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A B S T R A C T   

Mineral technology has attracted significant attention in recent decades. Mineral carbonation 
technology is being used for permanent sequestration of CO2 (greenhouse gas). Temperature 
programmed desorption studies showed interaction of CO2 with Mg indicating possibility of using 
natural feedstocks for mineral carbonation. Soaking is effective to increase yields of heat- 
activated materials. This review covers the latest developments in mineral carbonation technol-
ogy. In this review, development in carbonation of natural minerals, effect of soaking on raw and 
heat-activated dunite, increasing reactivity of minerals, thermal activation, carbonations of waste 
materials, increasing efficiency of carbonation process and pilot plants on mineral carbonation 
are discussed. Developments in carbonation processes (single-stage carbonation, two-stage 
carbonation, acid dissolution, ph swing process) and pre-process and concurrent grinding are 
elaborated. This review also highlights future research required in mineral carbonation 
technology.   

1. Introduction 

Global burning of fossil fuel cause GHGs (greenhouse gases) emissions. Theses emissions affect climate causing extreme weather 
patterns [1]. Fossil fuels and industrial processes are principal contributor to these emissions [2]. Particularly, steel industry is major 
CO2 emission source with 5 % of global release [3] and cement industry is responsible for 8 % of global release [4]. Developing new 
processes for energy-efficient CO2 capture is mandatory to mitigate global warming [5]. Developing viable strategies for tackling 
climate change is important to avoid the worst environmental impacts and its perturbation by anthropogenic sources. Different 
technologies investigated for CO2 mitigation are mineral carbonation, geological storage, oceanic storage and chemicals production 
[6]. Aqueous mineral carbonation can permanently remove CO2 from the atmosphere because it has been considered as geologically 
stable [7]. It’s important to capture CO2 and use it as a commercial product [8]. 

CCS is very common in academic research, industry projects and pilot projects and there are more than twenty CCS facilities which 

* Corresponding author. 
E-mail address: fayaz@tdtu.edu.vn (H. Fayaz).  

Contents lists available at ScienceDirect 

Heliyon 

journal homepage: www.cell.com/heliyon 

https://doi.org/10.1016/j.heliyon.2023.e21796 
Received 10 July 2023; Received in revised form 17 October 2023; Accepted 28 October 2023   

mailto:fayaz@tdtu.edu.vn
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2023.e21796
https://doi.org/10.1016/j.heliyon.2023.e21796
https://doi.org/10.1016/j.heliyon.2023.e21796
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e21796

2

are operational [9,10]. To form thermodynamically stable carbonates, mineral carbonation (MC) is the best strategy for sequestering 
CO2 that reacts magnesium silicates with CO2. It has been an active area since the mid-1990s of greenhouse gas mitigation research. 
The most sustainable and safest way to sequester CO2 is via mineral carbonation [11,12]. 

Seifritz proposed mineral carbonation that reacts CO2 with silicate rocks [13]. MC occurs naturally which consumes CO2 and use 
ultramafic minerals to produce stable carbonate with silica. However, carbon may be sequestered through geological storage [14]. 
Long term CO2 sequestration is desired to form thermodynamically stable carbonate product. Several natural minerals rich in Mg and 
Ca in the form of silicates are being used for the fixation of CO2 such as serpentine, pyroxene, olivine, amphiboles and wollastonite 
[15–18]. 

This review will cover developments in carbonation of natural minerals, effect of soaking on raw and heat-activated dunite, silanol 
nests formation, increasing reactivity of minerals, two-stage carbonation, developments in thermal activation, developments in 
carbonation of waste materials, increasing efficiency of carbonation process and pilot plants on mineral carbonation. 

