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Abstract: IMAGE is an application tool, based on the vector quantization method, aiding the discovery of nucleotidic 
sequences corresponding to Transcription Factor binding sites. Starting from the knowledge of regulation regions of a 
number of co-expressed genes, the software is able to predict the occurrence of specifi c motifs of different lengths (starting 
from 6 base pairs) with a defi ned number of punctual mutations.

1. Introduction
The discovery of Transcription Factor binding sites is still an open problem, as most of the softwares 
available to date have low predictive character, particularly for complex DNA (such as the human DNA). 
A novel method is proposed which overcomes some of the limitations affecting the existing prediction 
tools. Decoding the regulatory regions in DNA via the discovery of recurrent patterns is a major challenge 
in bioinformatics. The expression of a gene takes place when a region of the DNA sequence is transcribed 
into a RNA sequence, subsequently translated into the protein encoded by the gene. Transcrip-
tion is initiated by one or more proteins called transcription factors (TF) binding to DNA. A TF recog-
nizes a set of short nucleotide fragments called binding sites (BS), located within a “regulation region” 
typically up-stream from (often quite close to) the transcription start site, which then act as regulatory 
signals. The discovery of TF and BS in the regulation regions is a central issue in the post-genomic 
research. Computational methods seem, in this respect, to provide a useful approach to make “predictions” 
on the position of these entities, offering valuable insights for subsequent experimental studies [Tompa 
et al. 2005].

The problem of identifying BS can be formulated in simple terms by considering a set of genes 
regulated by the same TF (co-regulated genes). Typically, one assumes that the regulation regions are 
comprised within a few thousand nucleotides, upstream from the transcription start site. In this set, 
one seeks for one or more similar motifs, i.e. nucleotide patterns which are signifi cantly over-
represented. Recent fi ndings [Prakash and Tompa, 2005] point out the higher phylogenetic conserva-
tion of the regulatory elements with respect to the surrounding non-functional sequence. The search 
for regulatory elements in terms of “signal fi nding” stems from the fact that, however, the putative 
signals usually present few mutations, insertions and deletions with respect to a consensus motif, i.e. 
phylogenetic conservation should allow to cope with a different DNA folding and, thus, consider the 
functional role played by mutations, insertions and deletions to accomodate the structure of the 
regulatory element.

When tackling the discovery of patterns of length n presenting only mutations from the consen-
sus, an exhaustive search for all possible 4n mutations of a candidate motif becomes rapidly pro-
hibitive, even on modern computers. The goal of detecting all possible over-represented patterns 
can be formulated as a multiple alignment problem, whose solution is known to be NP-complete 
[Jones and Pevzner, 2004]. In the past, several methods have been proposed to solve this challeng-
ing computational task (for an extensive review, see [Baldi and Brunak, 1998]). Exhaustive motif 
search algorithms have been proposed which rely on proper heuristics and pruning of the search 
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space, such as the approach pioneered by Marsan 
and Sagot [Marsan and Sagot, 2000]. Different 
strategies are based on a statistical sampling of 
search space by ad-hoc Monte Carlo methods 
[Liu, 2002], such as the so-called Gibbs sampling 
method [Lawrence et al. 1993], or by maximiza-
tion of proper scoring or likelihood functions. 
Other methods rely on diverse statistical models, 
such as detecting hidden Markov chains [Thijs 
et al. 2001].

A recent paper has assessed the performances 
of several computer programs, each operating with 
different heuristics, and found that the program 
Weeder [Pavesi et al. 2004], based on a quasi-
exhaustive enumerative procedure, outperformed 
other methods [Tompa et al. 2005]. Overall, no 
method was found to have a correctness superior 
to 30%, in particular when analysing data sets 
relative to eucaryotic organisms. Therefore, despite 
the numerous available approaches and the scien-
tifi c effort in this fi eld, the detection of binding 
sites is still a partially unsolved problem.

In the present paper, we describe a strategy to 
discover binding sites inspired by a technique used 
for lossy image compression, known as vector 
quantization [Nasrabadi and King, 1988], and by 
analogous methods to identify genes with similar 
functions and reconstruct phylogenetic trees by 
clustering algorithms [Jones and Pevzner, 2004]. 
The central idea of our approach is to map all 
possible n-length substrings of a given DNA 
sequence into a properly defi ned n-dimensional 
space equipped with a distance measure which 
projects similar substrings, representing the same 
motif, into nearby points. Consequently, the goal 
of fi nding recurrent similar strings is shifted into 
the determination of highly clustered data points 
in a search space of high dimensionality.

