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Abstract

Background: The growing ubiquity of metabolomic techniques has facilitated high frequency time-course data
collection for an increasing number of applications. While the concentration trends of individual metabolites can be
modeled with common curve fitting techniques, a more accurate representation of the data needs to consider effects
that act on more than one metabolite in a given sample. To this end, we present a simple algorithm that uses
nonparametric smoothing carried out on all observed metabolites at once to identify and correct systematic error
from dilution effects. In addition, we develop a simulation of metabolite concentration time-course trends to supplement
available data and explore algorithm performance. Although we focus on nuclear magnetic resonance (NMR) analysis
in the context of cell culture, a number of possible extensions are discussed.

Results: Realistic metabolic data was successfully simulated using a 4-step process. Starting with a set of metabolite
concentration time-courses from a metabolomic experiment, each time-course was classified as either increasing,
decreasing, concave, or approximately constant. Trend shapes were simulated from generic functions corresponding
to each classification. The resulting shapes were then scaled to simulated compound concentrations. Finally, the
scaled trends were perturbed using a combination of random and systematic errors. To detect systematic errors, a
nonparametric fit was applied to each trend and percent deviations calculated at every timepoint. Systematic errors
could be identified at time-points where the median percent deviation exceeded a threshold value, determined by
the choice of smoothing model and the number of observed trends. Regardless of model, increasing the number of
observations over a time-course resulted in more accurate error estimates, although the improvement was not
particularly large between 10 and 20 samples per trend. The presented algorithm was able to identify systematic
errors as small as 2.5 % under a wide range of conditions.

Conclusion: Both the simulation framework and error correction method represent examples of time-course analysis
that can be applied to further developments in 'H-NMR methodology and the more general application of quantitative
metabolomics.

Keywords: NMR, Metabolomics, Time-course, Cell culture, Quantification, Systematic error, Stochastic simulation,
Internal standard, Dilution

Background

Hydrogen nuclear magnetic resonance (H-NMR) spec-
troscopy is an emerging tool for metabolomic analy-
sis of cell culture. In contrast to the established use
of 13C-NMR for targeted elucidation of intracellular
metabolic flux (reviewed in [1]), the quantification of a
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broader cellular metabolome with 'H-NMR in the con-
text of recombinant protein production has been much
more recent [2—6]. Unlike *C-NMR, which requires
relatively expensive !3C labelled compounds and often
complex interpretation, 'H-NMR benefits from simple
sample preparation and non-selective data acquisition.
The result is that a single scan can reveal the concen-
tration of many small molecules in an unbiased man-
ner, with concentration levels reaching as low as the
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micromolar range. Despite the maturity of 'H-NMR tech-
nology, the context of cell culture metabolomics offers
opportunities for further developments in both acqui-
sition and post-processing of metabolomic time-course
data.

Quantitative NMR relies on the principle that the inte-
grals of resonance peaks are proportional to the number of
nuclei that make up the resonances [7]. The absolute area
of the integrals is also dependent on spectrometer and
sample properties that include the relaxation time of vari-
ous metabolites, pulse excitation, and broad-band decou-
pling. While the effect of relaxation time can be ignored
with a sufficiently long acquisition time (or measured and
factored in directly — see [7]), the effect of other factors is
accounted by comparison to a calibration standard. Typ-
ical calibration standards can be broadly categorized as
internal (where a known quantity of a compound is added
directly to the sample), external (where a known quantity
of a compound is scanned in a co-axial tube), or electronic
(where a synthetic signal generated inside the NMR is
used as reference) (see [8] for an in-depth review). Regard-
less of how the reference signal is generated, metabolite
quantification relies on the ratio of target resonance and
reference peak integrals. Unlike typical measurement vari-
ability, error in the generation or measurement of the
reference signal will have the same relative impact on all
the quantified metabolites and represents one example of
a systematic bias.

