis A virus in Calhoun and Saginaw Counties in 1997 [12], and
West Nile virus in Kent County in 2002 [13]. Michigan has also been in
the midst of an outbreak of hepatitis A virus since 2016 [14]. Illustrated
in these examples is both the variety of human viral diseases that have
impacted the state as well as that different areas of the state are subject
to outbreaks.

Numerous governmental agencies publish data regarding clinical
cases of disease both spatially and temporally. In addition to the

Fig. 1. Disease cases by month as reported by SoND (West Nile virus, Hepatitis A virus) NORS (norovirus, sapovirus, rotavirus) and FluView (influenza A) for
2012–2016 [1–7]. Data summarized by the authors.
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published federal data, individual states publish disease surveillance
statistics, such as the Michigan Department of Health and Human
Services (MDHHS). MDHSS maintains the Michigan Disease
Surveillance System (MDSS) which publishes weekly disease reports on
a number of communicable diseases [15]. Data taken from MDSS re-
ports show an increase in viral disease over the past five years, as shown
in Fig. 3. For this paper, gastrointestinal (GI) illnesses, influenza-like
illnesses, hepatitis A illnesses, and norovirus illnesses are selected.
While some GI illnesses and influenza-like illnesses may be caused by
bacterial pathogens, a large percentage of GI illnesses and influenza-
like illnesses are expected to be of viral origin and all hepatitis and
norovirus illnesses are of viral origin. These diseases have been selected
for investigation since they have different exposure pathways [16].
Influenza illnesses may be zoonotic but are not waterborne. Hepatitis A
illnesses are waterborne but are not zoonotic. Norovirus is commonly
foodborne, it may be waterborne, and it is not typically zoonotic. GI
illnesses may be both waterborne and zoonotic and may be caused by

viruses, bacteria, or paracites.
Viral disease outbreaks have also affected animals in Michigan, in-

cluding viral diarrhea in cattle [17], eastern equine encephalitis virus in
deer [18], and an outbreak of a novel calicivirus in rabbits [19]. Ac-
cording to the USDA report on death loss in U.S. cattle and calves
(2015), 31.8% of non-predator cattle deaths and 42.3% of non-predator
calf deaths were due to digestive or respiratory causes. These figures are
amplified in the state of Michigan; the percentages are 37.8% and
66.3% respectively, equating to approximately 9027 cattle deaths and
27,926 calf deaths in the state during 2015 [20]. While the report does
not specify the etiological nature of the deaths, a portion of these ill-
nesses are due to viral causes, illustrating the potential burden of viral
disease on animals. The Michigan Department of Agriculture & Rural
Development (MDARD) also publishes annual statistics on reportable
animal diseases. The MDARD report from 2017 includes many viral
animal disease cases, including 373 cases of bovine leukemia virus, 160
cases of caprine arthritis encephalitis, 17 cases of porcine reproductive

Fig. 2. Heatmaps of disease cases relative to population in the United States for 2012–2016 as reported by the CDC [1–7]. Data summarized by the authors.
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and respiratory syndrome virus, 7 cases of swine enteric coronavirus, 9
cases of canine influenza, 7 cases of eastern equine encephalitis, 10
cases of equine herpesvirus, and 15 cases of West Nile virus in equines
[21].

Moreover, viruses have been detected in environmental samples in
Michigan. Human enteric viruses have been detected in the effluent of
multiple Michigan wastewater treatment plants, which is released into
surrounding surface waters [25,26]. Adenovirus and other human
viruses have also been detected at public recreational beaches in Mi-
chigan, leading to beach closures [27,28]. Numerous environmental
factors may contribute to the likelihood of infectious disease in certain
areas or time periods, including but not limited to land use [22], pre-
cipitation [23], and population density [24]. Land use is relevant to
determine the environmental state of the area, and can be impactful
during runoff events. Precipitation levels inform where these runoff
events may occur. Population and population density can affect the
spread of viral disease and can also be used to normalize disease levels
from one county to another. Other factors can be used to further
characterize land use, such as information related to agricultural ac-
tivity. Variables such as livestock population can not only illustrate the
level of agricultural activity in an area, but also illustrate the expected
quality of nearby surface water after runoff events.

