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Abstract
Background: In patients with hepatocellular carcinoma (HCC), the prognostic role of tumor-infiltrating lymphocytes (TILs) for
survival is still controversial. A meta-analysis was performed to investigate the prognostic effect of TILs in HCC.

Methods:We identify studies from PubMed, Embase, and the Cochrane Library to evaluate the prognostic value of TILs in patients
with HCC. A meta-analysis was conducted to estimate overall survival and disease-free survival. The hazard ratio (HR) and 95%
confidence interval (CI) were calculated employing fixed-effect or random-effect models depending on the heterogeneity of the
included trials.

Results:A total of 7905 patients from 46 observational studies were enrolled. For TILs subsets, the density of CD8+, FOXP3+, CD3
+, and Granzyme B+ lymphocytes was significantly associated with improved survival (P< .05). The density of FOXP3+ TILs in
intratumor (IT) was the most significant prognostic marker (pooled HR=1.894; 95% CI=1.659–2.164; P< .001). Patients with high
infiltration of CD8+ TILs in IT (pooled HR=0.676; 95% CI=0.540–0.845; P= .001) or in margin of tumor (MT) (pooled HR=0.577;
95% CI=0.437–0.760; P< .001) had better OS. The pooled analysis revealed that high density of Granzyme B+ T-lymphocytes in IT
was statistically significant associated with better OS (pooled HR=0.621; 95% CI=0.516–0.748; P< .001) and DFS (pooled HR=
0.678; 95% CI=0.563–0.815; P< .001). It was interesting that high density of CD3+ in IT foreboded worse OS (pooled HR=1.008;
95% CI=1.000–1.015; P= .037), but better DFS (pooled HR=0.596; 95% CI=0.374–0.948; P= .029).

Conclusion: Our findings suggested that some TIL subsets could serve as prognostic biomarkers in HCC. High-quality
randomized controlled trials are needed to determine if these TILs could serve as targets for immunotherapy in HCC.

Abbreviations: CI = confidence interval, CIK = cytokine-induced killer, DFS = disease-free survival, FC = flow cytometry, HCC =
hepatocellular carcinoma, HR= hazard ratio, HVEM= herpesvirus entry mediator, IHC= immunohistochemistry, IT= intratumor, LI=
lymphoplasmacytic infiltration, MT = margin of tumor, NK = natural killer, NOS = Newcastle–Ottawa scale, NR = not report, OS =
overall survival, PB = peripheral blood, PCR = polymerase chain reaction, PT = peritumor, ROC curve = receiver operating
characteristic curve, SC = survival curve, TILs = tumor-infiltrating lymphocytes, Treg = regulatory T-lymphocytes.
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1. Introduction

Hepatocellular carcinoma (HCC) is one of the most common
primary malignancies of the liver, representing the 3rd leading
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cause of cancer-related death worldwide. Besides early diagnosis,
prompt treatment plans identified from the prediction of patients’
outcomes also contribute to successful treatment of liver cancer.
Therefore, further investigation is needed to discovery precise
tumor biomarkers with higher sensitivity and specificity in HCC
to determine the optimal treatment programs and predict the
prognosis of HCC.
Tumor-infiltrating lymphocytes (TILs), including T-cells, B

cells, and natural killer (NK) cells, are one of the representative
components of host antitumor immune responses.[1] There are
many specific antigens such as FOXP3, CD3, CD4, CD8, CD16,
CD20, CD56 and CD57, CD68, and CD169 in the cell
membrane of TILs.[2] For example, FOXP3, CD3, CD4, and
CD8 bind to T-cells; CD16 binds to monocytes; CD20 binds to B
cells; CD56 and CD57 binds to natural killer cells; CD68 and
CD169 bind to macrophages. With advances in flow cytometry
and immunohistochemistry, many researches have shown that
specific types of immune cells not only regulate the host defense
against cancer,[3] but also accelerate tumor progression either by
selecting an opportune microenvironment to survive for tumor or
by creating conditions within the tumor microenvironment that
simulate tumor outgrowth.[4]

The TILs might play as a prognostic biomarker in HCC. TILs
have been demonstrated to predict overall survival (OS) and
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disease-free survival (DFS) following resection of both primary
and metastatic liver tumors.[5–7] Hang et al found that high
infiltration of Foxp3+ T-cells was associated with poor
prognosis,[5] whereas no correlation between the infiltration
of Foxp3+ T-cells and OS was found in Wang et al.[8] Chew
et al revealed that patients with high density of CD8+ T-cell had
poor outcome,[9] but Ramzan et al reported the opposite
results.[10] So, the effect of TILs on HCC prognosis is
controversial. Besides, it is not clear whether the associations
between the density of TILs and prognosis vary depending on
clinical factors such as the pathological stage and anatomic site.
Therefore, we performed this meta-analysis to assess the
prognostic effect of TILs in HCC.