Error related to the reference standard can stem from
sample preparation (in the form of pipetting) as well as
spectra processing and analysis. Although external and
electronic standards do not rely on the addition of a
chemical standard, the lack of internal standard intro-
duces extra variability from the amount of sample ana-
lyzed. Proper technique can ensure good reproducibility,
but occasional mistakes are nonetheless possible. More
importantly, the reference peak is subject to the same
variability as any other resonance. Phase and baseline
correction, which are typically performed on all NMR
spectra, are known to have a considerable impact on the
accuracy of peak area integration [9]. Malz and Jancke
[10] have observed that while routine standard deviation
can be reduced to 1.5 % of mean concentration, the rela-
tive uncertainty can be as high as 11 % with just “slightly”
wrong phase and baseline corrections. Other factors may
also come into play depending on the quantification
method. Some commercial packages such as Chenomx
NMR Suite (Chenomx Inc., Edmonton, Canada), which
has been used in recent cell culture applications [3-6],
require the user to match the observed internal standard
peak to an idealized representation. Apart from intro-
ducing user uncertainty, this method may be particularly
sensitive to line shape variability. Discrepancies between
the ideal and observed shapes of the internal resonance
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peak due to imperfect shimming are a likely source of
quantification error.

While errors from standard quantification impact prac-
tically all NMR samples to some extent, biofluid and
cell culture samples are also subject to dilution effects.
Urine samples vary in their water content, which is cor-
rected by normalization to either total spectrum area or
a reference metabolite such as creatinine (reviewed in
[11] and [8]). The metabolomic analysis of cell lysates,
common to many cell culture applications such as drug
discovery [12], suffers from similar problems due to the
variability of extraction efficiency. The effect of variable
solvent concentration results in the same systematic error
as from reference quantification — a global underestima-
tion or overestimation in the relative concentrations of all
observed metabolites in a given sample.

The application of NMR spectroscopy and other
metabolomic approaches to time-course samples presents
both a unique challenge and opportunity in dealing with
systematic errors. On the one hand, a single biased sample
can skew the trends of multiple compounds and sug-
gest false metabolic relationships. On the other hand,
the time-course trends of metabolite concentrations have
a significant degree of implicit replication that can be
exploited through mathematical means. Recent work with
cell culture [13] and biofluid [14] data has used non-
parametric curve fitting techniques to model metabolite
concentration trends by leveraging the inherent smooth-
ness of biological trends. This work extends the concept
by identifying systematic deviations across a number of
metabolites. In the same way that a dramatic deviation
from an overall trend of a metabolite’s concentration is
identified as measurement error via smoothing spline
regression, the deviations of many metabolites in one sam-
ple can be identified as the result of reference error or a
dilution effect.

In the context of cell culture process monitoring, a
subset of compound concentration trends from a batch
culture shown in Fig. 1 illustrates the confusion that can
arise from possible systematic errors (details provided
in the Cell culture section of Methods). The jumps in
concentrations of glycine and lysine on days 4 and 5 cor-
respond with the exhaustion of choline and the peak of
o-phosphocholine concentration. The question is whether
these deviations from the general trend of the compounds
can be interpreted as a physiological shift in cellular
metabolism or if they are more likely to be the result of
systematic error that is associated with internal standard
addition. This work presents a simple iterative smoothing
algorithm as a means to address this issue. The method is
tested by the stochastic generation of cell culture trends
subject to simulated observation error to ensure that iden-
tified systematic errors are independent of measurement
uncertainty.
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Fig. 1 An example of 4 metabolite trends from a metabolic study. Jumps in glycine and lysine concentration trends (highlighted as white points)
were hypothesized to be the result of choline exhaustion (region highlighted in grey). Time-course data was collected as described in the Cell culture
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Methods

Cell culture

Metabolic data presented in this work originated from
an insect cell media supplementation experiment.
Spodoptera frugiperda (Sf9) cells were grown in shake
flasks at 27 °C and 130 RPM using in-house supple-
mented IPL-41 media [15]. The cells were routinely split
to 0.5-10° cells/mL upon reaching a concentration of
2:10° cells/mL, with experiments carried out on cells that
have undergone less than 30 passages. A 1 L mother flask
was seeded at 0.5-10° cells/mL with a working volume
of 250 mL and grown up to 2:10° cells/mL. This flask
was used to seed 125 mL flasks at 0.5-10° cells/mL with a
working volume of 30 mL. Cells were counted and sam-
pled for NMR every 24 h until reaching their maximum
concentration (of approximately 7-10° cells/mL). 1 mL
samples of cell culture media were collected and cen-
trifuged for 8 min at 250 g, with the supernatant collected
and stored at - 80 °C until NMR analysis.

