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Abstract: Current available biomarkers lack sensitivity and/or specificity for early detection 
of cancer. To address this challenge, a robust and complete workflow for metabolic 
profiling and data mining is described in details. Three independent and complementary 
analytical techniques for metabolic profiling are applied: hydrophilic interaction liquid 
chromatography (HILIC–LC), reversed-phase liquid chromatography (RP–LC), and gas 
chromatography (GC). All three techniques are coupled to a mass spectrometer (MS) in the full 
scan acquisition mode, and both unsupervised and supervised methods are used for data 
mining. The univariate and multivariate feature selection are used to determine subsets of 
potentially discriminative predictors. These predictors are further identified by obtaining 
accurate masses and isotopic ratios using selected ion monitoring (SIM) and data-dependent 
MS/MS and/or accurate mass MSn ion tree scans utilizing high resolution MS. A list 
combining all of the identified potential biomarkers generated from different platforms and 
algorithms is used for pathway analysis. Such a workflow combining comprehensive metabolic 
profiling and advanced data mining techniques may provide a powerful approach for 
metabolic pathway analysis and biomarker discovery in cancer research. Two case studies 
with previous published data are adapted and included in the context to elucidate the 
application of the workflow. 
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1. Overview 

Over the last several decades there has been significant progress in understanding cancer pathology, 

but cancer is still a devastating disease with high morbidity and mortality if diagnosed too late. The 

general consensus is that early detection is one of the key aspects to prevent or slow down the development 

of cancer in patients. However, currently available biomarkers lack sensitivity and/or specificity for 

early detection of cancer. In the near future, the notions of system biology and personalized medicine 

are expected to fundamentally change our views on health and diseases; including cancer [1–3]. The 

term “system biology” has been coined to integrate data generated by all the “omics” platforms, thus 

taking advantage of the fast paced IT industry. 

Currently there are challenges in each realm of “omics”. In metabolomics studies, samples are highly 

complex, biologically variant, and with a large dynamic range of concentrations of active components. 

Such factors as well as high degree of structural diversity of metabolites present challenges to 

separation, detection, and data analysis. Multiple techniques have been be used in metabolomics, such as 

nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS), 

liquid chromatography-mass spectrometry (LC-MS), and capillary electrophoresis-mass spectrometry 

(CE-MS), each with its own advantages and drawbacks. In order to identify various nontrivial 

metabolites with different polarity and molecular weight, all of the above-mentioned techniques are 

needed. Therefore, both LC-MS and GC-MS platforms are used in our untargeted metabolomics studies. 

The general steps include sample preparation, instrumental analysis, data mining, annotation and 

identification of feature components, secondary metabolite profiling using predictive multiple reaction 

monitoring (pMRM), and metabolic pathway analysis. 

1.1. Hyphenated Separation and Detection Techniques 

NMR is a non-destructive analytical technique which is good at detecting positional isomers and 

has been used to analyze flux rates of metabolic pathways. However, it is difficult to analyze 

traditional NMR spectra of complex mixtures because of its relatively low sensitivity at the micro-molar 

range; leaving low-abundant metabolites undetected. Comparatively, MS provides better sensitivity, a 

wider range of covered metabolites, and direct-injection can analyze a large number of metabolites in a 

very short amount of time. Direct injection MS can be hassled with ion suppression caused by complex 

sample matrices, where the signal of many analytes with low ionization efficiencies cannot be detected. To 

avoid these problems, MS is often hyphenated to GC or LC to decrease sample complexity. 

GC-MS is a sensitive and robust separation technique with established applications in the field of 

metabolomics. GC-MS has good separation resolution due to the long capillary column and readily 

available commercial mass spectra databases, thus annotation of unknown peaks is quick [4]. GC-MS 

typically uses electron impact ionization (EI) which is less prone to sample matrix effects, ionizes most 

compounds with relatively high efficiency, and generates instrument-independent (within the same 
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type of mass spectrometer) mass spectra for library build-up. Mass spectra acquired from a single 

quadruple MS are typically different from those acquired from an ion trap MS; therefore, libraries built 

on different types of MS may not be generalized. GC-MS can detect metabolites such as amino acids, 

organic acids, carbohydrates, phosphorylated metabolites, fatty acids, and cholesterol. However, GC-MS 

is not suitable for analysis of large or thermo labile compounds such as nonpolar intact lipids, nucleotides, 

nucleotide diphosphates, cofactors, or oligosaccharides. 

Contrary to GC-MS, LC-MS usually does not require derivatization, has different types of columns 

for separation, and comes with large sample loading capacity. Reverse-phase chromatography (RP) is a 

mature technique for separation of non-polar compounds. Monolithic capillary columns [5–11] and 

ultra-performance liquid chromatography (UPLC) [12] have introduced high chromatographic peak 

resolution to LC, which in the past could be reached only by capillary GC columns. With a high 

resolution LC coupled to a high resolution MS of a wide mass scan range, high molecular weight of 

nonpolar compounds can be detected by RP-LC-MS, such as glycerolipids, phospholipids, fatty acids, 

bile acids, and sterols. However, RP chromatography is not easily applicable to separate highly polar 

compounds. Hydrophilic interaction chromatography (HILIC) is recommended to separate simple and 

complex carbohydrates, amino acids, glycosides, and other natural polar products [13–20]. We found 

that HILIC LC-ESI-MS technique is more informative than other technology platforms in analyzing 

human urine and plasma samples. This is reasonable because most compounds in human urine or plasma 

are water-soluble, therefore, are more suitable for HILIC-LC separation rather than for RP-LC separation. 

Coupling the above-mentioned separation techniques to MS provides extremely versatile and valuable 

tool for metabolomics studies [10,11,15,21,22]. LC-MS typically uses electrospray ionization (ESI) 

that is prone to ion suppression/enhancement; therefore, good chromatographic separation is essential. 

Atmospheric-pressure chemical ionization (APCI) and atmospheric-pressure photoionization (APPI) 

have less sample matrix effects compared to ESI and are good for thermally-stable non-polar compounds; 

for that reason, both APCI and APPI have been used widely in lipidomics. 

Ion chromatography (IC) is regularly used to separate organic anions and carbohydrates, but 

coupling to MS is not direct due to high concentrations of non-volatile inorganic salts (like NaOH or 

KOH) in mobile phases. However, with current commercially available post-column ion suppressors 

(such as Dionex ASRS 300) installed on an IC, inorganic salt ions can be exchanged out of the eluent 

so that MS detection will not be disturbed. For a typical IC-ESI-MS setup, it is necessary to have a 

post-column pump infusing acetonitrile or methanol at a certain flow rate to maintain ionization 

efficiency. Although complex instrumentation is necessary, IC-ESI-MS requires less column equilibration 

time and generates better peak shapes compared to HILIC-ESI-MS. In addition, IC can be directly coupled 

with inductively-coupled plasma (ICP)-MS without a post-column pump, providing sensitive information 

of elemental speciation complementary to information of molecular speciation generated from ESI-MS. 

We believe that the future optimal instrumental setup of untargeted metabolomics and proteomics in 

blood plasma and urine will be a capillary IC separating polar compounds coupled with multi-dimensional 

detectors in parallel using a splitter: an ESI-MS for molecular species screening, an ICP-MS for elemental 

species scanning, and a coulometric electrochemical array detector for isomer elucidation. 
  



Metabolites 2013, 3 790 

 

1.2. Untargeted Metabolic Profiling 

Sample preparation is very important to the success of metabolomic analysis. Live tissues, organs 

or fluid should be deep flash frozen prior to extraction to prevent enzymatic alteration of components. 

It is recommended that multiple aliquots are stored at –80 C, each time one aliquot is thawed overnight at 

4 °C in the refrigerator, and multiple freeze/thaw cycles should be avoided. Samples must always be 

kept on ice when they are not in the refrigerator. To prevent bacterial growth in samples during 

storage, sodium azide may be added. The results from naturally clotting serum should not be mixed 

with those from plasma. Although lithium heparin is preferred as an anticoagulant for plasma, EDTA 

is widely used and preferable for MS-based metabolomics (whereas NMR cannot use EDTA preserved 

blood). Proteins should be precipitated and removed unless they are of particular interest. Protein 

precipitation should not be harsh or abrupt since some of the smaller molecules associated with 

proteins may co-precipitate and be non-recoverable. Unlike urine, serum and plasma contain high 

levels of enzymes, if possible, they should be put on ice during extraction. The 4:1 v/v addition of ice-cold 

methanol (or adding some volume of chloroform to extract nonpolar compounds) to the sample is 

preferred [23]. It is good practice to work in the dark and degas the extraction solvent to avoid 

oxidation during this process. The final sample concentration should be high enough to allow sufficient 

column loading with low injection volume for GC-MS and nano LC-MS analysis. Vacuum 

centrifugation (Speed-Vac) is a good technique for evaporating organic solvents, but it is better not to 

evaporate samples to total dryness; this will help to avoid analyte loss and forming a cake-like layer 

during sample reconstitution. It is recommended to use Freeze-Dryer for lyophilization of the deep 

frozen aqueous samples, especially for phosphates preservation. For urine samples, lyophilization is 

needed for concentration if neat urine samples are too diluted for direct analysis. 