2. Materials and methods

2.1. Literature search

Relevant articles were identified by 2 reviewers via an electronic
search of PubMed, Embase, and Cochrane using the following
keywords: (tumour or tumor or cancer or carcinoma), (hepatic or
liver), (TILs or tumor-infiltrating lymphocyte or intratumoral
lymphocyte or tumor-infiltrating lymphocyte or intratumoral
lymphocyte), and (prognostic or prognosis or outcome). And the
search time period of the electronic database was from inception
to July 7, 2018. Additionally, pertinent studies were searched in
reference lists of selected reports and reviews. Unpublished
literature was not performed to search. Disagreement on article
inclusion between the 2 reviewers was resolved via a 3rd
reviewer. A 3rd researcher would determine the final results
about the disagreement of the 2 reviewers.
2.2. Inclusion and exclusion criteria

Inclusion criteria for this meta-analysis were as follows: studies
researching the prognostic effect of TILs or associated TIL subsets
in HCC; report of TILs or associated TIL subsets in tumor
surgical specimens; hazard ratio (HR) and 95% confidence
interval (CI) could be extracted; when the same author or group
reported results obtained from the same cohort of patients in
more than one paper, the most recent report or the most
informative report was selected.
Exclusion criteria for this meta-analysis were as follows:

letters, reviews, case reports, animal trials, abstracts, and expert
opinion were excluded; articles in which have no information on
overall survival or disease-free survival; patients who only treated
with immunotherapy chemotherapy, radiotherapy, intervention-
al therapy, or liver transplantation; nonprimary tumor, such as
metastatic tumor or recurrent tumor. Names of authors or
journals of the articles were not considered in excluding or
including the articles.
2.3. Statistical analysis

The HR and its 95% CI were used to assess the association
between TILs and prognosis of HCC. If a direct report of OS and
DFS were not available, then extract the survival data from
Kaplan–Meier curves by Engauge Digitizer version 4.1 as
described previously.[11] The extraction was performed by 2
independent researchers to decrease error. STATA version 12.0
was performed to merge the results of studies. Statistical
heterogeneity between trials was assessed by Chi-squared test
and was suggested significant when I2>50% and/or P< .05. The
fixed-effect model was used when no heterogeneity was detected
2

among studies, while the random-effect model was preferred
when variance existed. Funnel plot and Egger test were
performed to evaluate the publication bias.[12]
3. Results

3.1. Study selection and characteristics

A total of 1232 articles were initially gathered after duplicate
removal. Among them, 58 studies reported the association
between TILs and prognosis of HCC. After further screening, 12
researches were excluded (1 studying the same cohort of patients,
10 lacking enough useful data, and 1 treating with immunother-
apy). Finally, a total of 46 retrospective studies including 7905
patients from America, China, France, Germany, Japan, The
Netherlands, and Singaporean were included in this meta-
analysis (Fig. 1).[8–10,13–55]

The main characteristics of included studies were displayed in
Table 1. The prognostic role of TILs in intratumor (IT), margin of
tumor (MT), and peritumor (PT) were evaluated in 41, 3, and 9
articles, respectively. Sample sizes of included studies ranged
from 36 to 544 patients. The details of tumor stage were offered
in 31 articles, and the classifications were diverse. Follow-up time
was provided in 27 articles. Specific TIL subsets were detected by
methods of flow cytometry (FC), immunohistochemistry (IHC),
and polymerase chain reaction (PCR), respectively. All 46 studies
were considered to be of adequate quality for the meta-analysis
according to NOS assessment (score ≥5 points) (Table 1).
3.2. Subgroup analysis

Different TIL subsets have different functions in the process of
protumor or antitumor immunoreaction response. Therefore,
subgroup analyses based on TIL subsets were carried out. Then,
we further conducted subgroup analyses based on the distribu-
tion location of TILs. Table 2 shows the various consequences of
subgroup analyses.

3.3. Foxp3+ T-lymphocyte subset

A total of 18 articles, including 3015 patients with HCC,
researched the association between clinical outcome and the
density of Foxp3+ TILs.[8,16,18–22,24,26,27,29–31,34,42,43,48,49]

3.3.1. Overall survival. Fouteen articles focused on the relation-
ship between OS and the density of Foxp3+ TILs in
IT.[8,16,18,20,24,26,27,29–31,34,42,48,49] Four articles focused on the
association between OS and the density of Foxp3+ TILs in
PT.[16,21,22,30] The pooled analysis revealed that low density of
infiltration of Foxp3+ TILs in IT was statistically significant
associated with better OS (pooled HR=1.894; 95% CI=1.659–
2.164; P< .001). But, there was no statistical significance
between the density of Foxp3+ TILs in PT and OS (P= .054)
(Fig. 2, Table 2).
Subgroup analysis showed that patients with high infiltration

of Foxp3+ T-lymphocytes hadworse OS in the groups with Asian
patients (pooled HR=1.878, 95% CI=1.643–2.147; P< .001),
small sample size (<100; pooled HR=2.543, 95% CI=1.639–
3.945; P< .001), large sample size (≥100; pooled HR=1.804,
95% CI=1.548–2.101; P< .001), median cutoff values (pooled
HR=2.098, 95% CI=1.579–2.787; P< .001), and other cutoff
values (pooled HR=1.911, 95% CI=1.567–2.330; P< .001).
However, other subgroup showed no statistical significance
(Table 3).
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Figure 1. Flow diagram of study selection.
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3.3.2. Disease-free survival. Eleven articles focused on the
relationship between DFS and the density of Foxp3+ TILs in
IT.[16,18–20,24,27,29–31,34,43] Four articles focused on the associa-
tion between DFS and the density of Foxp3+ TILs in PT.[16,21,30]

The pooled analysis revealed that low density of infiltration of
Foxp3+ TILs in IT was statistically significant associated with
better DFS (pooled HR=1.791; 95% CI=1.546–2.076; P
< .001) and so as Foxp3+ TILs in PT (pooled HR=1.557;
95% CI=1.057–2.293; P= .025) (Fig. 3, Table 2).

