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Abstract

Disease causing gene identification is considered as an important step towards drug design

and drug discovery. In disease gene identification and classification, the main aim is to iden-

tify disease genes while identifying non-disease genes are of less or no significant. Hence,

this task can be defined as a one-class classification problem. Existing machine learning

methods typically take into consideration known disease genes as positive training set and

unknown genes as negative samples to build a binary-class classification model. Here we

propose a new One-class Classification Support Vector Machines (OCSVM) method to pre-

cisely classify candidate disease genes. Our aim is to build a model that concentrate its

focus on detecting known disease-causing gene to increase sensitivity and precision. We

investigate the impact of our proposed model using a benchmark consisting of the gene

expression dataset for Acute Myeloid Leukemia (AML) cancer. Compared with the tradi-

tional methods, our experimental result shows the superiority of our proposed method in

terms of precision, recall, and F-measure to detect disease causing genes for AML.

OCSVM codes and our extracted AML benchmark are publicly available at: https://github.

com/imandehzangi/OCSVM.

1. Introduction

In medicine and pharmacology, it is crucial to understand the mechanism of a disease in order

to find an effective treatment method. When dealing with the inherent disorders, finding the

disease genes is the first step. Genetic disorders occur due to dysfunction or disease-causing

mutations in a single gene or group of genes. Finding disease-related genes experimentally is a

time taking process due to the large number of genes. Hence, further biological findings rely

on the computational approaches to accelerate experiments to predict novel disease genes
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from the huge number of unknown genes. Computational methods also decrease the cost of

findings the best treatment approaches for patients. To develop these methods, the large num-

ber of genes which have been experimentally confirmed as disorder related genes, could be

employed as a useful training resource. In addition, there is a group of genes that is not con-

firmed as disease causing but has a close connection or functional similarities with such genes

[1]. For these genes, demonstrating similar attributes with disease-causing genes can indicate

possible similarity in their functioning mechanism. Here, our aim is to show disease genes that

share common patterns of gene expression-based features can provide a good basis for auto-

matic prediction of candidate disease genes using computational methods.

There is an observation that genes associated with similar disorders are likely to have simi-

lar functionality [2]. It is also shown that functionally related genes which caused phenotypi-

cally similar diseases can potentially be used to identify disease causing genes [3]. Taking this

finding to account, a wide range of two-class classifiers have been employed to tackle this prob-

lem in which Decision Tree (DT) [4], K-Nearest Neighbor (KNN) [5], and Support Vector

Machine (SVM) [6] are among the most well-known ones.

To tackle this problem, Zhou et al. proposed a knowledge-based approach called Know-

GENE to predict gene-disease associations [7]. To build this model they derived gene-gene

mutual information from known gene-disease association data and then combined them with

known protein-protein interaction networks using a boosted tree regression method [7]. In a

different study, Ata et al., proposed N2VKO as an integrative framework to predict disease

genes using binary classification [8]. Moreover, Luo et al. [9] and Han et al. [10] predicted dis-

ease-gene associations using the joint features and deep learning classifier. All of these tech-

niques used binary classification method to tackle this problem. To this extent, the confirmed

disease genes were considered as a positive set and unknown genes as a negative set. However,

all of the unknown genes are not necessarily negative. In fact, unknown genes are composed of

both positives and negatives. Therefore, such categorization could introduce noise and inaccu-

racy, and consequently, negatively impact on the performance.

Other methods tried to use unknown genes as unlabeled set (instead of negative ones), and

employed positive-unlabeled (PU) learning techniques to improve their results. Mordelet and

Vert [11] and Yang et al. [12] proposed algorithms aimed at computing the weighted similari-

ties between samples in unlabeled set and positive samples. They estimated the likelihood of

the samples in unlabeled set to be either positive or negative. Jowkar and Mansoori presented

a derived reliable set of negative data in order to form a binary classification problem [13].

Later on, Yousef and Charkari, proposed a fusion method to assign genes to disease class and

obtained better results [14].