We developed a fast and adaptive algorithm to 
detect clusters and cluster representatives. The 
latter are strings having a close resemblance to 
consensus motifs. The approach enables us to 
make an extensive search of clusters by auto-
matically excluding a very large amount of strings 
which fall into the low-density regions of the 
search space. Notwithstanding the lack of strate-
gies to provide optimal clustering solutions and 
the lack of a universal notion of what is a good 
cluster, our approach offers a number of advan-
tages which we briefl y enumerate. At fi rst, the 
search method is based on a number of controlled 
heuristics allowing us to scan a large number of 

recurrent patterns with high effi ciency. Secondly, 
the algorithm is sensitive to the choice of the 
starting conditions but samples extensively the 
clusters by running over a small number of initial 
conditions, so that the method proves convenient 
to investigate large and noisy data sets. Thirdly, 
a crucial benefi t of such approach relies on the 
fl exibility in choosing a convenient metrics in 
search space. In particular, while the classical 
defi nition of the motif fi nding problem is based 
on the notion of similarity between two motifs in 
terms of the Hamming distance [Jones and 
Pevzner, 2004], we will employ a wider defi nition 
by including the edit distance in the metrics. On 
the other hand, we will make minimal assumptions 
on the structure of the consensus motif, e.g. on 
the position of mismatches along the set of over-
represented patterns. Given the above, the method 
is viable for use in different contexts of compu-
tational biology together with providing useful 
insight into the specifi c problem of predicting TF 
binding sites.

The proposed search algorithm allows to fi nd 
a large number of over-represented strings with 
an affordable computing time (order of minutes 
for typical cases). The candidates are subsequently 
analyzed with standard indicators in order to 
assess their statistical signifi cance, in particular 
when compared to a background sequence. We 
anticipate that, for the specifi c problem at hand, 
IMAGE provides a wealth of information, 
specifi cally a large number of recurrent patterns, 
i.e. high sensitivity to true positives, but with a 
somehow reduced specifi city, so that the tool can 
be used either as is, or as a fi ltration step towards 
more TF-oriented, but more CPU-intensive, 
softwares.

2. Methods
Let us start describing our method by defi ning a 
few basic quantities. Given a string composed by 
n nucleotides x = (x1, ..., xn) this is mapped onto a 
set of n coordinates, each defi ned on the discrete 
set {A, C, G, T}. The string x represents a point of 
coordinates (x1, ..., xn) in the n-dimensional string 
space N = {A, C, G, T}n. We adopt the following 
encoding e:

  e(A) = � 1 0 0 0 �, e(C) = � 0 1 0 0 �, 
 e(G) = � 0 0 1 0 �,  e(T) = � 0 0 0 1 �. 

The pattern x is expressed as a 4 × n matrix
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 ω δl a x ax, ,( ) =
1  (1)

where δ is the Kronecker function, a = A,C,G,T 
and l = 1, ..., n. Therefore, each string is repre-
sented as a point in the 4n-dimensional discrete 
space ND = {0, 1}4n subject to the constraints 

a A C G T l a l n= = =
, , , , ,Σ ω 1 1for   .

We use the Hamming distance between two 
points x and y as a measure of similarity between 
strings. The Hamming distance dH(x, y) quantifi es 
the number of mismatches between two strings of 
length n by comparing the patterns letter by letter. 
In terms of matrix representation,

 d x y x yH l a
a A C G Tl

n

l a( , ) ( ) ( ),
, , ,

,= −
==
∑∑1

2 1

ω ω  (2)

Therefore, two strings with l mismatching 
characters have Hamming distance equal to l.

Given a text composed by the DNA sequence 
of length L (�� n), we consider all possible 
L − n + 1 substrings of length n obtained by shifting 
a window of size n over the text by one offset 
position. Each n-mer defines a point in ND. 
Moreover, the biological problem at hand is 
restated as the search for over-represented patterns 
occurring one or multiple times, with not more than 
m defects, in any of K distinct input DNA 
sequences. Given a set of K input DNA sequences 
with li bases (i = 1, ..., K ), we search for the motifs 
which are mostly over-represented with respect to 
a predefi ned background distribution. A given 
n-mer is counted as an occurrence of the motif 
when the Hamming distance between the n-mer 
and the motif is smaller than m.