3.4. CD8+ T-lymphocyte subset

A total of 20 articles, including 3102 patients withHCC, researched
the association between clinical outcome and the density of CD8+
TILs.[9,10,13,14,16,17,23,28,30,34,35,39–41,44,48,50,53–55]

3.4.1. Overall survival. Eighteen articles focused on the
relationship between OS and the density of CD8+ TILs in
IT.[9,10,14,16,17,23,28,30,34,35,39–41,44,50,53–55] Two articles focused
on the association between OS and the density of CD8+ TILs in
MT.[39,41] Five articles focused on the association between OS
and the density of CD8+ TILs in PT.[16,17,30,39,48] A random
model was used because of a significant heterogeneity (P< .001,
I2=69.5%), and the result demonstrated patients with high
infiltration of CD8+ TILs in IT had better OS (pooled HR=
3

0.676; 95% CI=0.540–0.845; P= .001). The pooled analysis
revealed that high density of infiltration of CD8+ TILs inMTwas
statistically significant associated with better OS (pooled HR=
0.577; 95% CI=0.437–0.760; P< .001). But, there was no
statistical significance between the density of CD8+ TILs in PT
and OS (P= .531) (Fig. 4, Table 2).
Subgroup analysis showed that patients with high infiltration

of CD8+ T-lymphocytes had better OS in the groups with Asian
patients (pooledHR=0.669, 95%CI=0.536–0.835;P< .001),
large sample size (≥100; pooled HR=0.668, 95% CI=0.537–
0.831; P< .001), median cutoff values (pooled HR=0.701,
95% CI=0.532–0.925; P= .012), and other cutoff values
(pooled HR=0.656, 95% CI=0.443–0.971; P= .035). How-
ever, other subgroups showed no statistical significance
(Table 3).

3.4.2. Disease-free survival. Ten articles focused on the
relationship between DFS and the density of CD8+ TILs in
IT.[13,16,17,28,30,34,41,44,50,53] Only 1 article focused on the
association between DFS and the density of CD8+ TILs in
MT.[41] Three articles focused on the association between DFS
and the density of CD8+ TILs in PT.[16,17,30] The pooled analysis
revealed that high density of infiltration of CD8+ TILs in IT was
statistically significant associated with better OS (pooled HR=
0.712; 95%CI=0.574–0.883; P= .002). There was no statistical
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Table 1

Main characteristics of all studies included in the meta-analysis.

Study Country Subsets Location
Case

number
Tumor
stage

Follow-up,
mo

Detected
method

Cutoff
value

HRs
provided
from Outcome

Quality
score
(NOS)

Ikeguchi, 2004 Japan CD8+ IT 60 5/17/26/12 49 (2–115) IHC Median Report DFS 7
Ikeguchi, 2005 Japan CD8+ IT 59 6/16/25/12 57 (2–128) IHC Median Report OS 5
Fu, 2007 China CD4+CD25+FoxP3+ PB 75 NR NR FC Mean SC OS 5
Gao, 2007 China CD3+, CD4+, CD8+,

Granzyme B+, Foxp3+
IT/PT 302 185/52/65/0 58 (2–109) IHC Median Report OS/DFS 6

Kobayashi, 2007 Japan Foxp3+/CD4+, CD8+ IT/PT 147 57/53/37/0 52.8 (0.5–169.1) IHC Median Report OS/DFS 6
Li, 2008 China Foxp3+, Foxp3+/CD4+ IT/PB 63 15/46/2/0 NR IHC 20/mm2 Report OS/DFS 7
Sasaki, 2008 Japan Foxp3+ IT 164 NR 55.5 (2–184) IHC Median SC DFS 7
Gao, 2009 China FoxP3+, Granzyme B+,

PD-L1, PD-L2
IT 240 106/76/58/0 16 (1.5–68) IHC NR Report OS/DFS 7

Ju-AJCP, 2009 China Foxp3+, CD68+ PT 130 I-II66/III-IV64 31.8±1.7 IHC 25% Report OS/DFS 7
Ju-CS, 2009 China Foxp3+ PT 207 98/67/42/0 27.9 (1.5–77) IHC 25% SC OS 7
Pang, 2009 China CD4+, CD8+ IT 38 3/12/12/11 NR NR Median SC OS 5
Zhou, 2009 China Foxp3+ IT 85 NR NR IHC Median Report OS/DFS 6
Zhu, 2009 China CD56+ IT 62 I-II38/III–IV24 NR IHC 40% Report OS/DFS 6
Lin, 2010 China Foxp3+ IT 102 70/7/23/2 NR IHC Mean Report OS 7
Chen, 2011 China Foxp3+ IT 293 I-II202/III-IV91 NR IHC Median Report OS/DFS 6
Li, 2011 China CD66b+, CD8+ IT 281 I103/II-III94 29 (1.5–83) IHC 70% Report OS/DFS 6
Shen, 2011 China Foxp3+ IT 76 I-II51/III-IV25 12 (9–19) IHC 27/5HPF SC OS/DFS 7
Chen, 2012 China CD3+, CD4+,