2. Development in carbonation of natural minerals 

It has always appealed to carbonate minerals without any pretreatment such as grinding and thermal activation. For this purpose, 
it’s important to study how natural minerals interact with CO2. Temperature programmed desorption (TPD) experiments are usually 
performed to see how much CO2 can be attached with Mg. It has been reported that dunite has highest CO2 uptake among mafic and 
ultramafic rocks [19]. However, dunite which is heat-activated and dunite which is heat-transformed are not tested through TPD 
experiments especially sub 75 μm fractions rather than fine particles generated through ball milling. TPD experiments were performed 
to gain insight into the available magnesium atoms in raw dunite, dunite which is heat-activated and dunite which is heat-transformed. 
CO2 ion current from various dunite samples is shown in Fig. 1. Integration of the CO2 evolution curve was 28.9, 22.2 and 4.63 for 
dunite which is heat-activated (630 ◦C, 4 h), raw dunite and dunite which is heat-transformed (800 ◦C, 3 h) respectively. These results 
show high magnesium sights for interaction with CO2 in dunite which is heat-activated (630 ◦C, 4 h), followed by raw dunite and 
dunite which is heat-transformed (800 ◦C, 3 h). These results further confirm that material rich with amorphous magnesium silicates 
has high magnesium sights for interaction with CO2 and that’s why has higher magnesite yields [20]. Maxima occurs at 368 ◦C for raw 
dunite as compared to 181 ◦C for dunite which is heat-activated (630 ◦C, 4 h) and 155 ◦C for dunite which is heat-transformed (800 ◦C, 
3 h). These results show that magnesium interaction with CO2 was strongest for raw dunite followed by dunite which is heat-activated 
(630 ◦C, 4 h) and dunite which is heat-transformed (800 ◦C, 3 h). Rigupoulos et al. has observed that ball milling in presence of ethanol 
increase CO2 capture capacity of pyroxenites by 41 times (rise in CO2 uptake from 3.8 μmolg− 1 to 155.6 μmolg− 1) [21]. It has been also 
observed that ball milling for 12 h duration using 50 % ethanol increased CO2 uptake capacity by a factor of 6.9 (40.1 μmolg− 1 to 278.1 
μmolg− 1) [22]. In another study CO2 uptake capacity increase by a factor of 4.5 has been reported compared to unground sample [23]. 
Main challenge with this process is ball milling energy consumption and cost of ethanol. Further research is required to search for 
low-cost solvents which serve the purpose. 

Natural minerals like basalt and peridotite are also being used for in-situ and ex-situ mineral carbonation. Ayub et al. have studied 
the potential of using basalt of Central Belt of Malaysia for mineral carbonation and investigated that Fe, Ca and Mg present in the 
basalt can react with CO2 and makes various carbonates [24]. XRD analysis indicated presence of pyroxene and olivine which are 
reactive minerals for mineralization. Mesfin et al. have studied dissolution of basaltic glass and labradorite using aqueous NaCl, KCl, 
CaCl2, and MgCl2 for in-situ mineral carbonation [25]. They investigated basaltic glass and Ca-rich plagioclase for subsurface carbon 
storage and observed increase in dissolution by increasing pH and adding Ca to aqueous phase. Rahmani et al. have investigated 
brucite derived from peridotite for aqueous mineral carbonation [26]. They observed 99 % Mg conversion to MgCO3 between 150 ◦C 
and 175 ◦C. 

Carbonation products and by-products of natural minerals serve various purposes. Carbonation products such as MgCO3 and CaCO3 
can be used as paint filler (CaCO3), paper filler (CaCO3), aggregate (CaCO3), cement ingredient (CaO + CO2), acid reducer and fertilizer 

Fig. 1. CO2 ion current from TPD of raw dunite, heat-activated dunite and heat-transformed dunite.  
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formation [27]. Construction industry is a major sector for utilization of carbonation products as alternate building materials and 
cement and concrete production [27]. Mineral carbonation products and feed can be used as pozzolanic cement replacements [28] and 
to produce silica enriched residue for applications in cement industry [29]. Peridotite and slag is used to produce cement, paper and 
rubber [30]. MC products may be employed to produce cement, concrete, mortars, aggregates or or speciality products based on 
magnesium and calcium for applications such as paints and polymers and speciality products for thermal energy storage, CO2 transport 
medium or to produce silica, metals or metalloids [31]. Carbon dioxide is being used to cure cementitious materials. Carbonation of 
cement occurs naturally from atmospheric CO2 [32]. Carbonation products and feedstock as well can be used as a pozzolanic cement 
substitute [28]. Silica can be extracted from carbonation materials through nitric acid dissolution and is useable as a pozzolanic 
material in cement manufacturing [29]. CO2 and carbonation process has been used in increasing strength of various cementitious 
materials [33,34]. 