In order to quantify the mutual similarity among 
a group of n-mers we make use of the concept of 
profi le matrix [Stormo, 2000], i.e. a 4 × n matrix, 
whose (i,  j) element counts the frequency of occur-
rence of nucleotide i in position j of all strings. The 
matrix is further normalized along the columns 

a l a= =( )1

4
1Σ ω ,  and thus its elements have values in 

the range [0,1]. Thus, by relaxing the condition on 
the discrete nature of N D, we consider the con-
tinuous space NC = [0, 1]4n whose elements have 
coordinates spanning the interval [0,1], still retain-
ing the constraint 

a A C G T l a l n= = =
, , , , ,Σ ω 1 1for   .

We extend the defi nition for the metrics (2) to 
the continuous space. In particular, if one of the 
two matrices ω (x) is a discretized matrix in ND the 
metrics further simplifi es to

 
d x y n yH l x

l

n

l
( , ) ( ),= −

=
∑ω

1  
(3)

being xl the character in the l-th position of the 
x sequence.

Following [Stormo, 2000], the consensus 
pattern is defined as the string built from 
the profi le matrix having in each position the 
nucleotide a corresponding to the largest value in 
the column. In other words, the consensus patterns 
is encoded by the discretized version of the profi le 
matrix Q: NC → ND according to the expression

, ,
, ,

1 if max { }
ˆ( ( )

0 elsewhere
l a k k a

l a l aQ x
ω ω

ω ω
↔⎧

≡ = ⎨
⎩

�  (4)

2.1. Defi nition of class representatives
Armed with a metrics in string space, we now 
face the problem of extensively searching clusters. 
Let us consider a sequence sx identifying 
N = L − n + 1 points sx = {x1, x2, ..., xN} (each point 
represents a discretized profi le matrix in ND ). Let 
us partition the points in C classes, each having a 
class representative (CR) x̂ N C∈  which operation-
ally identifi es the partitioning. The class cα is 
defined as the set of points having minimal 
Hamming distance from the α-th CR. Formally, 
the C class representatives 1ˆ ˆ{ , , }Cx x…  induce a 
partitioning on sx given by

s c x c d x xx

C

i H i= ∈ ↔{ }
=

α
α

α α α
1

∪ where min ( , )
 

(5)

The C class representatives 1ˆ ˆ{ , , }Cx x…  are 
determined by solving the minimum problem

 
ˆ{ }

ˆ1

ˆmin ( , )
i

C

H i
x

x x

d x x
α

α
α = ∈
∑ ∑  (6)

which can be formulated as a global minimum 
problem of a cost function. In geometric terms, a 
CR constitutes the centroid of points belonging to 
the class. The optimal partitioning is obtained when 
all centroids “fi t” at best the classes to which they 
separately belong.

It should be noticed that the standard defi nition 
of the motif fi nding problem can be reframed as a 
median string problem [Jones and Pevzner, 2004], 
i.e. as the motif �x  solution of the following double 
minimization procedure
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 ˆ { }
1

min min ( , )
K

H t
x x

t

d x x
=
∑ �  (7)

where {x} is any array of n-mers each placed on 
the K DNA sequences and, strickly speaking, �x  
belongs to ND. Therefore, we reformulated the 
problem as a constrained search of an ensemble 
of, mutually exclusive, class representatives and, 
in case of a succesfull search, we should be able 
to fi nd at least one class representative such that  
ˆ .x x= �  A further remark concerns if, in its original 

defi nition, the Hamming distance is a good defi ni-
tion. In particular, the idea of minimizing the sum 
of distances between instances and the motif may 
not work well if most of the positions not contain-
ing the motif are placed at random. In the present 
work, we decided to avoid the use of additional 
informations on the structure of the profi le matrix 
in order to keep the method general.

To date, there is no known effi cient (polyno-
mial) method to solve the partitioning problem 
exactly (i.e. to locate the global minimum of the 
cost function), but some good clustering algorithms 
have been known for some time, such as the LBG 
algorithm in the image compression community 
[Linde et al. 1980], also known as the Lloyd 
k-Means algorithm [Jones and Pevzner, 2004] in 
computational biology. In this approach, an arbi-
trary partition of points is initially assigned by 
placing CRs at random and associating data points 
to each class. Next, the partition is improved by 
recomputing the new CRs corresponding to the 
current set of classes and the points are further 
redistributed among the classes, according to the 
just computed CRs. Therefore, at each step a new 
partitioning is reconstructed corresponding to the 
optimized position of the CRs. For the sake of 
clarity, we report the structure of the clustering 
LBG algorithm.
Input:
 1. training sequence sx = {x1, ..., xN};
 2. number of class representatives C;
 3. tolerance threshold є;
Output:
 1.  s e t  o f  C  c l a s s  r e p r e s e n t a t i v e s 