Because viral infection is able to spread to humans from the en-
vironment, animals, and other humans, the One-Health framework is
ideal to investigate the critical pathways through which viruses are
transported and transmitted [16]. Data collection related to human,
animal, and environmental health is crucial to attain preliminary in-
formation for the identification of these critical pathways. This

information can help to illuminate the parameters that affect the spatial
and temporal patterns of disease. The goal of this study is to present an
example preliminary data collection and analysis approach for the state
of Michigan.

2. Methods

2.1. Data collection

Disease data was collected from weekly MDSS reports for 2017 from
MDHHS, which reports the number of cases for each disease for each
county for both the current week and year-to-date (note: MDSS is a
continually active system and reported numbers in the MDSS weekly
reports are not final) [15]. Year-to-date values were chosen as the va-
lues utilized in this data analysis as they were found to be more com-
prehensive compared to current week values; it is suspected this is
because some cases for given weeks would not be reported until after
those weeks' reports were published, thus they would only be reflected
in the year-to-date values.

To adequately compare counties to one another, population data for
each county was collected from U.S. Census data [29]. Population data
was used to calculate the relative number of disease cases per capita for
each county and each week. Weeks which contained days in more than
one month were grouped into the month for which there were more
days in that week (e.g., the week of 1/29–2/4 was designated as Feb-
ruary as it contains four days in February compared to three days in
January). The relative numbers of disease cases are expressed as
“number of reported disease cases per 1000 people” and are considered

Fig. 3. Reported cases in Michigan over the past five years for GI illnesses, influenza-like illnesses, Hepatitis A virus, and norovirus as reported by MDSS [15]. Note:
MDSS is a continually active system and reported numbers in the MDSS weekly reports are not final.
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the dependent variables for the analysis that follows.
Land use data at the county level was collected from the United

States Geological Survey (USGS) Land Cover Data Viewer [30]. Abso-
lute land cover was collected as hectares and relative land cover was
also calculated using total land area for each county. County-level
agricultural data was collected from the USDA Census of Agriculture
[31]. Precipitation information was collected from USDA as a 30-year
average of monthly precipitation for each county in Michigan; annual
values were also reported [32].

2.2. Exploratory data analysis

After data collection, exploratory data analysis was performed to
investigate relationships between independent and dependent vari-
ables. Spatial distributions of variables were visualized with the crea-
tion of county-level heatmaps. Correlations were performed between
variables to obtain correlation coefficients and determine which pairs
of variables exhibited relationships with one another. Scatter plots were
also created between independent and dependent variables to represent
relationships between variables visually.

2.3. Statistical methods

Independent variables determined to have a potential correlation
with disease levels were selected and utilized in the development of a
preliminary statistical model. Spatial regression analysis was performed
in R to assess the validity of the independent variables as predictors of
the corresponding dependent variables. First, ordinary least squares
(OLS) regression was performed to determine whether the collected
independent variables were significantly related to the diseases studied.
Independent variables were introduced into the OLS model based upon
the prior exploratory data analysis; those with the highest correlations
with disease levels were interpreted as the most likely predictors and
were incorporated first, followed by the next highest correlation, and so
on. The regression model was run each time a new variable was in-
troduced. Those that did not exhibit a relationship with 85% confidence
(i.e. p-value not < 0.15) were omitted from further consideration. This
conservative level of confidence has been employed in prior studies
performing spatial regression of environmental data [33]. Predictor
variable collinearity was assessed using the calculation of variance in-
flation factor (VIF) scores; it was ensured that no predictor variable had
a VIF score > 3.0 [34]. This analysis provided an initial model with
which to assess the relationships between variables.

However, OLS regression does not account for spatial autocorrela-
tion in the data, and other regression models that do account for this
may be appropriate [33]. The degree of spatial autocorrelation was
assessed in R and quantified with Moran's I and Lagrange multiplier
diagnostics using k-nearest neighborhoods of different sizes. It was
found that values of k > 1 provided appropriate results; a value of
k = 5 was utilized in diagnostic tests to adequately account for spatial
autocorrelation. These diagnostic tests found the existence of spatial
autocorrelation in this dataset, and determined that a spatial lag model
would be more appropriate. The spatial lag regression model was
therefore performed in R to adjust the regression coefficients of the
selected predictor variables. Akaike information criterion (AIC) values
for each of the models were calculated to determine which model was
of higher quality.