3. Effect of soaking on raw dunite and heat-activated dunite 

3.1. Raw dunite soaking 

Raw dunite 15 wt% solids slurry (30 g mineral in 170 g distilled water) was soaked to study effect of soaking on magnesite yield. 
Dunite feed sample, 15 % dunite slurry sample after 1 day and after 1 week were dried in the oven at 110 ◦C for 24 h prior to measure 
the BET surface area. For BET measurement, vacuum degassing was done overnight and then sample tubes are put in the machine to 
measure the BET surface areas. BET surface area increased slightly. BET surface area of initial dunite sample is 3.7 m2/g, 4.8 m2/g (1 
day soaking), 5.3 m2/g (1 week soaking). Fifteen days dunite soaked and one-month dunite soaked samples were carbonated and 
magnesite yield of these samples is compared with non-soaked dunite carbonated sample (Fig. 2 a). As no significant increase in BET 
surface area with soaking was observed, magnesite yields are also not higher for soaked samples. 

3.2. Heat-activated dunite soaking 

One month soaking was performed for dunite which is heat-activated at 630 ◦C for 4 h. This dunite is then carbonated at 130 bar, 
185 ◦C using 0.64 M NaHCO3. Magnesite yields increased for soaked dunite (Fig. 2 right). XRD was done for carbonated sample of heat- 
activated dunite (630 ◦C, 4 h) after one month soaking. Peak intensity for magnesite peaks was increasing while olivine is decreasing 
(Fig. 3) [35]. 

3.3. Silanol nests formation (in-Situ FTIR results) 

Formation of silanol nests have been reported in literature [20]. It is important to study whether these nests form during 
heat-activation or during the aqueous mineral carbonation process. For this study, self-supporting wafer using raw dunite was pre-
pared. This wafer was heated till 500 ◦C in in-situ FTIR (Bruker) with temperature ramp of 5 ◦C/min and spectrum are obtained after 
every 10 ◦C. Spectrum at room temperature and with 100 ◦C temperature rise is shown in Fig. 4 (overlayed) and Fig. 5 (stacked). These 
results (especially spectrum at 500 ◦C) show that broad hump attributed to silanol nests does not form during heat-activation process. 

Water vapor was adsorbed on activated dunite at 80 ◦C for 30 min. Then desorption was performed till 500 ◦C with ramp of 5 ◦C/ 
min and spectrum obtained after every 10 ◦C. These results (all spectrum) show that broad hump due to silanol nests form between 
3200 and 3500 wavenumbers. This hump due to silanol nests is supposed to form due to reaction of water vaopr with the activated 
dunite (Fig. 6). This finding is very important as formation of silanol nests hinders carbonation process and reduces process efficiency 

Fig. 2. Magnesite yields for soaked and non-soaked dunite (a), Yields for soaked and non-soaked dunite which is heat-activated (b).  
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and magnesite yields [36]. This finding suggests that minimum water should be used during carbonation process or developing mineral 
carbonation process employing solvents which does not form silanol nests. 

4. Increasing efficiency of carbonation process 

Carbonic anhydrase especially bovine carbonic anhydrase may resolve rate limitation through enzyme-catalyzed CO2 hydration 
and resulted an increase in brucite carbonation of 240 % [37]. Carbonic anhydrase works as a catalyst and enhance reaction kinetics 
and absorption yields [38]. Carbonic anhydrase or Scenedesmus alga spontaneously precipitate solutions [39]. Two geochemical 
treatments such as reaction with partially saturated flue gas having 10 % CO2 and heap leaching with dilute sulfuric acid has been 
reported to double the amount of CO2 stored [40]. Separate dissolution and precipitation concept has been introduced which increases 

Fig. 3. XRD analysis of carbonated heat-activated dunite (630 ◦C, 4 h) which was soaked for a month, M = Magnesite, O=Olivine, Mt = Magnetite.  