CD8+, Foxp3+,
CD8+/CD3+, FoxP3+/CD4+

IT/PT 141 NR 22.7 (2–70.3) IHC Median Report OS/DFS 7

Chew, 2012 Singaporean CD8+, CD56+ IT 46, 36 NR NR IHC Median Report OS 6
Huang, 2012 China Foxp3+, CD8+/Foxp3+ IT 54 I-II23/III-IV31 44 (2–86) IHC Median Report OS/DFS 7
Mathai, 2012 America CD8+/Foxp3+ IT 91 40/43/8 56 (25–81) IHC Median Report OS/DFS 8
Wang, 2012 China Foxp3+ IT 137 17/71/26/23 27.5 (2–49) IHC Median SC OS 7
Fu, 2013 China Granzyme B+ IT 315 NR 55 (1.8–116) IHC Median SC OS/DFS 6
Lin, 2013 China CD3+, CD4+, CD8+,

CD56+, CD68+, FoxP3+,
FoxP3+/CD4+, CD8+/CD3+

IT 132 NR NR FC Minimum
P-value

Report OS/DFS 6

Pan, 2013 China CD3+, CD8+ IT 163 I100/II-III63 36 (1–87) IHC Median SC OS 6
Shi-Training, 2013 China CD20+ MT 120 I-II85/III-IV35 61.5 (2–84.8) IHC Median Report OS/DFS 6
Shi-Validation, 2013 China CD20+ MT 200 NR 59.5 (2–73.2) IHC Median Report OS/DFS 6
Umemoto, 2014 Japan PD-L1 IT 80 I-II49/IIIm-IV31 80.9 IHC NR SC OS/DFS 6
Zhao, 2014 China CD57+ IT 163 NR NR IHC Median SC OS 6
Brunner, 2015 Germany CD8+ IT/MT/PT 119 NR 65 (57–71) IHC Mean Report OS 6
Shi, 2015 China CD8+ IT 147 I-II90/III-IV57 NR IHC Mean Report OS 6
Sun, 2015 China CD3+, CD8+ IT/MT 359 180/27/108/44 NR IHC Minimum

P-value
Report OS/DFS 6

Cai, 2016 China CD39+, Foxp3+,
CD39+Foxp3+

IT/PT 324 I-II243/III-IV81 61.03 (2–82.33) IHC Minimum
P-value

Report OS 6

Fu-Training, 2016 China Foxp3+, CD39+Foxp3+ IT 210 I-II159/III-IV51 53.4 (1.5–61.3) IHC x-tile analysis Report DFS 6
Fu-Validation, 2016 China Foxp3+, CD39+Foxp3+ IT 138 I-II100/III-IV38 53.4 (1.5–61.3) IHC x-tile analysis Report DFS 6
Gabrielson, 2016 America CD3+, CD8+, PD-L1 IT 65 37/13/14/1 39.7 (9–84) IHC Median Report OS/DFS 5
Hayashi, 2016 Japan LI IT 544 NR 52.7 (0.8–168.5) IHC NR Report OS/DFS 6
Liao, 2016 China CD16+, CD16+/CD8+ IT 256 I-II192/III-IV64 44 (1.5–84) IHC NR Report DFS 6
Ramzan, 2016 France CD8+ IT 63 NR 38.9 (1–130) IHC Harrel-C

method
SC OS 6

Tu, 2016 China FoxP3+/CD4+ IT 57 NR NR IHC ROC curves SC OS 6
Wang Q, 2016 America Foxp3+, CD8+ IT/PT 66 NR 38.2 (35.2–58.2) PCR Median SC OS 6
Wang Y, 2016 China Foxp3+ IT 151 NR NR IHC Median SC OS/DFS 6
Xie, 2016 China CD8+, PD-L1 IT 167 I86/II-III81 RN IHC Median Report OS/DFS 6
Zhang, 2016 China CD68+, CD169+ IT/PT 354 I217/II-III133 NR IHC Median Report OS 6
Garnelo, 2017 Singapore CD3+, CD20+ IT 112 I-II64/III-IV45 RN IHC Median Report OS 6
Huang-Xu, 2017 China PD-L1, CD8+ IT 411 231/57/123 32 IHC Median Report OS/DFS 6
Sideras, 2017 The

Netherlands
PD-L1, CD8+ IT 153 NR NR IHC Minimum

P-value
SC OS 6

Zhang, 2018 China CD8+ IT 183 73/60/42 43 (1–80) IHC 10% Report OS 6

CI= confidence interval, DFS=disease-free survival, FC= flow cytometry, HR=hazard ratio, IHC= immunohistochemistry, IT= intratumor, LI= lymphoplasmacytic infiltration, MT=margin of tumor, NOS=
Newcastle–Ottawa scale, NR=not report, OS= overall survival, PB=peripheral blood, PCR=polymerase chain reaction, PT=peritumor, ROC curve= receiver operating characteristic curve, SC= survival curve.
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Table 2

The pooled associations between TILs subsets and the prognosis of patients with hepatocellular carcinoma.