3. Results and discussion

3.1. Spatial and temporal distribution of viral disease in Michigan

Included in the MDSS reports are disease statistics by county for
various viruses, and certain areas of the state are more commonly af-
fected by viral disease than others. Fig. 4 shows heatmaps for cases of
four diseases (GI illnesses, influenza-like illnesses, hepatitis A virus, and

norovirus) for each Michigan county. Variation in spatial distribution of
diseases can be observed in Michigan, with GI illnesses concentrated in
the southwest portion of the state, whereas the eastern portion of the
state is most affected by hepatitis A.

Because MDSS issues weekly reports on disease statistics, temporal
trends can also be observed for the illnesses in question. Fig. 5 displays
the number of disease cases by month for the state of Michigan in the
year 2017 for GI illnesses, influenza-like illnesses, hepatitis A virus, and
norovirus. GI illness and influenza norovirus are all more prevalent in
the winter and spring months. Hepatitis A virus cases are more common
in the latter half of the year, but there is relatively little annual varia-
tion as compared to the other diseases in question.

3.2. Spatial parameters of consideration

The primary spatial factor to consider in this case is land use. For
each county in Michigan, correlations are calculated between the
number of reported cases of disease (normalized to population) and the
types of land use for that respective county as reported by USGS [30].
Table 1 presents the calculated correlation coefficients between these
two variables.

The correlations of the diseases with agricultural vegetation pre-
sents a prominent contrast; the relationships of influenza-like illnesses
and GI illnesses with agricultural land use (bolded in the table) are
markedly stronger than those of hepatitis A virus and norovirus. This
indicates the possibility that agricultural activity may have an impact
on the transport of influenza-like illnesses and GI illnesses; the notion
that agricultural land use can introduce pathogens to surrounding
surface waters is supported by the literature [35–38]. This is an ex-
pected finding given that hepatitis A virus and norovirus are not
thought to be zoonotic, whereas some influenza-like illnesses and GI
illnesses, while uncommon, have the potential to be zoonotic. Similarly,
the relationship of developed land with hepatitis A virus is much higher
than with the other three diseases studied. This implies that more
heavily populated areas may contribute to the incidence of hepatitis A
virus. This relationship exists despite the fact that the number of disease
cases for each county was normalized to that county's population, sig-
nifying that this relationship does not arise merely from a large number
of reported cases in urban areas.

These relationships can be more plainly distinguished with the use
of scatter plots. Fig. 6 displays scatter plots to visualize the correlations
reported in Table 1 between agricultural vegetation and the four dis-
eases investigated. A positive correlation is observable in the first two
plots representing GI illness and influenza-like illness, especially when
contrasted with hepatitis A virus, which shows no relationship between
the two variables.

Agricultural data can assist in determining critical locations, as
comparisons can also be made to agricultural trends. Fig. 7 displays
heatmaps of farmland acreage, cattle population, swine population, and
sheep population as reported by the USDA [31]. According to visual
examination, the most commonly affected areas of viral disease appear
to typically be contained within major watersheds, including the Grand
River watershed for influenza-like illnesses. These illnesses also appear
to correspond to areas with high cattle populations. With these ob-
servations in mind, particular attention could be paid to those factors
when determining where to sample in these locations.

Fig. 8 presents heatmaps of average annual precipitation and po-
pulation density for each county in Michigan as reported by the Agri-
cultural Applied Climate Information System [32] and U.S. Census
Bureau [29] respectively. Visual examination determines that pre-
cipitation levels appear highest in the western part of the state, similar
to the areas most commonly affected by GI illness and influenza-like
illness. Meanwhile, population density is highest near the Detroit area,
which is the most area most affected by hepatitis A virus.

Table 2 presents county-level correlations between the four diseases
investigated and the aforementioned variables. As is suggested by the
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heatmaps, precipitation has a high degree of correlation with GI illness,
and a slight correlation with influenza-like illness, while showing no
substantial relationship with the other two diseases. Meanwhile, po-
pulation density has a high correlation with hepatitis A virus; this is an
understandable result given the established correlation with developed
land use. Livestock inventory is also seen to have stronger correlations
with influenza-like illness and GI illness than with the other two dis-
eases studied, but these correlations are not as strong with that of
agricultural land use as seen in Table 1. This suggests that the potential
relationship between agricultural activity and GI illness/influenza-like
illness may be a result of particular agricultural practices, such as the
land application of biosolids and manure as fertilizer, rather than the
livestock animals themselves.