Other studies incorporated network technique analysis to address this issue. For instance,

Singh-Blom et al developed the CATAPULT using positive-unlabeled learning influenced by a

version of network propagation technique on an Acute Myeloid Leukemia (AML) gene-phe-

notype network [15]. In another study, Vasighizaker et al. used a novel strategy to extract reli-

able negatives from a huge number of unlabeled samples in an integrative framework [16].

They introduced a novel method called C-PUGP, based on clustering approach to build a

binary classifier and comparatively outperformed traditional methods.

While recent methods indicated promising output in disease gene prediction, they all suf-

fered from several inherent limitations that confined their performance. The main issue with

such studies is not having a specific technique to retrieve validated negative data from unla-

beled samples to produce reliable result. Therefore, to overcome this limitation, here we pro-

pose a novel machine learning method to accurately predict disease causing genes in AML

based upon the concept of one-class classification using gene expression data. One-class classi-

fication method does not require negative data in the training set. Hence, it could potentially
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minimize the training error rate, and as a result, is able to perform as an effective and robust

solution, compared to binary-class classification methods with unreliable training set.

In general, the main contribution of this paper is proposing one-class classification method

to enhancement prediction performance over binary class classification methods by overcom-

ing the issue of noisy unlabeled data as negative samples. Also, we will demonstrate that it can

obtain better sensitivity or in other words, better performance in detecting disease causing

genes. Moreover, using gene expression as feature helps to build a biologically meaningful

approach to determine differences between disease causing genes and other ones. To the best

of our knowledge, our proposed method is the first to design a one-class classifier to identify

disease genes.

2. Materials and methods

In this section, we describe our proposed method for identifying candidate disease genes in

Acute Myeloid Leukemia (AML). We aim to assess the impact of a simple one-class classifier

to solve this intrinsically one-class problem considering gene expression profile information.

The rest of this section explains dataset, features representation, one-class classifier, the learn-

ing phase, and the evaluation method.

2.1. Datasets and features

2.1.1. Dataset. There are a wide range of databases that consist gene expression data. The

two of the most famous are NCBI GEO Datasets and NCBI GEO Profiles. It is possible to

search these two datasets according to a specific condition, for example a disease name, or base

upon a gene name/annotation. The data discussed here have been extracted from NCBI’s

Gene Expression Omnibus [17].

In general, GEO contains 4348 approved datasets in total. In order to compare the healthy

and patient samples in AML, we added “Healthy” keyword in our search and obtain 1153 data-

sets instead of 2674 dataset related to only “AML”. As we interested in doing research on only

human genes, we added this filter and narrowed down the result list to 1091. Another impor-

tant factor to choose the dataset is to select those that also contain gene expression profile.

Selecting those datasets that have expression profiling using microarray reduces the number of

available datasets to 55.

As this study aims at comparing and classifying patient cells using abnormal expression

changes in AML, the other datasets were deleted from the list. Although other studies explore

different issues related to AML (e.g. responding of Leukemia cells to a specific inhibitor), here

we use a data set that was extracted from a study that focuses on the comparison of normal

monocyte and myeloid Leukemia cells and the identification of abnormally expressed genes in

AML [18]. In [18], authors indicate the over-expressed genes (compared with the other genes)

as the potential therapeutic targets. Therefore, this dataset exactly matches our main goal and

meet the requirement of our experiments to classify and identify genes with the abnormal

expression changes.

Moreover, in order to have a more significant p-value, we required a relatively large dataset

in terms of the size. Considering each patient as a sample, the more sample size the more reli-

able result will achieve be obtained. Also, in order to guarantee the reliability and quality of the

dataset, we tried to employ a dataset which has been widely used in the literature with proper

quality check [18]. Hence, this dataset as one of the most updated ones is considered for our

experimentations.

The dataset used in this article made publicly available by Stirewalt et al. [18] and is accessi-

ble through GEP accession number GSE9476. The dataset comprises of gene expression levels
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of 38 normal and 26 acute myeloid leukemia (AML) patients, and was obtained using the Affy-

metrix Human Genome U133A microarray platform with accession number GPL96.