Heterogeneity

Subset Outcome Location Study number Case number HR (95% CI) model P-value I2, % P

Foxp3+ OS IT 11 1802 1.894 (1.659–2.164) - fixed <.001 32.9 .112
PT 4 780 1.673 (0.991–2.822) - random .054 57.8 .069

DFS IT 12 1898 1.791 (1.546–2.076) - fixed <.001 0 .540
PT 3 573 1.557 (1.057–2.293) - fixed .025 0 .387

CD8+ OS IT 18 2976 0.676 (0.540–0.845) - random .001 69.5 <.001
MT 2 478 0.577 (0.437–0.760) - fixed <.001 0 .947
PT 5 775 0.863 (0.544–1.369) - random .531 58.6 .047

DFS IT 10 2065 0.712 (0.574–0.883) - random .002 56.9 .001
MT 1 359 0.600 (0.458–0.786) <.001 – –

PT 3 590 0.806 (0.597–1.089) - fixed .160 0 .525
CD3+ OS IT 7 1274 1.008 (1.000–1.015) - random .037 81.7 <.001

MT 1 359 0.160 (0.080–0.310) <.001 – –

PT 2 443 0.958 (0.643–1.427) - fixed .833 0 .496
DFS IT 5 999 0.596 (0.374–0.948) - random .029 77.0 .002

MT 1 359 0.430 (0.260–0.690) .001 – –

PT 2 443 1.232 (0.630–2.409) - random .543 55.5 .134
CD4+ OS IT 4 613 0.849 (0.666–1.082) - fixed .185 0 .416

PT 2 443 0.965 (0.645–1.444) - fixed .863 24 .252
DFS IT 3 575 0.817 (0.634–1.053) - fixed .118 0 .544

PT 2 443 0.969 (0.632–1.485) - fixed .885 45.1 .177
Granzyme B+ OS IT 3 857 0.621 (0.516–0.748) - fixed <.001 13.4 .315

PT 1 302 1.310 (0.820–2.800) .389 – –

DFS IT 3 857 0.678 (0.563–0.815) - fixed <.001 42.5 .176
PT 1 302 0.920 (0.550–1.550) .752 – –

CD56+ OS IT 3 230 0.518 (0.203–1.323) - random .169 64.9 .058
DFS IT 2 194 0.711 (0.393–1.288) - fixed .261 0 .608

CD68+ OS IT 2 486 1.088 (0.372–3.181) - random .878 87.6 .004
PT 2 484 2.459 (1.091–5.542) - random .030 64.9 .092

DFS IT 1 132 0.700 (0.400–1.300) .236 – –

PT 1 132 2.537 (1.192–5.398) .016 – –

PD-L1 OS IT 6 1116 1.012 (0.606–1.692) - random .962 79.9 <.001
DFS IT 5 963 1.209 (0.848–1.724) - random .294 57.9 .068

Foxp3+/CD4+ OS IT 4 477 2.097 (1.176–3.736) - random .012 65.9 .032
PT 2 288 0.767 (0.510–1.154) - fixed .204 0 .836
PB 1 63 2.226 (1.030–4.811) .042 – –

DFS IT 3 420 1.497 (0.872–2.570) - random .143 84.8 .001
PT 2 288 0.977 (0.924–1.033) - fixed .417 0 .388
PB 1 63 1.676 (0.831–3.379) .149 – –

CD8+/CD3+ OS IT 2 273 0.909 (0.565–1.462) - fixed .693 33.9 .219
PT 1 141 1.070 (0.500–2.270) .861 – –

DFS IT 2 273 1.000 (0.990–1.010) - fixed .988 0 .426
PT 1 141 0.890 (0.430–1.830) .752 – –

CD4+CD25+FoxP3+ OS PB 1 75 2.460 (1.478–4.094) <.001 – –

CD16+ DFS IT 1 256 1.457 (1.008–2.106) .045 – –

CD16+/CD8+ OS IT 1 256 1.876 (1.174–2.998) .009 – –

DFS IT 1 256 1.869 (1.285–2.718) .001 – –

CD169+ OS IT 1 354 0.500 (0.300–0.700) .008 – –

PT 1 354 1.200 (0.800–1.700) .378 – –

CD20+ OS IT 1 112 1.080 (1.003–1.163) .041
IM 1 (2 cohort) 340 0.500 (0.369–0.676) <.001 0 .574

DFS IM 1 (2 cohort) 340 0.559 (0.401–0.779) .001 0 .568
CD39+ OS IT 1 324 1.548 (1.086–2.206) .016 – –

PT 1 324 1.625 (1.017–2.596) .042 – –

CD39+Foxp3+ OS IT 1 324 1.485 (0.990–2.228) .056 – –

DFS IT 1 (2 cohort) 348 1.915 (1.284–2.854) - fixed .001 0 .783
CD57+ OS IT 1 163 0.560 (1.236–2.580) .002 – –

CD66b+ OS IT 1 281 2.578 (1.618–4.106) <.001 – –

DFS IT 1 281 1.845 (1.169–2.911) .009 – –

CD8+/Foxp3+ OS IT 2 145 0.861 (0.762–0.972) - fixed .016 0 .446
DFS IT 2 145 0.868 (0.776–0.970) - fixed .012 47.6 .167

LI OS IT 1 544 1.731 (1.240–2.444) .001 – –

DFS IT 1 544 1.567 (1.242–1.983) <.001 – –

(continued )
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Table 2

(continued).