LC-MS analysis routinely performed with a linear ion trap (LIT) MS operated in full scan mode 

featuring constant positive and negative mode switching. LC-MS tuning is known to be an important 

aspect to achieving better sensitivity and ionization efficiency [24,25]. Untargeted metabolic profiling 

requires a single general tune file for the whole full scan run. We earlier reported [24] significant 

differences when using five different tuning compounds; sucrose, rutin, naringin, indoleacetic acid, and 

chlorogenic acid (data not shown). Small molecules are more sensitive to these different tune files than 

larger polar lipids. Our observations suggested that sucrose should be considered the most suitable 

tuning compound for MS instrumentation because it provides better responses for most metabolites in 

both positive and negative ESI modes. Therefore, MS is tuned on a sucrose solution (0.1 mg/mL) in a 

mixture of acetonitrile and 1g/L ammonium acetate buffer pH 5.5 (1:1, v/v) prior to measurements. It 

is generally accepted that LC-ESI-MS mass spectra libraries are difficult for standardization; therefore, 

LC–ESI–MS data are not annotated. Feature LC-MS peaks are subjected to de novo identification 

using LC-Orbitrap or LC-FT-ICR MS for accurate mass measurement, isotopic abundance pattern, 

MS/MS fragmentation and MSn ion tree experiment, and/or FT-NMR for spatial structural elucidation. 

Typically, pooled samples are used for de novo identification under the same instrumentation 

conditions. Pooled samples inserted within a batch/group may also serve for quality control purposes 

during data normalization process. 

In addition to deproteinization and lyophilization, samples for GC-MS require a derivatization step 

to improve the volatility of high-boiling-point analytes. Two-step derivatization is generally applied in 
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metabolomics studies: the first step of methoximation protects ketone and aldehyde groups from reaction in 

the second step of trimethylsilylation. Freeze-drying for 1–2 hours after solvents removal is important 

to keep water from the derivatization step because the reactant MSTFA will degrade and generate 

polysiloxanes. Samples should be injected within 2–24 hours after derivatization because additional 

time of cold storage results in condensation. Many people also use tertbutyldimethylsil (TBS) 

derivatization, but may face different challenges. GC–TOF–MS data are annotated using in-house 

BinBase developed by Dr. Fiehn’s group. Dr. Fiehn and his group deserve the credit on automating the 

GC-MS annotation procedure so that data are generated as an easy-to-understand excel table [26,27]. 

Analyte spectra are de-convoluted and aligned in ChromaTOF, identified based on retention index and 

spectrum similarity match and other additional filters in BinBase. Unique fragment ions for each 

individual metabolite are chosen as quantifiers and manually corrected when necessary. All known 

artifact peaks caused by column bleeding, phthalates, or polysiloxanes (typical peaks: m/z 221 and m/z 281) 

derived from MSTFA hydrolysis are manually identified and removed from the results. 

For large scale metabolomics studies, quality control and assurance (QC/QA) are mandatory [28]. 

All samples are injected in three independent batches with each batch having a different or totally 

random injection orders that are automatically generated using in house made software SetupX. Before 

the batch starts, a performance evaluation mixture (PEM) (sometimes PEM can be substituted by a 

mid-point standard mix) is used to check the status of the injector, the column, and the mass 

spectrometer. A reagent blank and a laboratory controlled sample (LCS) are analyzed to test for possible 

contamination during sample extraction. A five-point calibration curve from a series of dilutions of 

spiked standard mixes in pooled plasma or urine is analyzed to check the linearity of the MS detector. 

Sometimes a third-party or project-specific pooled plasma or urine sample is included to compare 

accuracy of intra- and inter-laboratory results. These QC samples are typically at the beginning and the 

end of each batch and bracketing every 10 samples within the batch. 

Signal intensity, peak shape (width and height), retention time, separation resolution, mass accuracy, 

and the amount of detectable peaks are monitored using QC samples. After accumulation of enough 

datasets (typically 20 batches), control charts are established to determine intervention limits. If QC 

samples fail the intervention limits due to sample preparation errors and/or instrumentation drifting, 

preventive maintenance (PM) is required. For LC-MS, routine maintenance includes cleaning and flushing 

column, ion source, sample cones and skimmer, and changing pump oil. For GC-MS, routine maintenance 

requires changing the septum, inlet liner, gold seal, trimming the first 10 cm of GC guard column, and 

sometimes may include changing the carrier gas trap, ion source filaments, pump oil, and pump air filter. 

Instrument tuning (mass calibration and sensitivity check), leak checking, and priming are routinely 

required after such maintenance and on a scheduled basis. 

1.3. Data Mining Techniques 

Metabolomics datasets require robust data mining technologies [29,30]. Before data mining, results 

are transformed by total raw normalization, i.e.; dividing each peak value (peak area for LC-MS and 

peak height for GC-MS) by the corresponding metabolite sum and multiplying by a constant factor to 

eliminate decimal points. Data normalization plays a critical role in urine samples where interpersonal 
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and intrapersonal variances are large. Applying different normalization approaches may help further 

analysis. Typical normalization protocols are presented in web based MetaboAnalyst package [31]. 

Unsupervised methods are used to investigate underlying data structure, unbiased by prior 

knowledge of the experimental design. Principal component analysis (PCA), are well-established techniques 

for dimensionality reduction and visualization, where the extracted information is represented by a set 

of new variables, termed as components or vectors [32]. PCA scree plot is considered as a quick 

quality check and should have a steep decreasing curve with the increase of the Eigen values (meaning 

that the first several vectors represent majority of the total variance so that visualization process loses 

minimal information), 3D scatter plot is used to visualize phenotype clusters, and loading plot shows 

the impact of variables on each vector (the further away from the coordinate center, the more influence). 

Visualization methods often are the best way to discover phenotype clusters, whereas clustering 

methods provide mathematical rigor. Basically, there are three major categories of clustering methods: 

partitioning (clusters), hierarchical (trees), or probability model-based (models). K-means is the most 

popular partitioning method, although it requires the input of an initial clustering number. Hierarchical 

methods construct a binary tree in which the root is a single cluster containing only one element and 

the leaves each contains only one element. Recently, probability model-based clustering methods have 

become increasingly popular, with the advances in methods, software, and interpretability of the results. 

In order to select prominent potential biomarkers among all the peaks, supervised methodologies 

with built-in preprocessing and feature selection are needed [33–35]. Feature selection is a technique 

commonly used in machine learning to select a subset of relevant feature for building robust learning 

models [36]. There are two major categories of feature selection, univariate and multivariate methods. 

Univariate methods test one metabolite at a time for its ability to discriminate as a dependent variable, 

and then the most significant metabolites are used to develop a statistical model. Variable ranking, an 

univariate approach, is widely used because of its simplicity, scalability, and good empirical success. 

Multivariate methods take into consideration the synergy among metabolites [37,38]. Multivariate 

search strategies include best-first, branch-and-bound, simulated annealing, and genetic algorithms 

(GA), using a validation set or cross-validation to assess performance. 

GA is a good feature selection algorithm because it automatically selects a small number of feature 

metabolites during evolutionary learning process and it easily constructs an optimal prediction model 

with a small number of feature metabolites. It was reported [39,40] that GA is a promising multivariate 

approach in analysis of the LC–ESI–MS metabolomics datasets. However, GA requires intensive 

computation and may over-fit data [41]. If the fitness on the training data is significantly better than 

the fitness on the test data, it indicates over-fitting. In order to avoid over fitting, parameters have to be 

optimized and independent datasets are needed to validate selected predictors [41,42]. We found that 

both GA and manual feature selection approaches were able to find different feature sets for differentiation 

in urine samples of kidney cancer patients. Therefore, we recommend comprehensive feature selection 

using different approaches and combining the final results of feature components into one set. 
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1.4. Annotation and Identification 

Feature components are considered as potential biomarkers and are used for annotation and de novo 

structural identification [43]. Annotation of the MS and MS/MS spectra is done using commercial 

NIST05/Wiley Registry, METLIN [44], MassBank [45], Human Metabolome Database [46], Lipid 

Maps [47], BinBase [48], KEGG [49], and in-house mass spectral libraries. Annotation is further validated 

with de novo structural identification. 