ˆ {ˆ , , ˆ }x x xC
∗ ∗ ∗= …1  which (nearly) solve the 

minimization problem

 ˆ min ˆ ;ˆx x xx j jx cc j rr

∗
∈

= −( )∑∑  

Begin algorithm
  randomly select an initial set of CR 

ˆ ˆ , , ˆ ;( ) ( ) ( )

x x xC
0

1

0 0

= …{ }  k = 0; end = false;
 while not end
 {
  Partition the training sequence sx into 

C classes cr
k( )  so that

 
( )( ) ˆmin ;
kk

j r i j ix c r x x∈ ⇔ = −

  Compute the average distorsion ( )ˆ( )kD x  
associated to the array of CRs 

 ˆ : ( ˆ ) ˆ( ) ( )x D x
N

x xk k
c x c j i

k

r j r
= −∈

1 Σ Σ

 If (k � 0) Then
 {

  I f  
( ) ( 1)

( 1)

ˆ ˆ( ) ( )

ˆ( )

D D

D

−

−

⎛ ⎞−
⎜ ⎟
⎝ ⎠

x x
x

k k

k
 �  є 

Then end = true

 }
  Compute for each class cr the new 

CR as mean value of points belong-
ing to cr, i.e. 

ˆ ( , , )( )x
c

x r Cr
k

r

jx cj r

+
∈

= = …∑1 1
1

 k = k + 1
 }
 return ˆ( )x k .

End algorithm
As apparent, a CR x̂-being an average of input 

points xi ∈ ND-belongs to NC and is, reasonably, the 
best representative for all the points xi ∈ sx having 
dH(x, x̂ ) less or equal to the allowed defect number. 
It is worth noticing that x̂  (and its quantized ver-
sion Q( x̂ )) may or may not be present in the input 
sequence sx.

With this formulation the algorithm quickly (i.e. 
within 3 ÷ 5 iterations) converges to a local mini-
mum that can be arbitrarily far from the optimal 
solution. In fact, for sparse landscapes, the procedure 
does not redistribute points among classes in a global 
way, i.e. a shallow local minimum is likely to be 
found. However, an important observation is that, 
if a suffi cient number of CRs is present, these will 
preferentially converge towards the high density 
regions of string space since the clusters act as attrac-
tion basins. If the number of classes C is too small, 
the method does not resolve the clusters at fi ne grain. 
Vice versa, If C is too large, the CRs interfere with 
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each other and they converge towards regions which 
can be rather far from the cluster centroids.

The aim of our method is two-fold. On one hand, 
we wish to have an optimal number of CRs so that 
the clusters are resolved with controlled resolution. 
On the other hand, we wish to avoid getting trapped 
into some local minimum by driving the addition 
of new CRs in the neighborhood of the high density 
regions. Therefore, the algorithm is generalized to 
be adaptive in the number of classes C, and new 
CRs are inserted and optimized in the string space 
with some guiding principles.

2.2. Generation of new class 
representatives
We introduce the input parameter m as the number 
of mismatches allowed between the patterns and 
their CR. The procedure begins by inserting a small 
number of random, uniformly distributed, points 
in NC constituting a starting set of CRs.

The following iterative procedure describes how 
new CRs are inserted, and further optimized. The 
procedure is initiated by setting the counter K = 1.
1. For each class α, the number of class elements 

with Hamming distance larger than m defi nes 
the spread of the class, Sα , given by

 ˆ[ ( , ) ]H i
i

S d x x mα α
α∈

= Θ −∑  (8)

 where the characteristic function is Θ(x) = 1 If 
x\geq and Θ(x) = 0 If x � 0.

2. A fraction (≈30%) of CRs of classes having 
largest spread {Sα} are split into new CRs 
according to the following prescription. Let us 
define the column dispersion of the profile 
matrix as

 D x xl l
A C G T

( ) ( ),
, , ,

= −⎛
⎝⎜

⎞
⎠⎟=

∑1

4

1

4

2

ω α
α

 (9)

 where the term 1/4 within brackets is the mean 
of the column values.
 If all elements of a given column are 
close to 1/4 the column dispersion is mini-
mum. Starting from each CR x̂α  to be split, 
the new class representative x̂n

α  is generated with 
profi le matrix ˆ( )nxαω  built as a copy of ˆ( )nxαω  
except for the K columns presenting the 
1st, ..., Kth smallest dispersions {Dl} among all 

the columns l = 1, n. These columns are changed 
by setting equal to one the element having the 
second best rank among all letters of the column 
(the three remaining elements of the column are 
set to zero). The underlying idea is that, in 
the clusters with large spread, there are many 
points far from the CR and, by changing as above 
the columns with the least dispersion, we focus 
on the least fi xed nucleotides. For this reason, 
we are quite sure that there are many points 
containing, in the select columns, the nucleotide 
individuated by the position of the second 
element with largest dispersion. In such a way, 
we attempt to create a new class with a partitioning 
very different from the previous CR, i.e. we try 
to generate a new non-overlapping class.