Heterogeneity

Subset Outcome Location Study number Case number HR (95% CI) model P-value I2, % P

PD-L2 OS IT 1 240 1.100 (0.680–1.790) .698 – –

DFS IT 1 240 0.960 (0.600–1.530) .865 – –

CI= confidence interval, DFS=disease-free survival, HR=hazard ratio, IT= intratumor, LI= lymphoplasmacytic infiltration, MT=margin of tumor, OS= overall survival, PB=peripheral blood, PT=peritumor.
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significance between DFS and CD8+ TILs in PT (P= .160) (Fig. 5,
Table 2).

3.5. CD3+ T-lymphocyte subset

A total of 7 articles, including 1274 patients with HCC,
researched the association between clinical outcome and the
density of CD3+ TILs.[16,30,34,35,41,44,52]

3.5.1. Overall survival. Seven articles focused on the
relationship between OS and the density of CD3+ TILs in
IT.[16,30,34,35,41,44,52] Only 1 article focused on the association
betweenOS and the density of CD3+ TILs inMT.[41] Two articles
Figure 2. Forest plots of studies evaluating the association between Foxp3+
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focused on the association between OS and the density of CD3+
TILs in PT.[16,30] The pooled analysis revealed high density of
CD3+ in IT foreboded worse OS (pooled HR=1.008; 95% CI=
1.000–1.015; P= .037). However, there was no statistical
significance between OS and CD3+ TILs in PT (P= .833)
(Table 2).

3.5.2. Disease-free survival. Five articles focused on the
relationship between DFS and the density of CD3+ TILs in
IT.[16,30,34,41,44] Only 1 article focused on the association
between DFS and the density of CD3+ TILs in MT.[41] Two
articles focused on the association between DFS and the density
of CD3+ TILs in PT.[16,30] The pooled analysis revealed high
lymphocytes and overall survival of patients with hepatocellular carcinoma.



Table 3

Pooled hazard ratios for OS according to subgroup analyses.

Heterogeneity

OS-Intratumor subgroup Study number Case number HR (95% CI) - model P-value I2 (%) P

Foxp3+
Ethnicity
Asian 13 2100 1.878 (1.643–2.147) - fixed <.001 34.2 .108
Caucasion 1 66 3.421 (1.142–10.253) .028 – –

Sample size
≥100 9 1822 1.804 (1.548–2.101) - fixed <.001 11.8 .336
<100 5 344 2.543 (1.639–3.945) - random <.001 53.8 .007

Cutoff value
Median 8 1229 2.098 (1.579–2.787) - random <.001 51.5 .079
Others 6 937 1.911 (1.567–2.330) - fixed <.001 0 .424

CD8+
Ethnicity
Asian 14 2576 0.669 (0.536–0.835) - random <.001 67.8 <.001
Caucasion 4 400 0.770 (0.264–2.248) - random .632 80.4 .002

Sample size
≥100 13 2705 0.668 (0.537–0.831) - random <.001 79.1 .001
<100 5 271 0.728 (0.297–1.788) - random .489 67.2 <.001

Cutoff value
Median 10 1539 0.701 (0.532–0.925) - random .012 64.8 .002
Others 8 1437 0.656 (0.443–0.971) - random .035 75.2 <.001

CI= confidence interval, HR=hazard ratio, OS= overall survival.

Figure 3. Forest plots of studies evaluating the association between Foxp3+ lymphocytes and disease-free survival of patients with hepatocellular carcinoma.
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Figure 4. Forest plots of studies evaluating the association between CD8+ lymphocytes and overall survival of patients with hepatocellular carcinoma.
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density of CD3+ in IT foreboded better DFS (pooled HR=0.596;
95% CI=0.374–0.948; P= .029). However, there was no
statistical significance between DFS and CD3+ TILs in PT
(P= .543) (Table 2).
3.6. CD4+ T-lymphocyte subset

A total of 4 articles, including 613 patients with HCC, researched
the association between clinical outcome and the density of CD4+
TILs.[16,23,30,34]

3.6.1. Overall survival. Four articles focused on the relationship
between OS and the density of CD4+ TILs in IT.[16,23,30,34] Two
articles focused on the association between OS and the density of
CD4+ TILs in PT.[16,30] However, there was no statistical
significance between OS and CD4+ TILs in IT (P= .185) or in PT
(P= .863) (Table 2).
8

3.6.2. Disease-free survival. Three articles focused on the
relationship between DFS and the density of CD4+ TILs in
IT.[16,30,34] Two articles focused on the association between DFS
and the density of CD4+ TILs in PT.[16,30] However, there was no
statistical significance between DFS and CD4+ TILs in IT
(P= .118) or in PT (P= .885) (Table 2).
3.7. Granzyme B+ T-lymphocyte subset

A total of 3 articles, including 857 patients with HCC,
researched the clinical outcome of patients with Granzyme
B+ T-lymphocytes infiltration.[16,20,33] The pooled analysis
revealed that high density of Granzyme B+ T-lymphocytes
in IT was statistically significant associated with better OS
(pooled HR=0.621; 95% CI=0.545–0.794; P< .001) and
DFS (pooled HR=0.678; 95% CI=0.563–0.815; P< .001)
(Table 2).