Feature components are analyzed in SIM mode on a high-resolution high-accuracy MS such as LTQ 

Orbitrap or LTQ FT Ultra coupled with an LC for accurate mass measurement. We found that LTQ-Orbitrap 

MS is 10–100 times more sensitive than LTQ-FT Ultra MS, but the latter can go to the resolution of 

1,000,000 at m/z 400 and has better mass accuracy (routinely reached to the range of 0.1–2 ppm without 

any lock mass or reference mass, to ppb level mass accuracy when using an internal mass calibration 

standard). Therefore, LTQ-Obitrap MS is used to identify low abundance unknown metabolites, whereas 

LTQ-FT Ultra MS is used when maximum mass accuracy and resolution are needed. Although it is 

very expensive, requires heavy maintenance, and needs extensive optimization, in our opinion, LTQ-FT 

Ultra MS is the best instrument for element composition analysis due to its extreme accurate mass 

measurement. LC coupling to LTQ FT Ultra MS can only go to MS2 and the fragmentation spectra are 

unit mass resolution, because MS/MS fragmentation occurs in the LTQ ion trap but not in the FT-ICR 

cell. Accurate mass ion tree spectra up to the MS10 can be obtained using Nanomate nano-ESI robot 

coupled with LTQ FT Ultra MS. Accurate mass ion tree experiment is only possible using direct injection 

nano-ESI, due to the long scanning time required for the FT-ICR cell to do MSn experiment. Using 

infrared multiphoton photodissociation (IRMPD) or other FT-ICR cell specific fragmentation mechanisms, 

isolation of parent ions is also high resolution and high accurate mass so that total (ions of parent and 

daughter and further generations) accurate mass ion tree is possible. 

In order for LTQ-FT Ultra MS to work with MassWorksTM, the following parameters need to be 

adjusted. (a) In LTQ-FT Ultra MS, the Active Noise Reduction option in Instrumental Configuration_FT 

settings should be unchecked because Active Noise Reduction uses an advanced algorithm to decrease 

the statistical noise in an FT spectrum without increasing the noise threshold. If the Active Noise 

Reduction is turned on the data size of acquired raw files is significantly decreased, therefore useful 

data for later processing may be lost. (b) Another option of AGC_Enable Full Scan Injection 

Waveforms should be unchecked. This option is to apply a filter on the injection ions. The ions above 

and below the selected ion or ion range selected are rejected. This option is often useful if the ion trap 

is being filled with ions of greater or lesser mass than the ion mass or ion mass range of interest. In the 

modes of FT-SIM, FT-MSn, FT-ECD, and FT-IRMPD, the injection waveforms are automatically enabled. 

(c) Automatic gain control (AGC) should be used to set the ion injection time to maintain the optimum 

quantity of ions for each scan. With AGC on, the scan function consists of a prescan and an analytical 

scan. The MS detector measures the flux of incoming ions for the prescan. This information allows the 

MS detector to determine the optimum ion injection time for the analytical scan. The ion injection time 

information is then used to scale the resulting values obtained by the analytical scan. Therefore, AGC is 

used to extend the dynamic range of the MS detector beyond its fundamental dynamic range. 

The data acquired with high resolution MS are insufficient for assigning unique elemental compositions 

without supporting information on isotope ratios [50,51]. The isotopic abundance pattern serves as an 
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additional powerful constraint for identification of candidates with very similar elemental composition. 

Previous studies demonstrated that interpretation of isotopic abundance patterns can remove more than 

95% of false candidate formulas for molecules below 500 Da [50,51]. Studies concluded that instruments 

with 3 ppm mass accuracy and 2% relative error for isotopic abundance pattern outperform those with 

less than 1 ppm accuracy but without including isotope information in the calculation of molecular 

formulas. Self-Calibrated Lineshape Isotope Profile Search (sCLIPS) algorithms correct the instrument’s 

line-shape and enable exact isotope modeling when comparing the MS response of an unknown ion 

against theoretically calculated responses for all possible candidate formulas and data acquired in 

continuous mode. As long as the isotopic pattern can be measured accurately, sCLIPS algorithms can be 

used to predict elemental composition of any molecule. Actually, our recent experimental data supported 

the idea of using exact isotope modeling as a key filter for unique elemental formula assignment [52]. 

Mass spectra of potential biomarkers obtained with a high-resolution high-accuracy MS are 

spectrally corrected using sCLIPS in MassWorksTM to achieve high mass and spectral accuracy after 

data acquisition. A good, free alternative is the “Seven Golden Rules” software package designed by 

Drs. Tobias Kind and Oliver Fiehn [50,51]. The unique elemental formula is searched against CAS 

database using the strategy of Explore Substances—Chemical Structure for known compounds, or 

input into the MolGen 3.5, thus generating all of the possible structural isomers corresponding to the 

elemental formula. The chemical structures are saved and imported to Mass FrontierTM for MSn 

fragmentation modeling analysis. The Mass FrontierTM Fragments and Mechanisms module is an 

expert system providing information about basic fragmentation and rearrangement processes based on 

literature, starting from a user-supplied chemical structure. The theoretical fragments generated by Mass 

FrontierTM are compared to those acquired from FT-ICR MS. Parent compounds with the best match of 

MSn fragmentation pattern are considered as the molecular structures of the potential biomarkers. The 

latest version of Mass FrontierTM enables one to build up a library of accurate mass ion tree spectra so that 

unknown identification is even more reliable. 

For validation purpose, the proposed molecules are searched against chemical structure and property 

databases or search engines; such as, PubChem [53], Chemical Structure Lookup Service (CSLS) [54], 

CRC Dictionary of Natural Products (DNP) [55], ChemSpider [56] , and/or proprietary Beilstein Database 

using MDL Crossfire Commander and Chemical Abstracts Database (CAS) using SciFinder Scholar. 

In addition to FT-ICR MS, in some complicated cases, NMR is needed for structural elucidation of 

novel metabolites for which nothing is known [57,58]. LC fractions using semi-preparative columns 

are collected automatically by a fraction collector, further concentrated by freeze-drying, then reconstituted 

in D2O (hydrophilic fractions) or deuterated methanol/chloroform (lipid fractions). For D2O fraction, 

DCl and NaOD solutions are used to adjust pH to neutrality. Each fraction is then analyzed by 1D and 

2D high resolution NMR. NMR raw data are apodized, Fourier transformed, phase and baseline 

corrected. From 1D 1H and 13C NMR spectra, relative numbers and types of hydrogen and carbon 

atoms can be determined. For 2D NMR homonuclear experiments, correlation spectroscopy (COSY) 

and double quantum filter DQF-COSY detect connections between protons coupled to each other with 

bonding (1JHH, 2JHH, 3JHH, 4JHH), total correlation spectroscopy (TOCSY) provides information of all 

coupling protons with bonding correlation in a given spin system; whereas nuclear overhauser effect 

spectroscopy (NOESY) and rotating overhauser effect spectroscopy (ROESY) establish interaction of 

non-bonding protons with a distance up to 4 A (1H-1H). For 2D NMR heteronuclear experiments, 
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gradient enhanced (GE) variants (with better sensitivity) of heteronuclear single quantum correlation 

(HSQC) and heteronuclear multiple quantum correlation (HMQC) find correlation between a proton 

and a carbon connected with a bond (1JCH), whereas, 2D heteronuclear multiple bond correlation 

(HMBC) and 2JCH,3JCH-HMBC NMR spectra are more sensitive to 2JCH and 3JCH. Amazingly, 3D 

HMQC-COSY and HMQC-TOCSY experiments are able to determine JHH and JCH simultaneously so 

that 13C signals can be easily assigned. 

1.5. Predictive MRM Screening of Secondary Metabolites 

After identification of the feature compounds, their potential secondary metabolites are screened 

using the Predictive Multiple Reaction Monitoring (pMRM) mode available on triple quadruple-linear 

ion trap mass spectrometer (QTRAP). Currently, the analysis of low-abundant metabolites remains an 

unresolved problem in metabolic profiling. In spite of being able to detect many metabolites, neither 

TOF MS nor ion trap MS performing in full scan mode, is sensitive enough to detect and characterize 

metabolites at trace levels. Triple-quadruple (QQQ) tandem mass spectrometer (MS/MS) provides 

excellent sensitivity in multiple reactions monitoring (MRM) mode, but lack structural information and 

metabolite coverage. 

Recently, a hybrid QTRAP MS system combining a triple-quadruple scanning functionality with 

sensitive LIT scans is commercially available. Working in LIT mode, the QTRAP MS provides 

improved performance with enhanced sensitivity in enhanced full scan (EMS) and enhanced product 

ion scan (EPI) modes. Additionally, the instrument can be operated under all the triple-quadruple scanning 

modes including MRM, as well as, precursor ion and constant neutral loss scan. Therefore, accurate 

quantification and additional structural information can be obtained simultaneously in a single run by 

combing MRM and EPI scanning via the built-in information-dependent acquisition (IDA) functionality. 

pMRM-IDA-EPI has been used in our group [43,59–62] and in drug discovery [63–67]. The  

pMRM-IDA-EPI method is composed of one MRM scan, one IDA criteria, and one enhanced production 

(EPI) scan. The pMRM algorithms generate theoretical metabolite MRMs based on the latest updated 

database composed of more than 100 well-known Phase I and Phase II biotransformations or customized 

transformations reflecting endogenous metabolic pathways [68]. More interestingly, the pMRM approach 

can identify positional isomers which are helpful in identification of positional changes in metabolism. For 

example, clomazone has a molecular ion [M+H]+ mass charge ratio of m/z 240, and the fingerprint 

fragment is m/z 125, the phenyl ring substructure. Di-oxidation adds two oxygen atoms on the parent 

molecule. After the collision of the parent ion in Q2, the fingerprint fragment may be m/z 125 + 2 × 16, m/z 

125 + 1 × 16, and/or m/z 125, corresponding to di-OH-clomazone isomers with 2, 1, and 0 oxygen atoms 

on the phenyl ring substructure of the clomazone [43,59–61]. 