Fig. 4. Overlayed spectrum with 100 ◦C temperature increase.  

M.I. Rashid et al.                                                                                                                                                                                                      



Heliyon 9 (2023) e21796

5

yields at lower pressures [41,42]. Ball-milling and additives use has accelerated mineral carbonation reactions thus increasing 
carbonation of 5 and 15.7 % for silicates and hydroxides respectively [43]. Mineralization rate increases with increase in temperature, 
reaction time, pressure, revolutions per minute, pH, use of additives, using grinding media and reducing feed particle size. Increase in 
temperature till 185 ◦C has increased olivine yield which also facilitate magnesite precipitation [44]. Decrease in yield (62 %–49 %) 
occurred for harzburgite when temperature was reduced from 180 to 120 ◦C [45]. Increase in pressure increases CO2 solubility which 
accelerates mineralization rate [44]. Particle size reduction increase surface area which results in higher yields e.g. 100 % yield was 
observed using sub 10 μm particles of olivine [46]. Using additives, proton exchange reactions occur fast which enhance minerali-
zation rate [47]. Grinding media addition during reaction removes silica rich passivating layers thus increasing mineralization rate 
[48–51]. 

4.1. Developments in seeding 

Although the formation of magnesite is favored by thermodynamically, a limiting factor has been the slow rate of precipitation. The 
conversion efficiency could be improved using seeding materials by implementing heterogenous nucleation. Seeding provide 

Fig. 5. Stacked spectrum with 100 ◦C temperature increase.  

Fig. 6. Spectrum for desorption step with 100 ◦C temperature rise.  
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heterogeneous nucleus sites and activated carbon and alumina are preferred [52]. Moreover, seeding prevent spontaneous nucleation 
in metastable solutions [53]. 

4.2. Developments in minerals recovery 

Minerals are recovered through mineral carbonation using waste ash to recover mineral because waste ashes contain calcium ions 
[54]. A new process for the simultaneous CO2 mineralization and recovery of aluminum as NH4Al (SO4) .12H2O was proposed under 
the guidance of roasting reaction thermodynamics and phase diagram of the MgSO4– Al2(SO4)3 – (NH4)2SO4–H2O system [55]. 

Fig. 7. Grinding without carbonation, different media and solids concentrations (a), different media size and time (b), different media types having 
same volume (c), different temperature and grinding time (d), different particle fractions (e), different blades size (f) (Modified from Refs. [48,66]). 
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4.3. Formation of silica-rich layers 

Silica-rich layers formation occurs during carbonation reactions and these layers retards leaching of the magnesium from inner core 
of the feedstocks thus limiting magnesite yields or magnesium extractions. This process occurs during single stage [51] as well as 
during two-stage carbonation [49]. It has been also observed that passivation layer does not formed under specific condition studied 
here [56]. Pokrovsky and Schott have extensively studied the formation of silica-rich layers and found that they are usually 10–20 Å 
(angstrom) thick having layered structure [57–60]. These layers retard mineral carbonation process and may constitute of a secondary 
product [61]. 

4.4. Developments in grinding (both pre-process grinding and concurrent grinding) 

4.4.1. Grinding without carbonation 
Grinding is important to break silica-rich layers. It is vital to study grinding separately from carbonation to optimize the process and 