The experimental data used as a template for stochas-
tic trend generation, hereafter referred to as reference
data, consisted of 4 different carbohydrate supplemented
flasks cultured over a period of 10 days. The cultures were
identical and seeded from the same stock, but with vary-
ing concentrations of glucose and maltose. 43 compounds
were profiled for a total of 172 model trends across the
4 flasks. Although many of the compound concentration
trends were similar across the flasks, the use of different
conditions resulted in more general trends than would be
available from replicates.

NMR

The collected supernatant samples were thawed at room
temperature and NMR samples prepared by the addition
of 70 uL internal standard to 630 uL supernatant. The
standard consisted of 5 mM 4,4-dimethyl-4-silapentane-
1-sulfonic acid (DSS) and 0.2 % w/v sodium azide preser-
vative dissolved in 99.9 % DO (Chenomx Inc., Edmonton,
Canada). The NMR sample solutions were vortexed and
pipetted into 5 mm NMR tubes (NE-UL5-7, New Era
Enterprises Inc., Vineland, NJ). Samples were randomized
and scanned over a two day period on a Bruker Avance
600 MHz spectrometer with a triple resonance probe (TXI
600). Scans were performed using the first increment of
a 1D-NOESY pulse sequence with a 1 s presaturation
pulse, 100 ms mixing time, and a 4 s acquisition. The
acquired spectra were re-randomized [16] and analyzed
using Chenomx NMR Suite 7.7 (Chenomx Inc., Edmon-
ton, Canada). Phasing and baseline correction were done
automatically by the software and adjusted by a human
profiler. Compound concentrations were calculated using
the “targeted profiling” method (see [17] for more infor-
mation). Briefly, the observed spectra were fit by the
overlay of idealized NMR resonance peaks from the soft-
ware library, with compound concentration quantified by
comparison to an idealized fit of the DSS resonance peak.

Systematic error correction

Starting with all compound concentration time-courses
from a single cell culture, a nonparametric (smoothing)
model was fit to each time-course. Percent deviations
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from the fits were calculated at each timepoint and
for each compound, Etime=i,compound=j = (yi,j,ohserved -
Yijsmoothed)/Yijsmoothed- & median percent deviation was
taken at each timepoint, corresponding to sorting all the
deviations at a given timepoint from lowest (&4e=i,1) to
highest (&time=in), and focusing on the middle (or median)
value (&¢ime=in/2). If the largest median percent deviation
exceeded a specified threshold, it was subtracted from the
observed concentrations of all compounds at the corre-
sponding timepoint. The process was repeated until the
largest deviation failed to exceed the specified threshold.
An overview of the algorithm is presented as a flowchart
in Fig. 2. An R function implementation of the inter-
nal standard error correction algorithm is available in
Additional file 1.

In principle, the algorithm takes advantage of the fact
that an error in internal standard addition or quantifi-
cation will result in a deviation for all quantified com-
pounds relative to their concentration. As the percentage
error from measurement uncertainty can be quite high
for some media components [18], the median of rela-
tive deviations was chosen as a conservative statistic that
could still be capable of identifying systematic error. Mean
values were also tested but found to be more suscepti-
ble to random noise. An iterative process was used to
account for the effect an erroneous measurement can
have on a smoothing trend. Once a systematic deviation
is identified, the deviating timepoint is corrected and the
trend re-smoothed to calculate new deviations. Although
the elimination of a deviating timepoint would also be
suitable, correction has been chosen in this work as it
conserves more of the observed data in the form of a
consensus between all compound trends.