After obtaining the data, the next step is to form our final benchmark dataset for statistical

analysis. To this end, we first set up a measure to select a set of significant genes in the disease

upstream process. Depending on the literature, there are different measures to define. A simple

method is random selection as it was done in [19]. Another option is based on Log Fold

Change and adjusted p-value, where the positive set consists of genes that are more differen-

tially expressed and the remaining genes which are less differentially expressed are used to

form the unlabeled set. We consider genes which have log fold change value less than −1 or

greater than +1, together with an adjusted p-value less than a threshold of 0.05 as the top differ-

entially expressed genes. As a result, the gene expression matrix for a total of 1174 positive

genes and 1300 unlabeled genes are collected from the original dataset.

The top list of positive genes obtained in the dataset preparation process are then employed

for the classification method. Therefore, we could then evaluate the similarity between the

genes in the unlabeled set and the characteristics of each gene in the positive set. If a gene in

the unlabeled set met the similarity measurement in the model, this gene is listed in the candi-

date disease gene. This dataset is provided as supplementary material (S1, S2, and S3 Files) to

this article to make future comparisons feasible and reliable.

2.1.2. Biological feature representation. It has been shown that gene expression levels in

disease genes have predictable pattern in different diseases [20]. Hence, we use gene expression

profiles in a dataset of AML to characterize genes with their corresponding feature vectors.

Each gene gi is represented as a vector vi which consists of gene expression levels explaining

the process of synthesizing information in the genes into the gene products. The gene expres-

sion profile is a collection of gene expression levels which is measured in different conditions

or times. These conditions are dependent on different diseases and experiments. For example,

the sequence of gene expression levels {x1, x2, . . ., xm} which belongs to gene X is defined as its

gene expression profile. One of the main feature of gene expression profile is that it can be cal-

culated for different genes. For example, x1, y1, . . ., z1 are measured simultaneously under the

particular experimental environments and conditions. We consider each expression of a gene,

i.e. xm, as a feature in the feature vector. In the other word, the gene expression profile Gp =

{x1, x2, . . ., xm} is a feature vector. The final dataset is presented as a N × P matrix format with

W = {wnp} where wnp denotes the expression values of the gene n in the p-th sample.

2.2. One-class classifier

Here we introduce one-class support vector machines (OCSVMs) as a means of identifying

and predicting the presence of disease genes in AML samples in the unlabeled set. “One-class

classification” term was employed first by Moya et.al [21] in 1993. Others, employed outlier

detection, novelty detection, and concept learning for this type of learning problem. All of

these terms inspired by different application of one-class classifiers. In one-class learning prob-

lem, the positive or target, which are either more abundant or clearly defined are labeled cor-

rect while the other negative or non-target samples are either non-existence or are very few

and classifying them are not of any importance. In the prediction of disease genes, our main

aim is to explore and detect disease genes (target class). OCSVM as a semi-supervised algo-

rithm, learns a decision function for classifying new data as similar or different to the training

set. The classifier tries to detect a single class and reject the others. The OCSVM method was

introduced by Schölkopf et al. [22]. The idea behind the OCSVM is to describe target class by a

function that maps the most part of it to a region where the function is nonzero. The problem

is solved by finding a separating hyperplane (decision function) with maximum distance from
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the region containing target class (as shown in Fig 1, Left). The primal form of OCSVM is as

follows:

minw;r;x
1

2
wtw � rþ

1

nl

Xl

i¼1
xi ð1Þ

Subject to:

wt�ðxiÞ � r � xi

xi � 0; i ¼ 1; . . . ; l

Where w and ρ are linear decision function parameters for l instances. Also, ξ is the cost of

training with undergoing a little penalty, and
Pl

i¼1
xi is the error rate of training. The penalty

parameter or rejection fraction of the classifier, v 2 (0, 1), is employed in order to control the

tradeoff between the complexity of the model, 1

2
wtw � r; and the error rate of the classifier.

Also, ϕ(xi) is the mapping function.