for simplicity to find best conditions. Different media (zirconia) and solids concentrations are tested through grinding without 
carbonation in a Parr reactor of 300 ml [62,63]. It is observed that 50 wt% media and 15 wt% solids are optimum concentrations for 
carbonation (Fig. 7 a) and was used in further experiments. This is same as observed for stirred bead mills [64,65]. When different sizes 
of the media were tested for different time intervals it has been observed that 2.5 h grinding time is optimum (Fig. 7 b). Different media 
have different densities which can affect the quantity of media for any experiment, hence, zirconia, stainless steel and alumina were 
tested having equal media volume of 10 cm3 (for 2.5 h) (Fig. 7 c). Zirconia media proved best followed by stainless steel and alumina. 
Regarding optimum temperature of grinding and time, 180 ◦C temperature for 2.5 h was best compared to 5 h grinding at 25 ◦C or 5 h 
grinding at 180 ◦C (Fig. 7 d). These findings were using 20–45 μm dunite batch. It has been observed that1 mm zirconia also ground 
45–75 μm dunite and 75–150 μm dunite fractions (Fig. 7 e). This proves that larger fractions can be ground using same conditions 
found optimum for 20–45 μm dunite. Different turbine blades length was investigated, and 16 mm blades were slightly better 
compared to 8 mm blades however, pertaining to energy considerations 8 mm blades were chosen best and used for carbonation 
studies (Fig. 7 f). Regarding different blades shapes, pitched turbine blades are best [62]. 

Conclusion of these studies indicate that 50 wt% media, 15 wt% solids, zirconia media, 1 mm size, 2.5 h grinding, 180 ◦C tem-
perature, 8 mm blades length and pitched turbine blades are best for grinding of the rock (fine particle size distribution, Fig. 7) and 
particle grinding and attrition during carbonation directly corresponds to magnesite yield. Basic mechanism for grinding is that one 
layer of media is present at reactor base while the other falling particles on this layer grind the rock or mineral particles trapped 
between these two and this grinding also removes forming silica-rich layers due to Mg and Si leaching from the rocks and minerals. 
This action is best observed for 50 wt% media and 15 wt% solids and fine particle size distribution is observed (Fig. 7) and thus these 
conditions are chosen for carbonation. 

4.4.2. Concurrent grinding during carbonation 
Single-stage carbonation is operated at high temperature and pressure which operate using minerals (lizardite, olivine, and 

antigorite) and rocks (dunite, harzburgite) [67]. Rashid et al. has employed concurrent grinding during single stage carbonation for 
various feedstocks and their fractions such as dunite, olivine and lizardite without heat-activating these minerals and rocks [51]. 
Dunite reactivity is greater than olivine and lizardite (Fig. 8). Six times higher yields were obtained for dunite and olivine during 
concurrent grinding carbonation compared to reference experiments. Grinding media is not used in reference experiments which 
served as control while in concurrent grinding experiments, 50 wt% media was used which introduces attrition and enhanced leaching 

Fig. 8. Single stage carbonation yields with concurrent grinding (1 mm zirconia) and without concurrent grinding (reference experiments) 
(modified from Refs. [51,66]), Reaction conditions are 180 ◦C temperature, 130 bar and 15 % solids and 50 wt% media for concurrent grinding 
experiments, CGE= Concurrent grinding experiment, RE = Reference experiment. 
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during carbonation thus providing new surfaces for carbonation reactions with simultaneous removal of silica rich layers. Park et al. 
has ground the solids containing silica-rich layers and was able to extract further magnesium from those solids [68]. Chizmeshya et al. 
employed quartz particles as a grinding media during carbonation and obtained higher magnesite yields [44]. Julcour et al. and 
Bodenan et al. developed concurrent grinding technique for various feedstocks and introduced various modes of operation such as 
single step and two-step concurrent grinding carbonation [45,69]. Julcour et al. obtained many times higher magnesite yields during 
24 h carbonation [45] however, carbonation time, media and solids concentrations were not optimum and performance difference 
between medias are not evaluated. 