3. The new set of CRs is optimized through the 
LBG algorithm described in the previous 
section. All CRs that, after the new partitioning, 
are found to have empty classes are removed 
from the CR pool.

4. If the number of mutations K is equal to the 
length of the motif, n, and the number of CRs 
has not changed, then Exit; // we are not able to 
individuate new, not-empty classes.

 Else Ifthe number of CRs has not changed, Then 
K → K + 1; // try a stronger perturbation to the 
original CR.

 Compute the number Sα of elements which have 
distances from the CR larger than m, and let Nα be 
the total number of elements (Nα = L − N + 1).
 If the ratio Sα  /Nα is smaller than a given 
tolerance (≈10%) then

 Exit; // nearly all the points have been 
classifi ed.

 Else K → K + 1 and Goto 1.

2.3. Refi nement of classes
Once the generation of new class representatives 
terminates and the set of CRs has converged around 
the clustered regions of string space, the class 
elements are evaluated. The patterns encoded by 
the discretized profi le matrices are taken as putative 
consensus patterns and a standard statistical 
analysis is performed.

However, we have noticed that the quality of 
results is signifi cantly improved by further refi ning 
the class elements. This is done by considering, 
besides the Hamming distance (2), the edit distance 
as a further measure of similarity between strings. 
The edit distance relies on the alignment between 
two strings of (potentially) different length; its 
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definition is based on dynamic programming 
[Jones and Pevzner, 2004] and reflects the 
minimum number of editing operations (mutations, 
insertions and deletions) needed to transform one 
string into another. In our implementation, each 
operation adds up a score of +1 to the edit distance. 
The metrics in ND is thus based on the generalized 
distance

 �d x y d x y d x yH E( , ) min( ( , ), ( , ))=  (10)

The new measure takes into account the case of two 
sequences, like s1 = AGAGAG and s2 =  GAGAGA, 
having maximal dH, but being very similar (it is 
suffi cient to delete one character from one string 
to produce a perfect match).

The class elements are re-defi ned by considering 
all elements with �d  � m from the closest CRs. With 
this defi nition, we have two important notions to 
keep in mind. Firstly, the input parameter m which 
was used to guide the insertion of new CRs based on 
the Hamming metrics now takes care also of inser-
tions and deletions. Secondly, intersections among 
classes are now admitted, i.e. each element can 
belong to one or more classes, depending if the dis-
tance from the respective CRs is smaller than m.

Furthermore, we have found that the optimized 
CRs are sensitive to the choice of the initial random 
CRs, and performances can be improved by resort-
ing to multiple runs with different initial condi-
tions. However, the search appears to be rather 
conclusive by cycling over a limited (of the order 
of 10) number of initial conditions.

2.4. Post-processing
In the statistical analysis of the over-represented 
patterns, we now specialize the search to the case 
of K biological input sequences. We consider the 
case in which one of the sequences may or may 
not contain any occurrence of the pattern.

The analysis of the class elements is performed 
by employing usual statistical indicators taken from 
the literature [Stormo, 2000; Pavesi et al. 2004]. 
By defi nition, a signal P is such if there exists 
a pattern of length n which is represented multiple 
times within the m allowed defects from the 
instances {xi}. The statistical importance of 
the signal P is described by two key quantities, 
the strength and the significance of the class 
representing P through its CR. The strength indicates 
the number of times the signal occurs in the text. 

The signifi cance measures the degree of novelty of 
the set with respect to a background statistics.

The use of distinct indicators allows us to 
analyze in detail the statistical features of the class 
representatives. However, in practical applications, 
it is more desirable to combine these indicators 
into a single quantity. We will explore such 
possibility in a further extension of the work.