There are another OCSVM formulation, namely, Support Vector Domain Description

(SVDD) which introduced by Tax and Duin [23]. In this model, they find a hypersphere with

minimal radius containing only the target class samples and samples lying outside are outliers

(as shown in Fig 1, Right). It was shown in [24] that when working with isotropic kernels, for

example the Radial Basis Function (RBF), Gaussian kernels, and normalized data, both

OCSVM and SVDD method yield the same solution in most cases.

2.3. Building classification model

In this study, we use OCSVM with different kernels. Among different kernels, the best model

in which yields the lowest classification error is using linear kernel. To this end, we suppose

Gp = {x1, x2, . . ., xm} as gene expression profiles of a disease gene. To avoid bias in sampling,

we remove outliers. After that, all the feature vectors of instances are scaled according to Min-

Max formulation presented by Eq (1)

x0 ¼
x � xmin

xmax � xmin
ð2Þ

Where x0 2 [0, 1], and xmin and xmax are the minimum and the maximum values of the fea-

tures, respectively. Also, in order to minimize the overfitting of the model, 10-fold cross valida-

tion is carried out in all of the experiments. As mentioned earlier, the binary-class classifiers

Fig 1. The general architecture of one-class classification of SVM, OCSVM (Left) and SVDD (Right).

https://doi.org/10.1371/journal.pone.0226115.g001
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treat unlabeled set as negative. In order to removing the bias effect, we investigate the perfor-

mance of them using the balanced datasets such that |P| = |N|, so that we have a balanced data-

set following the setup of [4], [6], and [5].

In many applications, it is defined as a requirement to being able to decide whether a new

sample belongs to the same distribution as existing samples (inlier), or should be considered

as different (outlier). In this case, the training data contains outliers which are defined as

instances that are far from (not similar) the others. Inliers are labeled positive, while outliers

are labeled negative. The predict method makes use of a threshold on the scoring function

computed by the estimator. A positive score for a class indicates that x is predicted to be in

that class. A negative score indicates otherwise. The decision function is also defined from the

scoring function, in such a way that negative values are outliers and non-negative ones are

inliers.

2.4. Evaluation method

Since the training data do not contain any negative data, trained model can only report accu-

rately true positive rate and it is hard to guarantee high accuracy when model apply to a sepa-

rate validation set consisting of both positive and unlabeled data. In this section, we describe

the performance metrics used in this article and then explore the significant challenge of one-

class classifier regarding the metrics.

2.4.1 Performance evaluation metrics and the main challenge of one-class classifica-

tion. The confusion matrix is normally used as the criterion to assess the performance of the

binary classification algorithms. It includes the four elements, true positives rate (TP), the

number of positive cases correctly classified; true negatives rate (TN), the number of negative

cases correctly classified; false positives rate (FP), the number of misclassified negative cases;

and, false negatives rate (FN), the number of misclassified positive cases. Also, measures preci-

sion, recall, and F-measure which are defined as Eqs 3–5.

precision ¼
TP

TP þ FP
ð3Þ

recall ¼
TP

TP þ FN
ð4Þ

F � measure ¼
2�precision�recall
precisioþ recall

ð5Þ

One of the main significant challenge in one-class classification context is the evaluation of

the classifier [25]. According to the precision formula, the absence of negative samples in train-

ing set makes it impossible to estimate such a classical performance measures using this for-

mula. The confusion matrix is required to calculate all four elements. In situations that there

are no negative samples, only TP and FN can be calculated. Therefore, according to the defini-

tion, only recall can be estimated but calculating precision requires FP which is not available.

Alternatively the following formula proposed in [26] is introduced as the model selection crite-

ria:

precision ¼ p ¼ P½Y ¼ 1jf ðxÞ ¼ 1� ð6Þ

recall ¼ r ¼ P½f ðxÞ ¼ 1jY ¼ 1� ð7Þ

Where X and Y present the input vector and the real label vector, respectively. According to
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these criteria, recall can be estimated as the proportion of correctly predicted positive data

from the only positive data in the validation set, and P[f(x) = 1] can be estimated as the propor-

tion of predicted positive data from the whole validation set, consist of positive and unlabeled

data [27]. Hence, from a probabilistic point of view, the recall is the probability that a real posi-

tive case, Y = 1, is correctly predicted as positive by the classification function f(x), and the pre-

cision is the probability of a situation in which a predicted positive instance is really a positive

instance, Y = 1. We apply this idea to our method and compare the results.