Some studies focused on pre-process grinding i.e. grinding to fine/ultrafine size prior to carbonation. Jiajie and Hitch research 
group have also performed pre-process grinding studies on carbonation especially for waste materials [56,70–74]. They employed 
mine waste to reduce cost and wet milling to activate waste and obtained even higher yields than pure olivine [75]. They observed 
increase in surface area and yields with grinding process. Jiajie et al. also highlights that 120 min milling was effective in increasing 
surface area, inducing crystallinity and amorphization [71]. They also observed increase in yield for mine waste containing olivine and 
serpentine [70]. They also observed that olivine transforms to serpentine during milling. They have identified milling limit for 
crystallite size [72]. They have discussed effect of mechanical activation on various magnesium silicates [74]. Eikeland et al. has 
observed 100 % magnesite yield when sub 10 μm olivine was carbonated for 4 h [46]. This finding indicates that pre-process grinding 
in stirred ball mills to obtain sub-10-μm particles may follow carbonation to devise a commercial scale mineral carbonation process. 

4.4.3. Two-stage carbonation 
The two-stage carbonation is a two-step process. During the first step mineral is dissolved and precipitation of nesquehonite/ 

magnesite/calcite occurs during the second step. 

4.4.3.1. Open (bubbling) system against closed system. Closed system experiment used back pressure regulator at 3 bar, 45 ◦C with 2 wt 
% solids and samples are collected at 1 min, 30 min, 1 h, 2 h and 4 h. Open system experiment was performed with mass flow controller 
at 3 bar, 45 ◦C with 2 wt% solids and samples are collected at 1 min, 30 min, 1 h, 2 h and 4 h. Both systems provide similar Mg 
extraction (Fig. 9). Similar PSD was observed (Fig. 9 and Table 1). These findings suggest that a two-stage process may be carried out in 
a close system or open system and obtained yields will be same as well as PSD. This experiment shows that close system which is 
simpler and more convenient can be adopted for two stage process compared to tedious open system that’s emits CO2 in vicinity of 
experiment. Further detail of these systems is discussed elsewhere [66]. 

Nesquehonite formation observed in 60 % media concurrent ground sample after dissolution in a two-stage process (Fig. 10). This 
finding indicates that during dissolution nesquehonite may precipitate although it is expected that it will not precipitate in line with 
dissolution conditions. This precipitation may decrease the Mg extraction during dissolution phase. 

4.4.3.2. Effect of soaking on concurrent grinding during two stage process. Experiments were done with lizardite which is heat-activated 
but non-soaked and lizardite which is heat-activated but soaked for a week. Experiments occurred under similar conditions i.e., 3 bar, 
45 ◦C, 2 wt% solids and using 60 wt% 1 mm zirconia. Soaking does not affect Mg extraction (Fig. 11). Eighty four percent Mg extraction 
occurred in 4 h. This is in contrast with heat-activated dunite as its soaking has increased yields during single-stage carbonation. PSD 
for feed, soaked and non-soaked lizardite is reported in Table 2 which shows that soaking reduced particle size distribution as particles 
dissolved during soaking. 

4.4.3.3. Wear and tear during concurrent grinding. After dozens of concurrent grinding experiments, change in liner color has been 
observed (Fig. 12). 1 % HCl solution was used to dissolve the red layer formed around the periphery and solution was analyzed by ICP- 

Fig. 9. Mg extraction for open system and closed system (a), PSD analysis for open system against closed system (b).  
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OES. Elements detected are Fe, Mg, K, Ca. Presence of Fe indicate this layer has been formed due to leaching of the iron present in liner 
material. This wear and tear may cause trouble in devising a commercial mineral carbonation process employing concurrent grinding 
technique. Media can still be used; however, frequent inspections of the liner’s internals will be required or even its replacement. One 
other option may be using pre-process grinding in stirred mills followed by carbonation or concurrent carbonation using less quantity 
of media to disengage secondary products (silica, magnesite) formed during carbonation. 

Table 1 
PSD analysis for open (bubbling) system against closed system.   

d10 

μm 
d50 

μm 
d90 

μm 

Sub 75 μm heat-activated lizardite feed 1.9 20 76 
Open (bubbling) system 2.7 25 80 
Closed system 2.2 23 77  

Fig. 10. TGA-MS analysis of 60 % media concurrent ground sample during dissolution.  