Although the pMRM approach is good at finding compounds at trace levels due to the high sensitivity 

of QTRAP MS in pMRM mode, the limitation of unit resolution and low mass accuracy warrants further 

validation using a high-resolution high-accuracy MS. Unfortunately, some metabolites detected in pMRM 

mode are not detectable with any other modes of acquisition on a QTRAP, an LTQ-Orbitrap, or an 

LTQ-FT Ultra MS. On the other hand, this actually demonstrates the high selectivity and sensitivity of 

pMRM mode. Therefore, in order to identify these metabolites, preparative HPLC fractionation and 
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concentration are necessary, and offline spatial structural elucidation with NMR and accurate mass 

measurement with a high resolution MS are needed to confirm proposed structures. 

1.6. Pathway Analysis 

Metabolic pathway analysis is needed to understand whether feature metabolites/potential biomarkers 

identified from comprehensive metabolomics studies are the key metabolites involved in the altered 

metabolic pathways; resulting in disease-induced metabolome changes. It is difficult to interpret these 

observed changes in vivo due to compartmentalization. However, these impacted pathways may be 

considered as biomarkers themselves, including all of the intermediate metabolites, proteins, and genes 

involved. Ideally, metabolic flux studies using stable isotope tracers are more suitable for metabolic 

pathway analysis. It is known that the pool size of a compound is not equal to its kinetics flux rate in 

human body. In order to know the flux rate of a compound, stable isotope trace studies are needed. 

Classic flux studies focus on small scale known network assessment and are performed mostly on cultured 

cells. Metabolomics studies can provide valuable information for large-scale unbiased pathway analysis, 

with certain limitations [69]. First, extraction protocols in metabolomics studies do not involve separation 

of cellular sub-organelles; therefore, results from metabolomics studies lack information of subcellular 

compartments. Second, metabolomics studies typically lack kinetic experimental design to address the 

issue of multiple steady-states, so that results are difficult to interpret even when pool sizes are measured. 

Third, de novo identification is required to elucidate the structure of unknown metabolites, which is a 

daunting task. 

Nevertheless, time-course snap-shots of metabolome have been shown to be effective in network 

construction [69]. Metabolite pathway analysis use comprehensive pair-wise metabolite correlations 

and metabolite co-response coefficients, assuming intermediate metabolites in specific pathways change in 

a correlated way. Each node represents a certain metabolite, the more connections of this node to other 

nodes, the more important it is in the network. Typically, data needs to be log-scaled to minimize the 

impact of outliers on final pathway construction and the network graph layout uses special software 

packages and algorithms such as Pajek. 

Another approach is to see the overlap between the feature metabolites and a database of metabolites 

associated with various biological pathways; the more overlapping between the two, the more impact 

the feature metabolites on this/these specific pathway(s). The database can be assembled from 

manually collected and curated pathway maps from previous literature. Open-access pathway  

database KEGG can be used with web-based MetPA [70]. Another pathway database BioCarta is 

accessed and analyzed using the commercial software package Ingenuity Pathway Analysis [71]. 

MetPA uses KEGG database to search pathways, KEGGgraph to parse pathway topology into graph 

models, and Graphviz and ImageMgick to manipulate graphs. Based on the centrality measures of a 

metabolite, MetPA is able to estimate a node’s relative importance in a given metabolic network. 

The third approach, of unbiased network construction, is to apply text mining techniques searching 

through public literature repositories (such as PubMed) so that a network is built based on putative 

associations suggested in the text of the articles. This approach does not need already-built network 

databases. The advantage of this approach is that it utilizes previous knowledge base without a priori 

assumptions and is very useful at generating hypothesis for further experiments. A free open-access 
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software package, Cytoscape, is well accepted for this purpose [72,73]. Basically, a list of identified 

potential biomarkers is entered into Cytoscape and high-scoring network clusters (complexes) and 

genes with the highest connectivity (seeds) are identified. Seed genes are further searched in Cytoscape 

to construct networks containing known and putative functional associations between the genes of 

interest. Finally, the biological functions of seed genes are summarized automatically. 

2. The Application in Early Diagnosis of Pancreatic Cancer 

2.1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) ranks fourth as the cause of cancer-related mortality and 

second among the gastrointestinal cancers in the USA [74–76]. Surgery is the main curative treatment 

modality, however, most patients present at a late stage when the curative intervention is not available, 

as surgical resection is performed only in 10% to 15% of such patients [77]. Furthermore, surgical 

treatment failures occur due to local or metastatic recurrences, commonly presenting within one to two 

years of the index operation [78]. With the high contribution of late-stage discovery and present unavailability 

of effective medical treatment, the key approaches in improving the poor outcome of pancreatic cancer 

is to focus on early detection of the tumor. Currently, there is no available biomarker with good enough 

sensitivity and specificity for early detection of pancreatic cancer. In this case study with previously 

published data, the workflow of untargeted metabolomics is described to discover novel biomarkers of 

early pancreatic cancer [73]. 

2.2. Procedure 

2.2.1. Material 

Oligosaccharides kit, methoxylamine hydrochloride, pyridine, N-methyl-N-trimethylsilyltrifluoroacetamide 

(MSTFA) and reserpine were all purchased from Sigma-Aldrich (St. Louis, MO, USA). Ammonium 

acetate, ammonium hydroxide, and acetic acid were the highest purity grade available from  

Sigma-Aldrich. Extra pure formic acid was purchased from Fluka (Sigma-Adrich, St. Louis, MO, USA). 

LC-MS grade acetonitrile, methanol, and water were purchased from Burdick and Jackson (VWR 

International, West Chester, PA, USA). Purity of each lot was investigated by LC–MS infusion. Fresh 

aqueous buffers for LC-MS were prepared on the working day. Reserpine stock solution was 0.2 mg/mL 

in methanol. MSTFA, pyridine, and/or mixed reagents were stored under dry nitrogen after opening 

the bottle/ampoule or preparing the mix. The storage was in aliquot with tight seal. Each lot of organic 

solvents was investigated by LC/MS analysis. 

2.2.2. Sample Preparation 

After plasma was thawed on ice, 400 µL of ice-cooled methanol was added to 100 µL of plasma in 

a 2-mL microfuge tube. After 3 pre-freezed metal balls (one 3mM i.d. and two 2mM i.d.) were added, 

the mixture was homogenized (30 cycles per second × 2 min) in a pre-chilled tube holder (–80 °C × 1 h) in 

Retsch Ball-Mill (Newtown, PA, USA). Then, the mixture was sonicated in an ultrasonic bath 

(ambient temperature × 1 min), extracted in dark on an orbital shaker (Torrey Pines Scientific Inc.; San 
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Marcos, CA, USA) (750 rpm at 4 °C × 2 h), centrifuged at 4 °C (13,000 rpm × 5 min). The supernatant 

was transferred to a fresh 2-mL microfuge tube, and dried in Speed-Vac and Freeze-Dryer (Labconco, 

Kansas City, Missouri, USA). For GC-MS, dried samples were used for derivatization. For LC-MS 

analysis, dried samples were reconstituted in 100 µL water-acetonitrile (1:1, v/v), the clear supernatant 

was transferred to a HPLC vial (MicroSolv Technology, Eatontown, NJ) with an insert and a pre-slit 

cap (MicroSolv). 

2.2.3. Untargeted Metabolic Profiling 

2.2.3.1. LC-MS 

The LC-MS system consisted of an ACQUITY UPLC system composed of a binary solvent manager, a 

sample manager, a column manager, and a TUV detector (Waters Corp.; Milford, MA, USA), with a 

working backpressure of 10,000 psi, coupled to a LTQ (Thermo Fisher, San Jose, CA, USA) linear ion 

trap (LIT) mass spectrometer operated under Xcalibur software (v1.4, Thermo Fisher) without splitting. 

Injection volume was set at 10 L. The entire effluent from the HPLC column was directed into the 

electrospray ionization source (ESI) of the LTQ MS. Normal flow HPLC (0.3–1 mL/min) with conventional 

or microbore columns required pneumatically assisted ESI. The ESI ion source was equipped with a 

metal needle. The electrospray voltage was set to 5 kV. Nitrogen sheath and auxiliary gas flow rates 

were set at 60 and 20 arbitrary units, respectively. The ion transfer capillary temperature was set at  

350 °C with typical ion gauge pressure of 0.90 × 10−5. Full scan spectra were acquired from 100–1,000 

amu at unit mass resolution with maximum injection time set to 200 ms in one micro scan. Acquisition 

was performed in both positive and negative continuous switching modes. A sucrose tune file in 

negative/positive modes at normal LC flow rate was used. For MSn experiments, data dependent scans 

were chosen with the wideband activation turned off. The normalized collision energy was set to 35%, the 

activation time to 30 ms, and the activation Q to 0.250, with the source fragmentation turned off. 