[21,34,51]

Figure 5. Forest plots of studies evaluating the association between CD8+ lymphocytes and disease-free survival of patients with hepatocellular carcinoma.
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3.8. PD-L1 lymphocyte subset

A total of 6 articles, including 1116 patientswithHCC, researched
the clinical outcome of patients with PD-L1 lymphocyte infiltra-
tion.[20,37,44,50,53,54] A random model was used because of a
significant heterogeneity (P< .001, I2=79.9%), and the result
demonstrated that therewasno statistical significancebetweenPD-
L1 lymphocyte in IT andOS (P= .962). A randommodel was used
because of a significant heterogeneity (P< .068, I2=57.9%), and
the result demonstrated that there was no statistical significance
between PD-L1 lymphocyte in IT and DFS (P= .294).

3.9. CD56+ NK cell subset

A total of 3 articles, including 230 patients with HCC, researched
the clinical outcome of patients with CD56+ NK cells
infiltration.[9,25,34] A random model was used because of a
significant heterogeneity (P= .058, I2=64.9%), and the result
demonstrated that there was no statistical significance between
CD56+ NK cells in IT and OS (P= .169), and the same to DFS
(P= .261) (Table 2).
3.10. CD68+ macrophage subset

A total of 3 articles, including 616 patients with HCC, researched
the clinical outcome of patients with CD68+ macrophages
9

infiltration. A random model was used because of a
significant heterogeneity (P= .004, I2=87.6%), and the result
demonstrated that there was no statistical significance between
CD68+ macrophages in IT and OS (P= .878). A random model
was used because of a significant heterogeneity (P= .092, I2=
64.9%), and the result demonstrated that high density of CD68+
macrophages in PT was statistically significant associated with
better OS (pooled HR=2.459; 95% CI=1.091–5.542; P= .030)
(Table 2).
3.11. FoxP3+/CD4+ T-lymphocytes ratio

A total of 5 articles, including 540 patients with HCC, researched
the clinical outcome of patients with FoxP3+/CD4+ T-lympho-
cytes ratio.[17,18,30,34,47] A random model was used because of a
significant heterogeneity (P= .032, I2=65.9%), and the result
demonstrated that patients with low FoxP3+ /CD4+ T-
lymphocytes ratio had better OS in IT and OS (pooled HR=
2.097; 95% CI=1.176–3.736; P= .012) (Table 2).
3.12. Other subsets

The prognostic value of CD4+CD25+FoxP3+ TILs, CD16+
macrophages, CD39+ TILs, CD20+ B cells, CD57+ NK cells,
and CD169+ macrophages in patients with HCC have been
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investigated in separate articles respectively.
Subgroup analysis suggested that patients with high density of
CD20+ B cells in MT had better OS (pooled HR=0.500; 95%
CI=0.369–0.676; P< .001) and DFS (pooled HR=0.559; 95%
CI=0.401–0.779; P= .001) (Table 2).
3.13. Publication bias

Wejust assessed thepublicationbiasof subgroupswhich contained
more than 10 researches. We used Egger test to evaluate the
publication bias. It indicated there was some degree of publication
bias in the studies about Foxp3+ in ITwith OS (P= .016) (Fig. 6A)
and with DFS (P= .048) (Fig. 6B). And, there was no statistical
significance of publication bias in the studies about CD8+ in IT
with OS (P= .653) (Fig. 6C) or with DFS (P= .688) (Fig. 6D).

4. Discussion

The prognostic value of TILs in HCCwas quantified in this meta-
analysis. Because of the bidirectional role of TILs in immune
microenvironment of HCC, subgroup analysis was performed to
assess the protumor or antitumor role of different TIL subsets.
Different subsets of TILs have different effect in the

development of HCC, which contribute to different prognosis.
Figure 6. Egger tests of the association between Foxp3+ tumor-infiltrating lymph
between Foxp3+ TILs in intratumor (IT) and overall survival (OS). (B) Egger tests of
Egger tests of the association between CD8+ TILs in IT and OS. (D) Egger tests

10
FOXP3, CD3, CD4, CD8, CD16, CD20, CD56 and CD57,
CD68, and CD169 are mainly located in the surface of
lymphocytes, including T-cells, B cells, NK cells, and macro-
phages. FOXP3 is surface antigen of regulatory T-lymphocytes
(Tregs) that are the main effective cells in the protumor immune
response.[56] Correspondingly, Granzyme B and CD8 are surface
antigens of cytotoxic T-lymphocytes that play an important role
of the antitumor immune response.[9,20] This is consistent with
our research. CD3 is also a common surface antigen of T-
lymphocytes. Pan et al and Sun et al considered that high density
of CD3+ TILs in IT and MT implied a favorable prognosis,
respectively.[35,41]

Furthermore, there are some other surface antigens, which
located in T-lymphocytes, showing different prognostic roles.
CD8+ lymphocytes include a group of heterogeneous T-
lymphocytes, which can diverse programmed cell death ligand-
1 (PD-L1; B7-H1; CD274), galactin-9 and herpesvirus entry
mediator (HVEM). Sideras et al showed that low tumor
expression of PD-L1 and Galectin-9 are associated with poor
survival in patients with resected HCC.[54] On the contrary, some
studies also confirmed overexpression of PD-L1 in HCC was
significantly associated with tumor aggressiveness and enhanced
risk for postoperative recurrence.[20,37] These conflicting results,
on the association between PD-L1 and prognosis of HCC, were
ocytes (TILs) or CD8+ TILs and prognosis. (A) Egger tests of the association
the association between Foxp3+ TILs in IT and disease-free survival (DFS). (C)
of the association between CD8+ TILs in IT and DFS.