3. Results and discussion

Here we present the experimental results achieved using OCSVM. We also compare the results

achieved from traditional two-class classifiers with our new one-class classification model. For

running all the experiments, we use a PC equipped with 5 Intel cores CPU with 2.4GH fre-

quency and 4G of RAM. The system requirement for running our model demonstrates the

efficiency of training OCSVM.

3.1. The evaluation of the proposed method

In this part, we aim at investigating how well the proposed method can produce more reliable

results compared to the other methods by presenting the achieved results for the disease in

question, AML cancer. In order to test our proposed model, we separate positive data to 70%-

30% to employ as training and testing sets, respectively. In this way, we make sure that an inde-

pendent test set has never been used for parameter tuning to avoid overfitting. We also employ

unlabeled set to detect positive genes among unlabeled ones.

3.1.1. The results of the OCSVM. Here we present the results of our proposed method.

As it is shown in Fig 2, using linear kernel, we obtained better results compared to RBF kernel.

Therefore, we report the results of the method using linear kernel. The results presented in

Table 1 shows the precision, recall, and F-measure using linear and RBF kernel as 99.6% and

95.7%, respectively. As also shown in Table 1, OCSVM is an even-break point support method

since precision and recall have almost equal values. It means that this method does not sacri-

fice precision in favor of recall and conversely.

Fig 2. The results of OCSVM Method with linear and RBF kernel.

https://doi.org/10.1371/journal.pone.0226115.g002
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3.2. Comparing the results with previous studies

The most significant aspects which are considered in disease-gene prediction are: 1) the classi-

fication method, 2) the biological features, and 3) the feature representation methods. As the

all previous studies have utilized binary classifiers, in this study, we employ one-class classifier

as the classification method to solve this intrinsic one-class problem and to compare it with

the well-known two-class classifiers as well as positive-unlabeled (PU) learning methods. To

the best of our knowledge, our proposed method is the first to design a one-class classifier to

identify disease genes. As discussed in the Introduction Section, studies that used PU learning

techniques also used two-class classifiers for their classification method [11–13, 16]. Among

methods in which used PU learning, recently proposed model called C-PUGP is opted for

comparison. In the case of two-class classifier, we also choose three state-of-the-art classifiers

which have been widely used for this problem (SVM, KNN, and DT). To conduct this compar-

ison, we use feature vectors that is derived from gene expression information which has been

shown effective to tackle this problem. Our main aim is to show the preference of one-class

classifier compared to the recent (C-PUGP) and most widely used classical classifiers (SVM,

KNN, and DT) using same set of features. In future, our aim is to extend this work using a

larger benchmark to be able to directly compare our method with other methods such as deep

learning techniques.

We show the comparison between our proposed method and three state-of-the-art tradi-

tional binary-class classifiers such as those employed in Smalter’s method [6], Xu’s method [5],

and PROSPECTR [4], as well as Positive-Unlabeled learning method (C-PUGP) [16]. All the

five methods used the same group of training and test set for fair comparison and results are

presented in Table 2 and the relevant charts are depicted in Figs 3–5.

According to the precision and recall shown in Table 2, our one-class model is able to pre-

dict the positive instances with the highest performance. As shown in this table, KNN and

C-PUGP achieve 93.7% and 92.9% precision, respectively, approximately 5% and 6% lower

compared to those from the OCSVM. Also, reported recall for C-PUGP and SVM are both

almost 88% which are and roughly 11% lower compared to those from the OCSVM. The over-

all results indicate that the C-PUGP is ranked after the OCSVM, according to its F-measure

value of 90.6% which is 9% lower than the OCSVM. It also shows that C-PUGP can handle the

unlabeled genes for distinguishing the hidden disease genes in the test set better than other

methods. Also, it can be seen in Table 2 that the minimum value for precision and recall for

other two-class classifiers are reported for DT with 82.2% precision and for KNN with 82.3%

Table 1. The results of OCSVM with linear and RBF kernel.