3.3. Temporal factors of consideration

The temporal variation of factors such as precipitation and surface
water runoff may also help to explain viral disease occurrence. Surface

water discharge, such as the flow rates of specific rivers in the state, can
also provide valuable information about the status of a watershed over
time. Temperature also assists in determining when runoff and first-
flush events will occur. The timing of sanitary sewer overflow (SSO)
and combined sewer overflow (CSO) events can give an idea of the
times in which certain areas are most at-risk for pathogen exposure
[39]. Similarly, comparison of the timing of manure application with
the timing of runoff events can help to determine the impact of land
application of biosolids on environmental water quality [40].

Comparisons can be made between the temporal distribution of
disease cases and these temporal factors. One such comparison can
assess the relationship between reported monthly disease cases and
monthly precipitation. Accurate county-wide monthly precipitation
measurements are not readily available for every county in Michigan
during the year 2017, but the Agricultural Applied Climate Information
System reports the 30-year average monthly precipitation levels for
Michigan counties in addition to annual figs. [32]. These precipitation
levels in each county can be correlated with reported diseases cases in

Fig. 4. Heatmaps of disease cases relative to population for Michigan counties for the year 2017 as reported by MDSS. (number of cases divided by population for
county multiplied by 1000) [15]. Maps prepared by the authors. Note: MDSS is a continually active system and reported numbers in the MDSS weekly reports are not
final.
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each county by month, taking the spatial analysis from above and in-
troducing a more specific temporal element. A summary of these cor-
relation coefficients is presented in Table 3.

This analysis reveals that the spatial correlations (represented by
the annual figures) fluctuate at different points throughout the year. For
example, as mentioned, GI illnesses have a correlation of 0.474 with
annual precipitation on the spatial level, but this relationship is stron-
gest in the month of May, when it reaches a correlation coefficient of
0.532. Moreover, the correlation coefficients between GI disease and
precipitation increase in magnitude from February to May. This finding
is interesting because the spring months are the times in which land
application of fertilizers and manure are most common, as it is the

beginning of the growing season. This relationship with precipitation,
combined with the aforementioned relationship between GI disease and
agricultural land use, strengthens the possibility that agricultural runoff
could be a critical pathway for GI diseases in Michigan. Stronger re-
lationships are also observed between the months of August and
November and GI illnesses as well as the months of September and
November and influenza-like illnesses. These correlations indicate that
these months, in addition to the aforementioned spring months, could
also be critical times at which runoff is an important pathway for the
studied illnesses.

Other independent variables that have not been collected could be
utilized as data becomes available. In addition to spatial and temporal

Fig. 5. Disease cases by month in Michigan for the year 2017 as reported by MDSS [15]. Note: MDSS is a continually active system and reported numbers in the MDSS
weekly reports are not final.

Table 1
Correlation coefficients between disease cases normalized to population for each MI county and relative land cover for different types (hectares of type in county per
total hectares in county).

Relative land cover Disease Cases (normalized to population)

Influenza-Like Illness Gastrointestinal Illness Hepatitis A virus Norovirus

Forest & woodland −0.424 −0.423 −0.321 −0.146
Shrubland & grassland −0.015 −0.057 0.217 0.270
Agricultural vegetation 0.454 0.489 0.183 0.191
Developed & other human use 0.113 0.030 0.441 0.007
Recently disturbed or modified −0.218 −0.199 −0.200 −0.219
Open water −0.266 −0.273 −0.181 −0.122

Bolded values indicate potentially significant relationships.

E. O'Brien and I. Xagoraraki One Health 8 (2019) 100105

7



distribution of publicly available human disease data, livestock and
wildlife disease data would be very useful. However, governmental
agencies do not collect or provide such data to the same detail as human
disease data.

3.4. Spatial regression modeling

Based on exploratory data analysis, relative agricultural land use
and annual precipitation were determined to be independent variables
of interest for GI illness and influenza-like illness. The OLS regression
model performed showed that the initial inferences drawn from ex-
ploratory data analysis were appropriate, as all other variables (other
types of land use, livestock information) did not meet the threshold of
confidence (p-value not < 0.15) for further consideration. A summary
of the results is listed in Table 4. As shown, both variables display a
relationship with GI illness with a high degree of confidence
(p < .001). Of the other diseases, none were related to precipitation
with a high degree of confidence, and while all three meet the threshold
for consideration (p-value < .15), influenza-like illness was found to be
related to agricultural land use with a higher degree of confidence (p-
value < .001). Additionally, the regression coefficients for agricultural
land use for both hepatitis A virus and norovirus were much smaller
than those for GI illness and influenza-like illness, suggesting that the
relationship is not nearly as strong as with the two latter diseases.