Ding et al. Medicine (2018) 97:50 www.md-journal.com
probably related to the lack of specificity of some anti-PD-L1
antibodies for immunohistochemical staining of PD-L1 in
formalin-fixed paraffin-embedded tissues.[54] Therefore, the role
of PD-L1 is very complicated.
The B cells, NK cells, and macrophages also play crucial roles

in tumor-associated immune responses. The role of CD20+ (a B-
lymphocyte antigen expressed on mature B cells but not on
plasma cells) lymphocytes in promoting favorable outcomes in
several human cancers has been reported, including breast
carcinoma, cutaneous melanoma, and HCC.[36,57,58] The poten-
tial mechanisms included margin-infiltrating B lymphocytes
serving as allophycocyanin, stimulating CD8+ T-lymphocytes
by releasing proinflammatory cytokines, and exerting a direct
killing effect.[36] CD56 and CD57 are all main markers of NK
cells. Zhao et al suggested that IL-37 might mediate antitumor
immune responses through recruiting CD57+ NK cells to tumor
sites.[38] CD16, CD68, and CD169 are all main markers of
macrophages. CD169 is mainly expressed by cells of the
monocyte/macrophage lineage, and CD169+ macrophages
enhanced autologous CD8+ T-cell-mediated immunity in vitro
and could suppress tumor progression by enhancing CD8+ T-cell
activity in human HCC.[51]

To quantify the immune microenvironment and apply it to a
heterogeneous group of patients, a methodology named
“Immunoscore” based on the numeration of CD3+ and CD8+
lymphocytes in 2 regions (IT and MT), was provided.[41,44] The
Immunoscore was acquired by summation of the 4 binary score
values, the scale being from 0 to 4. For instance, immunoscore 0
(I0) was low densities of both cell types in both regions and
immunoscore 4 (I4) was high densities of both cell types in both
regions.[12,59] Gabrielson et al revealed Immunoscore were
significantly associated with recurrence and recurrence-free
survival independently of other predictive clinicopathologic
factors, and patients with a high density of CD3+ and CD8+
cells in 1 or both tumor regions (IT or MT) experienced a
significant reduction in the rate of HCC recurrence.[44]

In addition, we observed that TILs are potential targets for
immunotherapy, beside prognostic biomarker for gastric cancer.
Recently, cancer immunotherapy has emerged as an appealing
field in eliminating the micrometastatic and residual disease of
cancer, which contains adoptive cell therapy, monoclonal
antibody-based treatment and cancer vaccines, among which
cytokine-induced killer (CIK) cells therapy is a promising option.
Tumor immunotherapy is currently focusing on the signaling
pathway of the programmed cell death protein 1 (PD-1; also
known as CD279) binding with PD-L1. PD-1+ TIL was a
powerful and specific biomarker in predicting the outcome of
CIK immunotherapy in patients with HCC. The correlation
between high number of PD-1+ TILs and the high number of both
CD4+ and CD8+ TILs suggested that PD-1+ TILs can reflect the
existence of endogenous host immune response to tumors, and
additional CIK therapy, to some extent, could compensate for
immunosuppressive environment and exert a synergistic antitu-
mor effect against HCC.[60]

As we know, this is the 1st meta-analysis including more than
30 articles to evaluate the prognostic role of TILs in HCC. And
there are several limitations which should be taken into
consideration in interpreting the conclusions of this study. First,
studies included used different cutoff values that could reduce the
accuracy of TILs in the process of estimating prognosis. Second,
when several HRs could not be directly acquired in the original
article, we obtained them by calculating the data extracted from
the survival curves. Third, some data comes from univariate
11
analysis, which may overestimate the effect sizes of some TIL
subsets compared to multivariate analysis. Fourth, there are few
investigations of some subsets such as CD16+ TILs, CD39+ TILs,
CD20+ B cells, CD57+NK cells, and CD169+macrophages. This
could reduce the credibility of the data in the subgroup analysis.
Fifth, there was some degree of publication bias in the studies
about Foxp3+ in IT. It could be caused by a greater percentage of
Asian articles. Finally, no prospective randomized trials are
reported; therefore, future research should be directed at
performing prospective randomized trials.
5. Conclusion

In conclusion, our meta-analysis provides strong evidence that
TILs would serve as an effective marker for evaluating the
prognosis of patients with HCC. Especially, high density of
Foxp3+ TILs in the IT was a poor prognostic factor, and high
density of CD8+ TILs in IT was a good prognostic factor. More
randomized controlled trials were needed to further verify the
results of this meta-analysis.
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