Kernel Precision Recall F-measure

RBF 95.70 95.70 95.70

Linear 99.61 99.61 99.61

https://doi.org/10.1371/journal.pone.0226115.t001

Table 2. The comparison among methods (precision, recall, and F-measure).

Method Precision Recall F-measure

PROSPCTOR [4] 82.21 82.54 82.36

Xu’s method [5] 93.70 82.33 87.64

Smalter method [6] 90.66 88.57 89.60

C-PUGP [16] 92.92 88.41 90.61

OCSVM 99.61 99.61 99.61

https://doi.org/10.1371/journal.pone.0226115.t002
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recall. Moreover, Table 2 confirms that DT reports the lowest value for F-measure as well

(82.3%) which is 17.2% lower than those from the OCSVM. In general, better results achieved

using the OCSVM compared to the other methods demonstrates the benefit of one-class classi-

fication over the conventional binary-class classification method.

While the binary-class classifiers employ noisy unlabeled set as negative set which is not

fully reliable, one-class classifier enjoy the advantages of only using disease genes (one class)

without considering other class (non-disease genes) to produce more reliable results. Since

Fig 3. The comparison between OCSVM and other methods for precision.

https://doi.org/10.1371/journal.pone.0226115.g003

Fig 4. The comparison between OCSVM and other methods for recall.

https://doi.org/10.1371/journal.pone.0226115.g004
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there is no proven method to separate negative observations in the unlabeled set, the classifiers

that use the unlabeled set in the learning phase are more prone to error. Therefore, it is the

advantage of the OCSVM method in which it uses the disease gene information to find disease

genes, and unlabeled genes do not appear in the training set to build the model. Indeed, biolo-

gists do the same way in their experiments as well. For them, finding non-disease genes is not

an aim and priority. Instead they are interested in finding disease genes based on the signs

appear on the relevant disease genes. Moreover, using gene expression profile leads to a high

performance as it can be seen from the results. In other words, both feature set (biological

view) and method (computational view) have significant effect on the performance of identifi-

cation of candidate disease gene. The OCSVM method and our extracted AML benchmark are

publicly available at: https://github.com/imandehzangi/OCSVM.

4. Conclusion

Machine learning approaches have been widely used to predict novel disease-causing genes.

Despite substantial advancement in disease gene recognition, there are still many genes that

are yet to be discovered. Since there are no real negative samples in this problem, selecting a

suitable computational method that could encounter this inherent limitation can be consid-

ered as a solution with maximum reliability. In this paper, we propose OCSVM as a one-class

classification method, to classify and predict novel disease genes from a large number of

unknown genes using gene expression profile information. This model is build using one-class

model of the support vector machine classifier. As the ultimate goal of one-class classifier is

separating positive samples from other ones, we use it to find disease genes (positive set) which

has the similar objective. In this specific problem, the main aim is to identify disease genes

while identifying non-disease genes are of less or no significant. Here an independent test set

is employed to evaluate the proposed method. We also employ unlabeled set to detect positive

genes among unlabeled ones to avoid overfitting. The results achieved using our proposed

method indicate significant improvement over those methods found in the literature (6.6%,

11.1%, and 9% in terms of precision, recall, and F-measure, respectively).

We believe our model can be used in wide range of problems in Bioinformatics and compu-

tational biology. OCSVM codes and our extracted AML benchmark are publicly available at:

Fig 5. The comparison between OCSVM and other methods for F-Measure.

https://doi.org/10.1371/journal.pone.0226115.g005
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https://github.com/imandehzangi/OCSVM. Here we conducted our experiments for the AML

cancer to investigate the ability of one-class classifier to predict disease-gene association. How-

ever, in our future work, we will extend our experiments and investigate the use of the one-

class classifier for other diseases.
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