The three indicators we consider are
• the consensus, as a measure of the strength of 

the signal [Pavesi et al. 2004],

 
C n N d P x I P xP P i

i

K

i= ∗ −
=
∑2

1

�( , ) ( , )
 

(11)

 where NP is the number of sequences that 
contains, at least once, the signal P. Moreover, 
�d (P, xi) is the generalized distance between 

the pattern and its best instance in the i-th 
sequence. Finally, I(P, xi) assigns the score +1 
to every match and a penalty −1 to every 
mismatch between P and its best occurrence 
within the i-th sequence. Clearly, CP does not 
contain information about the statistical 
significance of the signal but only on the 
number of signals populating the class in the 
different DNA sets.

• the degree of dispersion of the signal is given 
by the relative entropy SP, defi ned in [Pavesi 
et al. 2004] and slightly modifi ed to take into 
account the occurence probability of a given 
n-mer xi(n) = (xi, ..., xi + n−1).

S x P x m
P x m

P x mp n r i o
r i o

b i oi

n mo

( ) [ ( )]log
[ ( )]

[ ( )]
=

⎛

⎝
⎜

⎞

⎠
⎟

=

− +

∑
1

1

(12)

 where mo is the order of the Markov model built 
with the available background sequences and 
Pr[xi(mo)] is the frequency of occurrence of the 
sequence x xi i mo

, ,… − + 1 obtained by averaging 
over the instances of the pattern. Moreover, 
Pb[xi(mo)] is the frequency of occurrence of the 
mo-gram obtained over the instances of the pattern 
within a background sequence. The latter is 
estimated by using a Laplace sample-size correc-
tion to avoid underfl ows [Gelman et al. 2003].

• the deviation of the instances of the signal from 
its expected value provides a third important 
indicator
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Z

N E P

PP
p=

− ( )

( )σ  
(13)

 where Np is the number of occurrences of 
P, E(P) is the expectation of P, and σ (P) is the 
standard deviation in the number of input 
P sequences.
The previous indicators are computed for each 

element of each class and are associated to each 
class representative as the ensemble average com-
puted over all the class elements. The indicators 
are associated to the CRs and are used to perform 
a strong, not linear fi ltering on the classes produced 
through the processes described in Sections 2.1, 2.2 
and 2.3. Let I1 and I2 be two of the three indicators 
(for instance, I1 = CP and I2 = SP). First of all, the 
classes are sorted on the basis of the I1 values 
associated to the CRs. In such a way, the elements 
in the head position are the strongest signals, while 
the tail classes represent the weakest signals. 
Following such an ordering, a fraction α of the 
weakest classes is discarded, generating a set of 
(1–α)C classes (the ones representing the strongest 
signals). After this fi ltering, we order again the 
(1–α)C classes on the basis of I2. Now, the elements 
in the head position are characterized by high 
statistical signifi cance. Thanks to this approach, 
IMAGE identifi es, as the best ranked solutions, the 
classes representing both signifi cant and strong 
signals.

3. Discussion
The effi ciency of IMAGE has been assessed by 
using the test-case provided by Tompa et al. 
[Tompa et al. 2005]. Such a benchmark has been 
recently used to promote a “contest” to survey the 
quality of different tools capable of predicting 
TF binding sites of bacterial and eukaryotic 
genomes.

The test runs as follows [Tompa, 2005]: the user 
is provided with an input data set containing a 
number of regulation regions related to different 
co-expressed genes, for a number of organisms, 
such as: human (fi le names with prefi x hm), mouse 
(fi le names with prefi x mus), D. melanogaster 
(fi le names with prefi x dm), and S. cerevisiae (fi le 
names with prefi x yst). The benchmark is, indeed, 
the composition of three different tests, each of 
them related to the same binding sites, but differing 
in the way the sequences outside the binding sites 

are constructed. In particular, the benchmark 
named “real” (fi le names with suffi x r) has the 
binding sites in their real genomic promoter 
sequences. The benchmark named “generic” (fi le 
names with suffi x g) has the binding sites merged 
in randomly chosen genomic promoter sequences 
from the same organism. The benchmark named 
“markov” (fi le names with suffi x m) has the bind-
ing sites merged in sequences randomly generated 
according to a Markov chain of order 3 that was 
constructed from the promoter sequences of the 
same organism. It also provides the known regions 
which the tools should be able to identify.