2.2.3.1.1. RP ESI-LC-MS 

For human blood plasma samples, RP-LC-MS was performed on a BEH C8 shielded Acquity UPLC 

column (150 × 2 mm, 1.7 µM particle size, Waters). Analytical liquid chromatography was performed using 

1 g/L ammonium acetate (pH 5.5, adjusted by glacial acetic acid) (A) and acetonitrile/acetone mixture 

(9:1, v:v) (B) as the mobile phases with a column temperature of 70 C and a flow rate of 0.5 mL/min. 

After a 0.1 min isocratic run at 1% B, a sequential ramping up to 100% B was followed for total 

elution time of 10 min. Then, at 100% B LC was held for another 5 min to wash the column off non-polar 

residues, going back to 1% B in 1 min and held for another 5 min to equilibrate the column with the 

initial mobile phase composition. To avoid contaminating MS, the divert valve was opened to the 

waste line during first several minutes of solvent peak elution and during column washing  

and equilibration. Weak wash solvent was H2O-methanol (1:1, v/v) and strong wash solvent was 

acetonitrile/isopropanol (3:1, v/v). Reserpine was used as an external standard for instrument 

calibration and semi-quantitative analysis. A series of dilutions of reserpine stock solution in methanol 

was prepared starting from 0.1 mg/mL. Five or more points were acceptable for creating a calibration 

curve of reserpine. In addition, reserpine was also spiked in samples as internal standard for QC purpose. 
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2.2.3.1.2. HILIC ESI-LC-MS 

For human blood plasma samples, HILIC-LC-MS was performed on a Luna HILIC Diol HPLC 

column (150 × 3 mM, 3 µM particle size, Phenomenex, Torrance, CA, USA). The mobile phases were 

100 mM ammonium formate (pH 4.0) (A) and acetonitrile (B) with a column temperature of 40 C and 

a flow rate of 0.4 mL/min. After a 2-min isocratic run at 3% A, sequential ramping scheme was followed 

up to 40% A for a total injection time of 20 min. Then, the column wash was done with 100% A for 5 min. 

Column equilibration with initial mobile phase composition took 15 min before the next injection. The 

weak wash solvent was acetonitrile-isopropanol (3:1, v/v) and the strong wash solvent is H2O-methanol 

(1:1, v/v). The divert valve was opened to the waste line during first several minutes of solvent peak elution 

and during column washing and equilibration. 

For HILIC–LC–ESI–MS analysis, oligosaccharides were used as retention time index standards 

because they eluted in the order of increasing monomer units, with larger oligomers eluting as the latest 

ones. Mono and oligosaccharides were detected as ammonia adducts in positive mode and as [M-H]− 

ions in negative mode. The Sigma-Aldrich oligosaccharides kit was prepared in acetonitrile:water (1:1, v/v). 

Total concentration did not exceed 0.5 mg/mL. Then, selected oligomers were used as internal and/or 

external standards for instrument calibration by serial dilution. 

2.2.3.2. GC–MS 

GC–TOF-MS analysis was performed using an Agilent 6890 N gas chromatograph (Atlanta, GA, 

USA) interfaced to a time-of-flight (TOF) Pegasus III mass spectrometer (Leco, St. Joseph, MI, USA). 

Automated injections are performed with a programmable robotic Gerstel MPS2 multipurpose sampler 

(Mülheim an der Ruhr, Germany). The GC was fitted with both an Agilent injector and a Gerstel 

temperature-programmed injector, cooled injection system (model CIS 4), with a Peltier cooling source. 

An automated liner exchange (ALEX) designed by Gerstel was used to eliminate cross-contamination 

from sample matrix occurring between sample runs. Multiple baffled liners for the GC inlet were 

deactivated with 1-µL injections of MSTFA. Initial peak detection and mass spectrum deconvolution 

were performed with ChromaTOF software (version 2.25, Leco), and later files were exported to the 

netCDF format for further data evaluation. 

After the extracts were completely dried by speed vacuum concentrator or by freeze-drying,  

20 µL of 40 mg/mL methoxylamine hydrochloride in pyridine was added, and samples were  

agitated at 30 °C for 30 min. Subsequently, 180 µL of trimethylsilylating agent, N-methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA), was added, and samples were agitated at 37 °C for 30 min. 

A mixture of the retention time standards, n-dodecane (RI 1200), n-pentadecane (RI 1500),  

n-nonadecane (RI 1900), n-docosane (RI 2200), n-octacosane (RI 2800), n-dotriacontane (RI 3200), 

and n-hexatriacontane (RI 3600) was included in the final reagent volume. Analytical GC chromatography 

was performed with the injection volume of 1 µL with a split ratio of 1:10 (purge time 120 sec, purge 

flow 40 mL/min). The Agilent injector temperature was held constant at 250 °C while the Gerstel 

injector was programmed (initial temperature 50 °C, hold time 0.1 min, and increased at a rate of 10 °C/s to 

a final temperature of 330 °C, hold time 10 min). Chromatography was performed on an Rtx-5Sil MS 

column (30 m × 0.25 mM i.d.; 0.25 µM film thickness) with an Integra-Guard column (Restek, Bellefonte, 
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PA, USA). Helium carrier gas was used at a constant flow of 1 mL/min. The GC oven temperature 

program was 50 °C for initial temperature with a 1-min hold time and ramping at 20 °C/min to a final 

temperature of 330 °C, with a 5-min hold time. Both the transfer line and source temperatures were 

250 °C. After a solvent delay of 350 sec, mass spectra were acquired at 20 scans per second with a 

mass range of 50 to 500 m/z. Ion source filament energy was set to 70 eV. 

2.2.4. Data Mining 

2.2.4.1. Free Open Source Software 

For LC-MS datasets, free R-based XCMS and Java-based Mzmine were used for pre-processing in 

our group. Because Mzmine took almost one week analyzing a relatively small dataset, XCMS  

was preferred. The Xconvert program included in Xcalibur was used to convert the Xcalibur (*.raw) 

files to netCDF (*.cdf) format. A free software package msconvert can also do format converting [79]. 

Automatic peak finding, de-convolution, and alignment were performed using XCMS. XCMS 

parameters were: group bandwidth, 30, minimum fraction, 0.5, minimum sample parameter, 1, width 

of overlapping m/z values, 0.5, maximum number of groups in a single m/z slice, 0.5. After processing 

and peak picking, mass spectral features were retrieved from XCMS as a TXT file. Total raw 

optimization was applied because it was shown to be useful for serum and urine samples. Peaks were 

normalized to the total absolute area of all detected metabolites in each sample using an in-house 

written R script. 

Preliminary data exploration was accomplished using unsupervised methods such as principle 

component analysis (PCA) and clustering. For PCA, R package pcaMethods in Bioconductor project 

was used to generate a scree plot (to show the optimal number of eigenvalues), a score plot (to show 

the most important principal components and visually detect clusters), and a loading plot (to show positive 

and negative correlations of components). Cluster analysis of the PCA scores was performed using 

partitioning methods such as K-means using the function kmeans in R package stats, hierarchical 

agglomerative methods such as Ward's method using the function hclust in R package stats, and multiscale 

bootstrap resampling using R package pvclust, and model-based clustering approach using R package 

mclust which assumes a variety of data models and applying maximum likelihood estimation and 

Bayes criteria to identify the most likely model and number of clusters. 

Feature selection using GA procedure and further classification were performed using R package 

GALGO. With hardware and software currently used, two days were needed for one run using GA 

with nearest centroid method. The GA parameters were optimized: the nearest centroid classification 

method was applied, the maximum solutions value was set as 2,000 to stabilize top 20 feature components, 

the maximum generations value as 500 because thousands of generations end up in over-fitting, the 

goal fitness as 1.0, the subset (chromosome) size as 5, the population size as 20 plus an additional unit 

per each 400 variables, the mutation rate as 1 mutation per subset (chromosome), and the crossover 

value as all subsets (chromosomes) in exchange. 

For GC-MS dataset, peak finding was done in ChromaTOF, and the peak table was exported to 

BinBase for annotation. In ChromaTOF, a peak-finding data-processing method was created with the 

activation of the following functions: “Retention Index”, “Peak Find”, “Baseline”, and “Calculate Area”. 
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Key parameters were optimized as following: baseline offset as baseline subtraction just above the noise 

level, data points to be averaged for smoothing as no smoothing, expected chromatographic peak width 

as 3 sec, and minimum signal-to-noise ratio for the automatically chosen quantitation mass as 10:1. 

The apex masses, complete spectrum, retention time, peak purity, noise, signal-to-noise ratio, unique 

ion, and unique ion signal-to-noise ratio of each peak were exported as txt file. This txt file was  

further processed in BinBase with following parameters: validity of chromatogram (< 10 peaks with  

intensity > 10 million), unbiased rention index marker detection (MS similarity > 800, validity of 

intensity range for high m/z marker ions), retention index calculation (5th order polynomial 

regression), spectral validity (> 5% of base peak abundance, matching least and most-abundant spectra 

in database using the following matching filters: retention index window ± 2,000 U / ± 2 sec, unique 

ion in apex masses and > 3% of base peak abundance, mass spectrum similarity 500 if s/n > 25 and 

purity >1.5). 