Fig. 11. Comparison of Mg extraction for soaked (1 week) and non-soaked experiments. Experiments performed at 3 bar, 45 ◦C, 2 wt% solids and 
using 60 wt% 1 mm zirconia media (a), PSD for, Feed, Soaked and Non-Soaked samples (b). 
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5. Developments in thermal activation 

Thermal activation refers to dehydroxylation of serpentine minerals (lizardite, antigorite) or partially serpentinized rocks (dunite, 
harzburgite) due to which hydroxyl groups release as water vapors. The optimum temperature for lizardite is 635 ◦C [76]. Intermediate 
phases formed during dehydroxylation has been found to be more reactive [77]. Any heat-activated material may be carbonated 
through single-stage process, two-stage process, pH swing process or dissolved in acidic solution referred to as acid dissolution. Various 
researchers have studied the heat-activation of dunite [29,78], lizardite [42,79–83], antigorite [28,84–86] and harzburgite [69]. 
Increase in yield during single-stage carbonation has been observed with thermal activation for various materials e.g. dunite [20], 
lizardite [79] and antigorite [28]. It has been observed that hydromagnesite formation occurs during mineral preheating phase inside 
batch reaction in absence of CO2 [79] and CO2 being supplied from additive (sodium bicarbonate). 

Heat-activated lizardite has been dissolved in a two-stage process employing concurrent grinding [49]. Fig. 13 shows Mg ex-
tractions for reference experiment, concurrent ground first and second run using dry-residue recycle, continuous 4 h concurrent 
ground, long 12 h run, effect of sampling, Mg extractions for first and second run using wet-residue recycle and Mg extractions first and 
second run using grinding aids. Concurrent ground runs have almost double Mg extractions compared to reference experiments. 
Reference experiments have no grinding media added, hence Mg leaching into the solution leaves behind silica rich layers which stop 
further leaching of Mg and retards Mg extraction which is undesired for a continuous process. Addition of grinding media facilitates 
creation of new surfaces through continuous removal of silica rich layers and expose new surfaces to the aqueous solution thus 
enabling higher Mg extractions and leach Mg from inner part of the heat-activated minerals. Long 12 h run has shown highest Mg 
extractions but take considerable time of grinding and Mg extraction rise is less after 6 h. It has been reported that optimum media 
concentration for two-stage dissolution is 60 wt% [49]. Werner et al. used heat-activated lizardite with 1.5 mm zirconia media to grind 
it in a two-step process involving two dissolution reactors and a precipitator [42]. They observed an increase in yields with concurrent 
grinding due to silica rich layers removal. Zarandi et al. has observed nesquehonite transformation into hydromagnesite and dypingite 
with prolonged wetting and drying cycles [87]. Oliver et al. has observed that small nitrogen bubbles and carbonic anhydrase increase 
degassing rates as well as production of nesquehonite [39]. 

Acid dissolution in a buffer solution for sub 75 μm dunite which is heat-activated, sub 75 μm dunite which is heat-transformed, sub 
75 μm raw dunite, sub 75 μm dunite from twin sister mountain and sub 20 μm dunite which is heat-transformed and 20–45 μm dunite 
which is heat-transformed are shown in Fig. 14 [50]. Sub 75 μm showed highest magnesium, silicon and iron extractions followed by 
dunite which is heat-transformed, raw dunite and dunite from twin sister mountain. Smaller particle size promotes dissolution as 
indicated with higher dissolution for sub 20 μm dunite which is heat-transformed compared to sub 75 μm dunite which is 
heat-transformed and 20–45 μm dunite which is heat-transformed. Mg/Si ratio (Fig. 14 c) is highest for heat-activated dunite. 
Heat-activated dunite has congruent dissolution similar to heat-activated lizardite [82]. Forsterite rich materials (dunite from twin 

Table 2 
PSD for, Feed, Soaked and Non-Soaked samples.   

d10 

μm 
d50 

μm 
d90 

μm 

Sub 75 μm heat-activated lizardite feed 1.9 20 76 
Non soaked 0.46 1.5 9.2 
Soaked (1 week) 0.46 1.5 6.7  

Fig. 12. Liner wear and tear during concurrent grinding inside reactor.  
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Fig. 13. Two stage dissolution using sub 75 μm heat-activated lizardite, all dissolutions performed using 2 wt% solids and 60 wt% 1 mm zirconia 
media at 45 ◦C and 3 bar, reference experiment is without using grinding media (modified from Refs. [49,66]). 