The spatial lag model adjusted the regression coefficients for the GI
model to 28.87805 for agricultural land use (P-value = .005703) and
2.22179 for precipitation (P-value = .003851). The regression coeffi-
cients for the spatial lag model are less than those for the OLS model, as

the spatial lag model accounts for spatial autocorrelation, lessening the
influence of the predictor variables. The AIC values for each of the
models also determined that the spatial lag model was of higher quality
than the OLS model, validating the use of spatial regression.

This analysis is one rudimentary example of the types of statistical
techniques that can be employed to assess the relationships between
collected disease data and other independent variables. Moreover, the
variables assembled in these analyses is a non-exhaustive list of the
potential environmental factors that can impact viral disease. As more
data becomes available, more relationships of interest may be observed
in exploratory data analysis, and new predictor variables could be in-
corporated in the above spatial regression analysis. Additionally, this
regression analysis only accounts for spatial interactions between
variables, and exploratory data analysis revealed that precipitation is
more strongly related to GI illness in certain months of the year.
Temporal data could therefore also be incorporated into future re-
gression analyses to further pinpoint the critical times and locations for
GI illness.

Additionally, disease data such as the data used in this analysis
contains many zero values (counties and times at which no cases were
reported). In this case, zero-inflated linear regression techniques, such
as the zero-inflated Poisson model could be of use. Furthermore, more
robust reporting of clinical data would be valuable in this analysis. One
potential reason for the inconclusive relationships between norovirus
and the investigated independent variables could be that norovirus is
not as widely reported as GI illnesses or influenza-like illnesses, making
it more difficult to observe correlations between variables.

Fig. 6. Scatter plots displaying correlation between relative agricultural land cover in each county with reported disease cases (normalized to population) in each
county for gastrointestinal illness, influenza-like illness, hepatitis A virus, and norovirus.
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4. Discussion

To summarize, there are two potential findings from the above
analyses. Influenza and particularly GI illnesses may be related to
agricultural land use and precipitation, and this relationship with pre-
cipitation is strongest in the springtime, although GI illnesses are most
common in the winter months. Meanwhile, hepatitis A virus appears to
be most closely related with developed land use, and is more common
in the later months of the year in autumn and winter. GI and influenza-
related disease cases are observed to be relatively high in counties lo-
cated in the Grand River watershed.

As the methodology used in this study relies on the reporting of
disease cases, it is critical that the extent to which patients and physi-
cians report disease cases is quantified. The analysis contained within
this study is reliant on the assumption that diseases are reported at
similar rates regardless of location or time of occurrence. However, this
may not be the case, and reporting bias may exist. For example, certain
communities may have different access to local clinics than others;

highly populated areas may be underserved by not having the necessary
facilities to handle the population, or sparsely populated areas may not
be within close enough proximity to accessible medical care. In future
analysis this issue could be addressed by obtaining data on the number
of clinics and medical facilities in each county and the number of visits
to these facilities and normalizing this data to population.

In addition to the data sources utilized in this paper, there are nu-
merous other databases that can be used to obtain relevant information
to determine and predict disease variability. Environmental quality
data are important factors that may be considered and results from
environmental sampling and analysis may correlate with disease oc-
currence. For example, wastewater treatment plants and concentrated
animal feeding operations (CAFOs) can be valuable sampling points,
since sampling and characterizing community wastewater and livestock
manure represents a snapshot of the status of community human and
animal health.The Michigan Water Environment Association maintains
a list of wastewater facilities in the state of Michigan [41]. Sampling
can also take place at other locations, such as storm drains, agricultural

Fig. 7. Heatmap of agricultural data by county for the state of Michigan as reported by USDA (2012). Top-left: farmland acreage, top-right: cattle inventory, bottom-
left: swine inventory, bottom-right: sheep inventory [31]. Maps prepared by the authors.
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field runoff drains, and areas that have recently experienced combined
sewer overflows. Other agricultural data could also be valuable in de-
termining sampling points in rural areas of the watershed, such as
amount of fertilizer purchased per week per county and location of

CAFOs. The Sierra Club maintains a readily available map of CAFOs
throughout the United States, including in Michigan [42]. CAFO loca-
tions can help to determine where livestock populations are most
abundant, heightening the risk for both animal disease and zoonotic
disease. Beyond agricultural data, information on surface water quality
can also be of use. For example, the Michigan Department of En-
vironmental Quality (MDEQ) reports figures for public beach closures,
which occur when surface water contamination is detected during
regular screening for pathogen indicators. MDEQ also summarizes sa-
nitary sewer overflow (SSO) and combined sewer overflow (CSO)
events, which occur when wastewater levels in municipal sewer sys-
tems exceed the systems' capacity, resulting in untreated wastewater
discharging into nearby surface waters.