2.2.4.2. Commercial Software 

Compared to FOSS workflow, commercial software packages have user-friendly interface and need 

less time for optimization, at the expense of high cost and undisclosed algorithms involved in 

calculation. Prior to data processing, original Xcalibur LC-MS files (*.raw) were converted to netCDF 

(*.cdf) format using the XConverter (Thermo Fisher) or msconvert, then converted to WIFF format 

using Analyst QS for use in MarkerViewTM software (version 1.1, Applied Biosystems, Foster City, 

CA, USA). For RP and HILIC LC-MS data, peak finding options were set as follows: subtraction offset, 10 

scans; subtraction multiplication factor, 1.3; noise threshold, 3; minimum spectral peak width, 1 amu; 

minimum retention time peak width, 4 scans; and maximum retention time width, 1000 scans. Peak 

alignment options were set as follows: retention time tolerance, 0.5 min; mass tolerance, 0.8 amu; and 

maximum number of peaks, 5000. Peaks found in fewer than 6 of the samples were discarded using 

filter setting. Peak area integration was performed using raw data. Peaks were then normalized to the 

total absolute area of all detected metabolites in each sample. 

The data that constituted retention time, mass to charge ratio, and peak areas of detected and aligned 

peaks were exported from MarkerViewTM into StatisticaTM version 9 [80] for principal component and 

classification analysis (PCCA). The analysis was carried out via the correlation matrix, or the 

covariance matrix of the standardized (scaled) variables. Univariate feature selection and one-way 

analysis of variance (ANOVA) were conducted after PCCA. For continuous predictors, the range of 

values in each predictor was divided into 10 intervals, whereas categorical predictors could not be 

transformed in any way. For categorical dependent variables for classification-type problems, a Chi-square 

statistic and p-value for each predictor were computed and used as the criteria of predictor importance 

to select best predictors. 

2.2.5. Annotation and Identification of Feature Components 

2.2.5.1. Accurate Mass, Isotope Pattern, and MS/MS 

A fast approach was used for accurate mass, isotope pattern, and MS/MS acquisition. HPLC method 

was the same as described earlier. The entire effluent from the HPLC column was directed into the ESI 



Metabolites 2013, 3 802 

 

source of an LTQ-Orbitrap (Thermo Fisher Scientific, San Jose, CA) operated under Xcalibur software 

(V2.07, Thermo Fisher Scientific) or an LTQ-FT Ultra hybrid linear ion trap –7.0 T Fourier transform 

ion cyclotron resonance (FT-ICR) MS (Thermo Fisher Scientific) operated under Xcalibur software 

(V2.2, Thermo Fisher Scientific). Both LTQ-Orbitrap and LTQ-FT Ultra MS used identical source and 

scanning parameters. The ion source voltage was 5 kV. Nitrogen sheath and aux gas flow was 60 and 

20 units respectively. Nitrogen was produced by a nitrogen generator system (Peak Scientific, Billerica, 

MA, USA). The ion transfer capillary temperature was 350 °C. Typical ion gauge pressure was  

0.90 × 10−5 Torr. Survey (full scan m/z with a width of 10 Da) and single ion monitoring (narrow SIM 

with a width of 10 da) MS spectra were acquired with the resolution R = 50,000 (FWHM) in LTQ-Orbitrap 

and R = 100,000 (FWHM) in LTQ-FT Ultra at m/z 400. All scan events were acquired with one micro 

scan. Full scan spectra were acquired with a 200 ms maximum ionization time. The AGC target value 

was set as 1,000,000 in the linear ion trap. In addition, mass spectrometer was operated in the data 

dependent mode to automatically switch between MS and MS/MS acquisition. The most intense ions 

were isolated and fragmented in the linear ion trap using collisionally induced dissociation (CID) at a 

target value of 100,000. Parameters applied in MS/MS scan events were an isolation width of 2 Da, an 

activation time of 30 ms, normalized collision energy of 40%, and an activation Q of 0.250. Data dependent 

dynamic exclusion was used with the following parameters: repeat count, 5; repeat duration, 15 s; 

exclusion duration, 60 s. 

Elemental composition was obtained using MassWorks (version 2, Cerno Bioscience, Danbury, CT, 

USA), XCalibur embedded elemental composition tool (V2.2, Thermo Fisher), and Mass Frontier 

embedded formula generator tool (version 5.1, HighChem Ltd, Bratislava, Slovakia). Mass spectra of 

the feature peaks were spectrally corrected using MassWorks to achieve high mass and spectral 

accuracy after data acquisition, using sCLIPS algorithms enabling exact isotope modeling. Using 

reserpine as an example, the parameters for MassWorks sCLIPS algorithms were: mass tolerance,  

5 ppm; electron state, even; double bond equivalent range, −3 to 50; profile mass range, −1 to 3.5 Da; 

calibration range, −0.1 to 0.1 Da, element-max, C-48, H-576, O-41, N-41. The parameters for XCalibur 

embedded elemental composition tool were: mass tolerance, 5 ppm; nitrogen-rule, even electron ions; 

RDBE (ring plus double bonds equivalent), −3 to 50; element-max, C-48, H-576, O-41, N-41. The 

parameters for Mass Frontier embedded formula generator tool were: mass tolerance, 5 ppm; nitrogen-rule, 

even electron ions; RDBE, −3 to 50; element-max, C-48, H-576, O-41, N-41. 

2.2.5.2. MSn Ion Tree 

Sometimes accurate mass MSn ion tree scans were needed for de novo identification. First, feature 

peaks were purified using semi-preparative LC, collected in fraction collector, lyophilized, reconstituted 

with 1 g/L ammonium acetate in water-acetonitrile (50:50, v/v), and loaded on wells of a 96-well plate. 

Nano ESI direct infusion analysis was achieved using a NanoMate nanoESI chip robot (Advion BioSciences, 

Ithaca, NY, USA) coupled with an LTQ-FT Ultra MS operated under Xcalibur software (V2.2). 

Nanomate holds a 96-well plate, a rack of 96 disposable conductive pipette tips, and a nanoESI chip 

consisting of a 20 × 20 array of nozzles etched from the planar surface of a silicon wafer. Using reserpine 

as an example, 10 μL of sample mixture were delivered from the well on the plate to the back plane of 

the nano-ESI chip with the optimized positive ionization conditions of 1.65 kV in positive mode and 
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0.5 psi nitrogen head pressure, so that the solution in the pipette tip had a constant flow to the chip at a 

rate of 200 nL/min. 

The parameters for LTQ-FT Ultra MS were: ion source voltage, 3 kV; nitrogen sheath and aux gas 

flow, 0 and 0 units, respectively (because nano-ESI uses low volume of solvent and does not require 

gas-assisted de-solvation and ionization process); ion transfer capillary temperature, 250 °C; capillary 

voltage, 35 V; tube lens, 130 V; typical ion gauge pressure, 0.60 × 10-5 Torr. The ion tree acquisition method 

was generated using XCalibur software using default values. All scan events were acquired with one 

micro scan. Full scan spectra were acquired with a 2,000 ms maximum ionization time. The default AGC 

target value was used for narrow SIM (50,000 ions) and full scan modes (500,000 ions). 

2.2.6. Pathway Analysis 

Pathway analysis was performed utilizing MetPA and Ingenuity Pathway Analysis (IPA) . The list for 

identified metabolites detected in all samples was annotated with common chemical names and 

submitted into MetPA. The parameters for MetPA were customized as following: library as “Homo 

sapiens”, metabolome as “All Compounds”, over-representing test as “Hypergeometric Test”, pathway 

topological analysis using default values of “Relative-Betweenness Centrality”. Verification of accepted 

metabolites was conducted manually using HMDB, KEGG, and PubChem databases. The metabolite list 

was also uploaded into the IPA Knowledge Database. Canonical pathway analysis revealed the biological 

pathways, networks and diseases associated with the identified metabolites. 

A list of identified potential biomarkers was also entered into Cytoscape  plugin Agilent Literature 

Search. High-scoring network clusters (complexes) and genes with the highest connectivity (seeds) 

were identified using MCODE plugin. Seed genes were further searched in cPath plugin to construct 

networks containing known and putative functional associations between the genes of interest. The 

biological functions of seed genes were summarized using BiNGO plugin. 

2.3. Results and Discussion 

2.3.1. Experimental Design  

In the preliminary analysis of 20 cancer patients and 20 controls, we found that plasma sampling 

date was a significant confounding factor. Therefore, five case-control pairs were selected with plasma 

sampling dates controlled within 3 months in each case. 

2.3.2. Principal Component Analysis 

PCA was used for preliminary data mining on whole set of annotated peaks from GC-MS and not 

annotated peaks from HILIC and RP LC-MS in an unsupervised fashion. PDAC cases (red) were well 

separated from noncancerous controls (black) (Figure 1). The first 3 principal components explained 

58.24% of total variance, suggesting that these 3-D PCA plots were representative of the original data. 