Fig. 14. Acid dissolution in a buffer solution for heat-activated dunite, heat-transformed dunite, raw dunite and twin sister dunite and various 
fractions of heat-transformed dunite, Mg extractions (a), Si extractions (b), Fe extractions (c), Mg/Si ratio (d) (modified from Refs. [50,66]). 
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sister mountain and dunite which is heat-transformed) showed incongruent dissolution which is typically reported in literature [57, 
88]. Employing multi-stage dissolution with solids regrinding, almost 80 % Mg extraction has been achieved from heat-activated 
lizardite [29]. 

pH swing process is presented in Fig. 15 pH swing process which occur through indirect carbonation has two steps; (1) magnesium 
and calcium extraction under acidic conditions (2) the carbonation under alkaline conditions. This is most studied process with many 
acid and base additives [89]. pH swing process may be divided into four steps such as acid dissolution, purification, carbonation and 
recovery [90]. Optimum conditions for Mg extraction from waste tailings is reported as 70 C, 4 M HCl and 69 μm particle size [90]. 
Main challenge associated with pH swing process is recovery of the chemicals being used in the process. Magnesium bisulphate has 
been employed to extract 95 % Mg after 3 h dissolution [91] and increase process efficiency and reduce process cost. 

6. Developments in carbonation of waste materials 

Various studies have used waste materials for carbonation thus reducing waste and avoiding mining cost for minerals and rocks. 
These studies are presented in Table 3. 

7. Pilot plants and commercial processes on mineral carbonation 

Various universities and industries have developed pilot scale carbonation reactors to study mineral carbonation on a large scale 
which is first step to develop a commercial process for mineral carbonation. It has been observed that there is no significant difference 
in magnesite yields obtained in a 600 ml reactor compared to yields in a 30 L pilot scale reactor [108]. Table 4 highlights various pilot 
plants used for mineral carbonation. Further development in pilot plants is required to devise a commercial scale mineral carbonation 
process. 

Conclusions and recommendations 

TPD studies showed interaction of CO2 with Mg indicating possibility of using natural feedstocks for mineral carbonation. Grinding 
with 50 wt% ethanol has been proven effective in converting feedstocks into nanometer size. Soaking is effective to increase yields of 
heat-activated materials, however, further research is required to make it feasible for raw feedstock with heat-activation. Silanol nests 
formation during carbonation hinders magnesite yields thus requiring solvents which do not result silanol nests. Six times higher 
magnesite yields have been achieved using concurrent grinding in a single stage carbonation while two times Mg extraction is obtained 
in two-stage dissolution using concurrent grinding. However, steel slags, alkaline wastes and coal fly ash have been not subjected to 
concurrent grinding. Best conditions for single stage carbonation are 50 wt% media, 15 wt% solids, zirconia media, 1 mm size, 2.5 h 
grinding, 180 ◦C temperature, 8 mm blades length and pitched turbine blades which can equally be used for carbonation of slags, 
wastes and fly ashes. 60 wt% media is optimum for two-stage dissolution. Wear and tear during concurrent grinding may damage the 
reactor internals or inside liners and requires frequent monitoring. Thermal activation increased yields and Mg extractions regardless 
of the carbonation process. Seeding can increase carbonation yields. CO2 can be used in curing cementitious materials and increasing 
their mechanical strengths. By-products utilization and minerals recovery can reduce the process cost of mineral carbonation. 

Recommendations to overcome associated challenges are listed below.  

• Determination of the suitable additive for mineral carbonation.  
• Suitable process determination and its cost effectiveness for different approaches of carbon sequestration.  
• Development of robust pilot plant designed with economic viability and carbonated mineral product should be marketable. 
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