Sampling times, meanwhile, can be determined by other factors.
Using Michigan as an example, the relationship between precipitation
and GI illness was strongest in the spring months, coinciding with land
application of agricultural fertilizers. Additionally, these relationships
were strongest in the area of the Grand River watershed, a large wa-
tershed in southwest Michigan encompassing Grand Rapids, Lansing,
and surrounding agricultural areas. Therefore, sampling within this
watershed in spring (from March to May) would be ideal to assess the
impact of agricultural runoff on the occurrence of GI illness. This runoff
would be at its peak when the flow rate of the Grand River would be
highest. Therefore, examining the discharge of the Grand River can aid
in determining the most critical times at which to sample. The USGS
reports discharge data and water quality data for many surface waters
and groundwaters in the United States, including the Grand River [44].
Animal disease data can also be collected and analyzed in this manner,
but there remains a need for integrated human-animal disease sur-
veillance to assess zoonotic disease occurrence [43].

One goal of integrative human, animal and environmental data
analysis and subsequent environmental monitoring is to develop a
system of prioritization for potential occurrence of disease for each
county in Michigan per month. Analysis of the collected spatial and
temporal data can determine the factors that are most critical in specific
places and at specific times. This can lead to the determination of which
locations and time periods are of the greatest concern for each disease
investigated. This will, in turn, lead to higher levels of preparedness to
combat viral disease outbreaks, as these critical times and locations can
be surveyed before the disease develops.

Fig. 8. Left: average annual precipitation by county for Michigan for the years 1981–2010. Right: Population density in persons per square mile by county for
Michigan. Maps prepared by the authors.

Table 2
Correlation coefficients between disease cases normalized to population for
each MI county and agricultural data, precipitation data, and population den-
sity for each MI county.

Parameter Disease Cases (normalized to population)

Influenza-
Like Illness

Gastrointestinal
Illness

Hepatitis A
virus

Norovirus

Cattle inventory 0.351 0.219 0.063 0.009
Hog inventory 0.136 0.359 −0.122 −0.063
Sheep inventory 0.095 0.149 0.016 0.336
Annual precipitation 0.230 0.474 0.041 0.024
Population density 0.050 −0.043 0.470 −0.001

Bolded values indicate potentially significant relationships.

Table 3
Summary of correlation coefficients for the relationship between average 30-
year precipitation in the county with reported disease cases (normalized to
population) in the county for each month.

Month Influenza-Like
Illness

Gastrointestinal
Illness

Hepatitis A
virus

Norovirus

Jan 0.031 0.084 −0.007 0.245
Feb 0.297 0.317 0.125 −0.064
Mar 0.125 0.356 0.119 0.131
Apr 0.271 0.442 0.164 −0.032
May 0.290 0.532 0.012 −0.073
Jun −0.017 0.115 0.104 −0.173
Jul −0.097 0.071 0.020 0.080
Aug −0.002 0.316 −0.189 −0.104
Sep 0.205 0.083 0.002 0.047
Oct −0.132 −0.034 −0.285 −0.095
Nov 0.363 0.351 −0.093 −0.041
Dec 0.198 0.210 0.138 −0.011
Annual 0.230 0.474 0.041 0.024

Bolded values indicate potentially significant relationships.
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5. Conclusions

The One Health framework can be readily applied to the in-
vestigation of viral disease, and determination of critical environmental
factors is an important part of this process. This study shows the ex-
istence of significant relationships between clinically reported human
viral infections and environmental factors such as land use and pre-
cipitation. The identification of these relationships can assist in the
determination of the most critical times and locations for which humans
and animals are most at risk of viral infection. Once these times and
locations are determined, surveillance systems can be implemented and
interventions can be introduced to mitigate potential viral outbreaks.
While Michigan was used as an example in this study, these concepts
are still relevant regardless of where and when this methodology is
implemented. The utilization of the One Health framework in its full
capacity can better help to identify, predict, and prevent viral disease
outbreaks.
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