HILIC LC-MS dataset was found to have the best separation between groups. 
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Figure 1. A 3D PCA plot of results using HILIC-LC-ESI-MS. 

 
Groups in the right panel were color-coded as: 1—red (PDAC), 2—black (normal & chronic pancreatitis). 

2.3.3. Putative Biomarkers 

Feature selection was conducted to select the best predictors for PDAC final diagnosis. If the analysis 

showed significant difference between PDAC patients and controls with satisfactory p value and high  

p variance value, and manual inspection of corresponding extracted mass chromatograms revealed satisfactory 

peak, the metabolite was chosen for annotation and further de novo structural identification and considered 

as putative biomarker of PDAC (Table 1). What we presented in Table 1 were potential unknown classifiers, 

requiring further investigation for final structural determination. Comparing the unknown peaks with 

available authentic standards was done for certain important components. Interestingly, HILIC separation 

was useful not only in classifiers detection/annotation but also in investigation of authentic standards. 

For example, two feature peaks of m/z 758 were found significantly higher in PDAC patients on 

HILIC LC-MS at retention time of 2.68 min (p = 0.022) and 12.36 min (p = 0.008) (Figures 2, 4). 

Accurate mass of the component was measured as 758.56978 [M+H]+ on LTQ-FT Ultra MS using SIM 

mode at R = 100,000. Spectral accuracy was calculated at 90.3 using MassWorksTM. With the combinatory 

help of MassWorksTM and online databases such as HMD, the component was putatively identified as 

phosphotidylcholine PC34:2. For validation purpose, by the help of Mass FrontierTM, the fragmentation 

pattern was elucidated explaining the MS/MS mass spectra very well (Figure 3). For further validation, a 

commercially available synthetic standard was analyzed on HILIC LC-MS (Figure 4). Four isomers were 
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found in this standard, suggesting that the standard was not pure. However, biological roles of these 

isomers, as well as stereochemistry, require further investigation.  

Table 1. Putative biomarkers for pancreatic ductal adenocarcinoma (PDAC). 

Substance Name PubChem CID m/z-Ion polarity Profiling Method p-Value Fold Change 

Increased in PDAC      

Arachidonic acid 444899  GC-TOF-MS 0.040982 1.49 

Erythritol 8998  GC-TOF-MS 0.008525 1.53 

Cholesterol 5997  GC-TOF-MS 0.030047 1.85 

N-Methylalanine 5288725  GC-TOF-MS 0.024311 2.81 

Lysine 5962 147.1 pos HILIC-LC/MS 0.017356 1.03 

Deoxycholylglycine 9675 448.53 neg HILIC/RP-LC/MS 0.000052 1.31 

Cholylglycine 16219399 464.42 neg HILIC/RP-LC/MS 0.000001 2.61 

LysoPC (16:0) 86554 496.2 pos HILIC-LC/MS 0.000645 1.33 

Tauroursodeoxycholic 3034759 498.34 neg RP-LC/MS 0.004029 2.01 

Taurocholic acid 6675 514.1 neg HILIC/RP-LC/MS 0.000312 1.75 

LysoPC(18:2) 11988421 520.23 pos RP-LC/MS 0.013425 1.59 

PE(26:0) 9546763 606.23 neg RP-LC/MS 0.012072 1.81 

PC (34:2) 6021688 758.31 pos HILIC-LC/MS 0.008014 1.32 

Unknown  753.12 pos HILIC-LC/MS 0.000002 1.27 

Unknown  265.07 pos HILIC-LC/MS 0.000005 1.17 

Unknown  332.07 pos HILIC-LC/MS 0.000031 1.37 

Unknown  633.19 pos RP-LC/MS 0.009372 1.8 

Unknown  414.15 pos RP-LC/MS 0.006497 1.69 

Decreased in PDAC      

Glutamine 5961 145.22 neg HILIC/RP-LC/MS 0.000021 1.2 

Hydrocinnamic acid 107 149.12 neg HILIC-LC/MS 0.000252 1.38 

Phenylalanine 6140 166.12 pos RP-LC/MS 0.036583 1.15 

Tryptamine 1150 205.09 pos RP-LC/MS 0.016353 1.07 

Inosine 6021 267.21 neg RP-LC/MS 0.000014 1.4 

Unknown  187.12 neg RP-LC/MS 0.000246 1.11 

2.3.4. Metabolite Network Analysis 

The putative PDAC biomarker list currently created was used for metabolite network analysis, 

providing valuable information about gene-protein-metabolite interactions and potential clinical correlates. 

The metabolite network graph illustrated that many genes were interwoven heavily and centered on 

tumor necrosis factor-α (TNF-α) and nuclear factor B (NF-B) genes, suggesting that products of 

these genes and related signaling pathways were significantly affected in PDAC patients (Figure 5). 
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Figure 2. Box-Whisker plots of the potential classifiers at RT 2.68 min (left panel) and RT 

12.36 min (right panel), which were later identified as PC (34:2) isomers. 

 
Group 1—PDAC patients, Group 2—controls 

Figure 3. ESI-MS/MS fragmentation pattern typical for all observed isomers of polar lipid 

PC (34:2) found in this study. 
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Figure 4. Extracted chromatograms of the positive ion m/z 758 and the corresponding 

MS/MS spectra from the human plasma sample of a PDAC patient and from a commercial 

authentic standard. 

 

Figure 5. Network interactions depicted among putative biomarkers showing that tumor 

necrosis factor-α (TNF-α) and nuclear factor B (NF-B) genes had the most connections 

to other genes. 

 

2.3.5. Validation 

Identification of unknown metabolites is a challenging task. In the current study we annotated metabolites 

by collecting as much relevant structural information as possible. Due to limited plasma sample size, it 
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is difficult to isolate unknown potential biomarkers for NMR experiments. Future studies should be 

designed to collect large amount of plasma, separate and purify plasma using preparative LC columns, 

and validate the structure of proposed putative biomarkers by accurate mass ion tree experiment using 

direct infusion nano-ESI FT ICR MS and by NMR experiments. 

Because PDAC is uncommon as an inflammatory disease compared to other pro-inflammatory 

states such as cardiovascular diseases and metabolic syndrome, it is essential to select appropriate controls 

and validate proposed putative biomarkers by MRM experiments using LC-MS/MS in independent 

cohort studies controlled with other pro-inflammatory states like cardiovascular diseases and metabolic 

syndrome to eliminate confounding factors induced by these inflammatory conditions. Nevertheless, there is 

an on-going prospective study involving more than 100 PDAC patients and 100 controls. Nineteen 

identified compounds from the feature list of the current pilot study were semi-quantified using MRM on 

LC-MS/MS. Untargeted profiling was applied using GC-MS [81,82]. Results will be published separately 

in the future. 

2.3.6. Summary 

Using comprehensive mass spectrometry based untargeted metabolomics we successfully found 

potential classifiers for pancreatic cancer in human plasma. A mechanism hypothesis was proposed 

based on pilot unbiased network analysis and follow-up validation studies. After validation with further 

cohort studies, some valid classifiers could become clinical biomarkers for early diagnosis of pancreatic 

cancer. We also found that HILIC LC-ESI-MS was useful at detecting naturally occurring isomers of plasma 

polar lipids. 

3. The Application in Early Diagnosis of Kidney Cancer 

3.1. Introduction 

The most common type of kidney malignancy is clear cell renal cell carcinoma (ccRCC), which is 

frequently associated with mutations of the von Hippel-Lindau gene. ccRCC accounts for 

approximately 3% of adult malignancies and 90-95% of neoplasms arising from the kidney. In addition, 

ccRCC lacks early warning signs and is resistant to radiation and chemotherapy, demonstrating the 

need for early ccRCC diagnosis. Urine is ideally suited for metabolomic analysis, especially involving 

diseases of the kidney and urinary system [22,83]. In this case study with previously published data, the 

workflow of untargeted metabolomics is described to discover novel biomarkers of kidney cancer [25]. 

3.2. Procedure 

3.2.1. Sample Preparation 

After urine was thawed on ice, neat urine sample was mixed with equal volumes of ice-cooled 

acetonitrile/methanol (v/v, 1:1) (methanol was added to extract more polar compounds). After sitting 

on ice for at least 5 min, sample was centrifuged for 5 min at 1,000 g, and supernatant was transferred to 

another tube. Methanol and acetonitrile were removed by Speed-Vac, and the aqueous leftover was 

dried with lyophilization process. For GC-MS, derivatization without further pretreatment was done 
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even though urea peak may overload the capillary GC column, because severe artifacts occurred when 

using urease treatments. For LC-MS, sample was reconstituted in 100 µL water-acetonitrile (1:1, v/v) and 

the clear supernatant was transferred to a HPLC vial. 