We used all the provided fasta fi les as bench-
marks for IMAGE. For each organism, a specifi c 
background fi le has been used consisting of inter-
genic sequences taken from [1]. IMAGE is a rather 
fl exible software which allows to tune different 
input parameters in order to improve the quality of 
the search results. For example, IMAGE allows to 
select the motif lengths and the number of allowed 
mismatches. Moreover, the possibility of reading 
the input sequence in its complementary form 
associated to the DNA second strand is straight-
forward and does not affect the results. How-
ever, in the following we will concentrate on 
one-way reading of the input sequence. Although 
the software input parameters have not been opti-
mized exhaustively for the contest under consid-
eration, we have chosen a set of input parameters 
which produced results with greater statistical 
signifi cance. The quality of results could be ame-
liorated in the future. Following [Pavesi et al. 
2004], for all sequences different runs were per-
formed by searching motifs of type (6, 1), (8, 2), 
(10, 3), (12, 4), where the symbol (k, m) means 
motifs of length k and allowing for at most m mis-
matches within the class. Among sites belonging 
to a class and overlapping along the sequence, only 
the patterns with minimum generalized distance 
(10) are further considered. All the predictions are 
sorted on the basis of the consensus CP (11) of 
which 80% of the top ranked CR are next ordered 
according to the relative entropy SP (12). The CR 
scoring the highest relative entropy represents the 
fi nal motif resulting from the search.

Figure 1 illustrates part of the IMAGE 
output applied to the search of the D. melanogaster 
sequences of the benchmark (file dm03g), 
obtained by searching (10, 3) motifs. In the Table 
displayed in Figure 1, for each motif belonging 
to the reported class, the output provides the 
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corresponding set, the found motif, the position 
along the sequence, the probability parameters 
(SP and ZP) and the number of matches with 
respect to the class representative (CP). For 
the same test case dm03g, Figure 2 displays the 
known motifs (i.e. the known “solution” to the 
problem), where the match between the predicted 
motifs (of Fig. 1) and the known motifs are 
reported in bold.

In order to qualify the performances of IMAGE, 
we have submitted our results to the analysis tool 
provided in the assessment web site [Tompa, 2005]. 
To this aim, the union of all predicted sites result-
ing from the highest ranked classes produced by 
the (6, 1), (8, 2), (10, 3) and (12, 4) searches were 
submitted for statistical evaluation.

The complete set of results of IMAGE is 
provided as Additional Material. The typical 
IMAGE output consists of:

• a summary of all input parameters,
• a table containing the fi rst 20 top ranked class 

representatives, ordered on the basis of the 
selected probability indicators,

• a detailed description of the 20 top ranked classes 
with tables similar to that illustrated in Figure 1.

Moreover, the software analyzes and reports the 
correlation distance between different CRs. By 
specifying a cutoff distance between the position 
of pairs of putative sites, IMAGE evaluates the 
number of sequences, belonging to two different 
CRs, which are within that cutoff. Such a number 
identifi es the correlation distance between the two 
CRs. CRs pairs are then sorted according to 
their correlation distance In this way, following 
the analysis present in the Co-bind software 
[Guhathakurta and Stormo, 2001], cooperative 
binding factors can be also visualized.
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Rank: 1 Representative pattern found : TTCGACCGGGAA
Number of elements included : 20

Strength index (Consens)       : 8.5000

Class Id : 373

Probability index (Entropy)      : 0.0056

Figure 1. Part of the IMAGE tool output for D. melanogaster sequence dm03g, illustrating the detailed description of elements belonging to 
the best class representative found on the basis of the chosen probability indicator (SP in this case).
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The validation of our method occurs through 
the estimate of different statistical indicators 
pertaining to the ability of selecting the correct 
DNA regions. These indicators can be constructed 
on the basis of the following quantities: the number 
of true positives (TP), true negatives (TN), false 
positives (FP) and false negatives (FN). The values 
of these quantities result from the comparison of 
the software output (Fig. 1) with the provided TF 
binding sites (Fig. 2). The quality of predictions 
are evaluated on the basis of the following 
indicators [Tompa et al. 2005]:

 xSn
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where Sn is the Sensitivity, PPV the Positive 
Predicted Value, SP the Specificity, PC the 

Performance Coeffi cient and CC the Correlation 
Coeffi cient, as defi ned in [Tompa et al. 2005]. The 
prefi x x stands for nucleotide (n) or site (s) if 
the indicator is evaluated at the nucleotide or at the 
site level; in the fi rst case, the statistical values 
refer to the number of nucleotide positions present 
in the known and predicted sites. In the second 
case, in turn, the different values refer to the over-
lap between known and predicted sites (see [Tompa 
et al. 2005] for a thorough explaination of the 
statistical diagnostics). nSn (or sSn) corresponds 
to the sensitivity for nucleotide (or for site) and 
nPPV (or sPPV) represents the Positive Predictive 
Value. The fi rst quantity expresses the fraction of 
known nucleotides (or sites) that are predicted, 
while the second evaluates the fraction of predicted 
nucleotides (or sites) that are known. nSp is 
the Specifi city, defi ned at nucleotide level, nPC is 
the performance coeffi cient according to [Pevzner 
and Sze, 2000], and nCC corresponds to a correla-
tion coeffi cient according to [Burset and Guig, 
1996]. All these parameters and their calculations 
are further described by Tompa and coworkers 
[Tompa et al. 2005]. Finally, sASP is the average 
value between sSn and sPPV, and represents an 
average site performance.