3.2.2. Untargeted Screening Using Full Scan Mode (See Section 2) 

3.2.3. Subclass Screening Using Neutral Loss Scan, Precursor Ion Scan, and Predictive MRM 

HPLC method was the same as described earlier. The entire effluent from the LC column was directed 

into the ESI source of an API 4000 Qtrap hybrid triple quadruple linear ion trap mass spectrometer 

(Applied Biosystems/MDS Sciex, Foster City, CA, USA) equipped with a TurboIonSpray source 

(heated electrospray source with an orthogonal source of heated gas to help desolvate the spray). Ion 

source parameters were set manually. The scales of the horizontal and vertical axes of the ion source 

were set at 6. Final TurboIonSource parameters were: curtain gas (CUR), 20 psi; collision gas (CAD), 

high; ionSpray voltage (IS), 5.2 kV; temperature (TEM), 300 °C; ion source gas 1 (GS1), 50 psi; ion 

source gas 2 (GS2), 50 psi; and interface heater (IHE), turned on. 

Using parent compound of interest as the reference for tuning, compound-specific parameters were 

automatically optimized in LightSightTM (version 2.0, Applied Biosystems/MDS Sciex). Using clomazone 

as an example, the automatic method creation tool in LightSightTM was used to generate the following: 

(1) positive mode: Predictive Multiple Reaction Monitoring (pMRM-IDA), EMS full scan, precursor 

scan of m/z 125 (the fingerprint fragment of clomazone), precursor scan of m/z 141 (hydroxyl group 

added on the fingerprint fragment of clomazone), neutral loss scan of m/z 115 (the molecular ion of 

clomazone is m/z 240, minus the fingerprint fragment of m/z 125), neutral loss scan of m/z 129 for 

unknown glutathione conjugates; (2) negative mode: neutral loss scan of m/z 176 for unknown O-glucuronides, 

precursor scan of m/z 272 for unknown glutathione conjugates. Among these methods, the pMRM-IDA 

method was the most sensitive and typically used. 

Parameters for the MRM scan were: declustering potential (DP): 61 V; entrance potential (EP): 10 V; 

collision energy (CE): 29 V; collision cell exit potential (CXP): 20 V. Q1 was set as unit resolution and Q3 

as low resolution. Dwell time of each MRM channel was 5 msec and pause time was 2.5 msec. IDA 

criteria were set as the most intense ion exceeding 500 counts triggering an EPI scan to confirm charge 

state and/or isotope pattern selection. Parameters for EPI were: scan mode: profile, scan rate: 4,000 

amu/s, LIT fill time: 5 msec, dynamic fill time: on, declustering potential (DP): 40 V; CES: 25 V; 

collision energy (CE): 60 V; collision cell exit potential (CXP): 20 V. Q1 was set as unit resolution. 

3.3. Results and Discussion 

3.3.1. Untargeted Profiling 

HILIC-LC-ESI-MS technique was more informative than the other two technology platforms in 

analyzing human urine samples. Therefore, only HILIC LC-MS dataset was presented. Most 

compounds in human urine are polar compounds, so that they may be more suitable for HILIC- than 

for RP-LC separations (Figure 6). Both GA and manual feature selection approaches were applied to 

peak tables generated with MarkerViewTM. Different feature panels were found from these two independent 
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feature selection approaches, whereas both were able to differentiate nicely ccRCC patients from healthy 

controls (Figures 7, 8). Majority of GA selected predictors were relatively low abundant peaks, different 

from manually selected high abundant predictors. This observation is somewhat in accordance with 

our previous results and those described for NMR based metabolomics study where GA was applied for 

feature selection [84]. As an example, one putative biomarker was identified utilizing high-resolution  

FT-ICR MS for accurate mass measurement, Mass WorksTM for spectral accuracy and isotopic 

abundance pattern, and Mass FrontierTM for fragmentation pattern (not shown) (Figures 9, 10). 

Figure 6. Comparison of LC-MS chromatograms of human urine sample acquired in RP and HILIC 

liquid chromatography modes on LTQ (linear ion trap mass spectrometer). 

 

Figure 7. PCA-DA plots of the clear cell renal cell carcinoma (ccRCC) HILIC-LC–ESI–MS 

after manual feature selection. 

 
Groups were color-coded as: 1—red: female ccRCC, 2—green: male ccRCC, 3—blue: female control,  

4-purple: male control. 55 samples, 68 predictors. 
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Figure 8. PCA-DA plots of the ccRCC HILIC-LC–ESI–MS after genetic algorithms (GA) 

feature selection. 

 
Groups were color-coded as: 1—red: female ccRCC, 2—green: male ccRCC, 3—blue: female control,  

4—purple: male control. 55 samples, 22 predictors. 

Figure 9. High-resolution spectra of a potential predictor, m/z 407.1527 at positive mode 

[M+Na]+ and m/z 383.1545 at negative mode [M-H]−, illustrating isotopic pattern at 1,000,000 

resolution using NanoMate nano ESI-LTQ FT Ultra MS. 
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Figure 10. The unique elemental composition of m/z 407.1527 was assigned as C15H28O11Na 

using Mass WorksTM based on LC-MS data acquired using HPLC-LTQ FT Ultra MS at 

100,000 resolution. 

 

3.3.2. Low Abundant Subclass Screening 

Although PCA differentiated between ccRCC patients and healthy controls, putative biomarkers 

were mostly involved in energy metabolism, suggesting low specificity of these potential biomarkers. 

In order to find more cancer-specific low abundant potential biomarkers, LightSightTM was used to 

generate a positive mode method with neutral loss scan of 132 (loss of the ribose moiety) to screen for 

unknown RNA adducts. The method was composed of one neutral loss (NL) scan, one IDA criterion, 

and one enhanced product ion (EPI) scan [43]. Both pooled neat urine from cancer patients and post-operative 

controls were directly injected in Acquity UPLC-4000 QTrap MS/MS system. Several low abundant 

nucleoside metabolites were found and putatively identified (Figure 11, 12, unpublished data). 

3.3.3. Summary 

HILIC LC-MS profiling provided the most prominent clustering and biomarker discovery among 

the three technology platforms. Based on PCA visualization, ccRCC patients were quite different from 

healthy controls. Neutral loss scan was able to find low abundant RNA adducts that might be more 

specific to ccRCC. 
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Figure 11. A nucleoside, putatively identified as N-formyl-cytidine (m/z 272, RT 2.52 

min), was found using positive neutral loss scan of m/z 132 on Acquity UPLC-4000 QTrap 

MS in pooled urine from ccRCC patients (orange line) two-folds higher than in post-operative 

controls (grey line) 

 

Figure 12. A nucleoside, putatively identified as N-butenoyl-guanosine (m/z 336, RT 3.65 min), 

was found using positive neutral loss scan of m/z 132 on Acquity UPLC-4000 QTrap MS 

in pooled urine from ccRCC patients (orange line) two-folds higher than in post-operative 

controls (grey line). 
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4. Conclusions 

When analyzing human blood plasma or urine for metabolomics studies, HILIC LC-ESI-MS is 

better than RP LC-ESI-MS and GC-MS in differentiation of cancer patients and healthy control 

subjects, whereas the latter two also provide unique feature components respectively. Parameter optimization 

for data pre-processing and data mining is extremely important. Different feature selection methods 

generate different panels of predictors and are good at discrimination of cancer and control groups, 

therefore final list should be the combination of the results of all feature selection approaches. Utilizing  

FT-ICR MS, accurate mass, isotope pattern, MS/MS fragmentation, and accurate mass MSn ion tree 

experiments are extremely powerful at excluding confounding candidates and finally getting the 

unique elemental formula of unknown feature components. After identification of unknown feature 

components, metabolic network analysis can be done and is shown to be a very powerful tool to 

elucidate underlying biological mechanisms. Low abundant metabolites are as important or discriminative 

as high abundant metabolites. Discovery of low abundant differentiators requires different types of 

instrumentation and methodology such as predictive MRM, neutral loss scan, precursor ion scan, etc. 

Currently, fast de novo identification of multiple unknown feature components and untargeted profiling 

of trace-level differentiators are two of the most challenging issues in the field of metabolomics. General 

conclusion is that instrumental analysis and data mining should not be limited to single platform or 

algorithm since important information may be overlooked. 

The above described comprehensive metabolomics workflow has been applied in blood plasma of 

pancreatic cancer patients and urine of kidney cancer patients in small scale case-control studies. In 

order to translate the results of these preliminary metabolomics studies into clinical applications, different 

levels of validation are required. First, the putative biomarkers obtained from small scale preliminary 

experiments should be validated with metabolomics studies of much larger sample size and designed 

to exclude confounding factors. For large-scale metabolomics studies, quality control and assurance is 

essential because the samples cannot be analyzed in one batch and in one day, therefore, errors from 

instrumental drifting and sample preparation need to be monitored and corrected. Second, those 

validated feature components are de novo identified so that MRM quantitation methods can be established. 

MRM quantitation is used for validation of the identified biomarkers in large-scale prospective epidemiological 

studies or double-blinded clinical trials. Finally, if these potential biomarkers are valid as surrogates of 

disease status, causal relationship in cancer pathophysiology is then investigated in preclinical 

mechanism studies using in vitro cell-based models and in vivo animal models. 
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