Figure 3 summarizes the values of all statistical 
indicators obtained for IMAGE as compared to the 
other software results, published in the cited assess-
ment [Tompa et al. 2005]. As a general comment 
on the performances of IMAGE, the software 
extracts a large number of true positives (TP) with 
respect to the majority of the considered tools 
(presenting larger values of sSn and nSn). The large 
quantity of predicted regions implies, however, the 
presence of a large number of FPs which signifi -
cantly reduces the overall score of indicators such 
as xPPV. As a results, IMAGE is capable of predict-
ing a higher number of known nucleotides (larger 
values for nSn and sSn), but a lower number of 
predicted nucleotides (or sites) that are known 
(lower values of sPPV and nPPV). Moreover, the 
correlation (nCC) and performance (nPC) coeffi -
cients are sensibly lower than the corresponding 
values found for Weeder, but comparable to the 
ones obtained for MEME [Bailey and Elkan, 2000] 
and other tools.

In order to assess the capabilities of IMAGE, we 
have taken into consideration a different dataset, by 
spanning some of the crucial software control param-
eters used in the previous dataset. We have investi-
gated a number of test cases which have been 

>data set

>instances
0, –1274 , GACTTTTCGCT , 11
0, –1220 , CGATTTTCTCG , 11
0, –475 , GCATTTTCCCA, 11
0, –459, AGAGAAACCC, 11

2, –1310, GGGTTTTCTCCC, 11
2, –1633, TGGTTTTCCCG, 11

0, –445, GAATAACCCAAGAGAAA, 17
0, –429, ACAGAAAAATC, 11
0, –341 , CGAGAAAATCG , 11

dm03

Figure 2. Known TF binding sites along D. melanogaster sequence 
dm03g, used in the assessment. The answers are retrieved from the 
Web site (http://bio.washington.edu/assessment/answer.txt).



366

Casilli et al

Bioinformatics and Biology Insights 2008:2

recently used to validate a proposed tool for the 
discovery of TF binding sites (tool GLAM, see http://
zlab.bu.edu/glam/sup) [Frith et al. 2004]. Test 
sequences have been produced by inserting specifi c 
binding sites of a number of TF: 27 mammalian E2F 
(E2F), 35 bicoid (bcd), 27 Kriippel (Kr) and 
25 mammalian estrogen response elements (ERE) 
binding sites, inserted within short sequences of 
nearly 50 bases. The performances of IMAGE are 
reported in Table 1 and compared with the contest 
dataset. Our method performs quite well by produc-
ing good values of the statistical indicators previ-
ously defi ned: in particular the sensitivity is rather 

high together with a substantial growth of the 
Positive Predicted Value, as compared to the data of 
Figure 3. As a result, the performance coeffi cient 
ranges between 0.27–0.329, depending on the 
sorting algorithm, which lends further confi dence 
on the overall quality of IMAGE.

Overall, IMAGE presents the characteristics of 
an increased number of true positives, with respect 
to other tools present in the specialized literature. 
This, in the end, should be seen as an advantage: by 
combining the IMAGE output with further 
post-processing (such as, e.g. reference to an external 
TF database), our software should be able to improve 
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Figure 3. Summary of all statistical indicators for IMAGE, compared to those related to the other software results. Data relative to all other 
tools are reported in Figure 1 of [Tompa et al. 2005] and have been downloaded from [Tompa, 2005].
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Table 1. Statistical indicators for the contest and for the Glam test (E2F, bcd, Kr and ERE benchmarks—see text 
for details) obtained by sorting results via Cp and via Sp (as labels indicate).

Sorting nSn nPPV nSp nPC nCC
Contest-Sp 0.25635 0.033987 0.85596 0.030936 0.043827
GlamTest-Cp 0.47511 0.39593 0.79949 0.27545 0.25792
GlamTest-Sp 0.537890 0.459003 0.819235 0.329191 0.338292

the identifi cation of putative binding sites and, thus, 
signifi cantly reduce the number of false positives.
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