The choice of smoothing model and median deviation
threshold are two important parameters for error detec-
tion. A smoothing model should be chosen according
to the expected smoothness of compound concentration
trends i.e. how likely they are to exhibit rapid fluctuations.
A high-density cell culture or one subject to perturbation
may require less smoothing to ensure that rapid physi-
ological changes are not mistaken for internal standard
error. On the other hand, a slow-growing or continuous
culture could use a much greater degree of smoothing.
The median deviation threshold represents the minimum
amount of deviation that can be attributed to come from
systematic error rather than random measurement uncer-
tainty. High measurement uncertainty is reflected in the
variability of median deviation, requiring higher thresh-
olds to prevent false bias detection. However, a number
of other factors can also have an impact, including the
number of observed compounds and the number of time-
points included in the trend. The effect of these factors
on the threshold is explored in this work using stochastic
trend generation.
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Stochastic trend generation

The development of a framework for stochastic genera-
tion of extracellular compound concentration trends was
based on the need to estimate the variability of median
relative deviations from a smoothing fit. Trend simula-
tion was reduced to four general parameters — overall
trend shape, maximum compound concentration, percent
change in compound concentration, and measurement
variability. The framework was developed around a refer-
ence of collected data and consisted of four steps. First,
the reference trends were classified as either increasing,
decreasing, concave, or approximately constant. A para-
metric model was chosen for each classification, and rep-
resentative curves generated with a domain and range of 0
to 1. The combination of simulated maximum compound
concentrations and percent changes were used to generate
maximum and minimum concentration values to scale the
trend. Finally, measurement variability was simulated and
applied to the data. The combination of multiple trends
with varying parameters was taken to be a representative
of the data one would collect from the time-course of a
single culture and is termed “an experiment” throughout
the text. R functions used to implement this process are
available in Additional file 2 (with an example experiment
simulation at the end of the file).

Trend classification

Initial classification of the reference data identified trends
with a net change in concentration greater than 10 %.
Concentrations with changes of less than 10 % were
taken as having approximately constant concentrations, or
“unclassified”. Simple linear regression was used to clas-
sify trends as either increasing or decreasing if the slope
was found to be statistically different from 0 at a 95 %
confidence level using a t-test. Compound concentrations
that had a statistically significant increase followed by a
statistically significant decrease were classified as concave
(none of the trends could be statistically determined as
convex). Trends were left unclassified if the classification
of a compound differed across the different experimen-
tal conditions. This was done to ensure that classification
was restricted to general patterns rather than singular
observations. In this way, 15 compounds were classified
as decreasing, 14 increasing, 2 concave, and 12 were left
unclassified. To allow changes in the number of simu-
lated compounds, these numbers were reformulated and
rounded to 35 %, 30 %, 5 % and 30 % of the total com-
pounds respectively.

Trend shape

Classified reference data trends were smoothed using
cubic regression splines with an upper limit of 4 degrees of
freedom (Fig. 3a). When normalized to the same domain
and range, most of the concentration trends appeared
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Fig. 2 Algorithm flowchart. Step by step description of the internal standard error correction algorithm. Corrected values can be kept or flagged for

to take very similar shapes. Sigmoidal equations (with 2
parameters) were used to model the increasing/decreasing
trends while the concave curves were approximated by a
truncated beta distribution density function:

1

sigmoidal decrease: y = ——— x€[0,1] (1)
l1+e?
sigmoidal increase: y =1 — — x€[0,1] 2)
l1+e?
concave: y = .- x)b*1 x€lc>0,d<1] (3)

The sigmoid functions were defined over a domain of 0
to 1, while the beta function’s domain was kept variable.

The extra parameters offered greater flexibility in control-
ling the rate of concentration changes. The y values (and
beta distribution x values) were scaled to a range of 0 to 1
after simulation for easier comparison. Unclassified com-
pounds were assumed to follow a linear trend with equal
probability of either increasing or decreasing. The linear
trend was used to convey a lack of information rather than
a strictly linear relationship in compound concentration
i.e. the case where a true trend was dwarfed by relative
measurement error.

Model parameter ranges were selected by trial and error
to visually match the observed trends. As the increas-
ing/decreasing trends showed evidence of two distinct
patterns each, two sets of parameters were chosen for
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the sigmoidal curves along with a separate parameter that
related the probability of sampling from one population or
the other. The parameters in Table 1 were used to generate
the trends in Fig. 3b. Overall, the simulated trends were
highly comparable to the observed ones. Although there
was less agreement between the concave trends, param-
eter constraints were kept flexible to account for the low
number of concave reference curves.

Trend range

The conversion of idealized trend shapes to realistic
concentration time-courses required the generation of
minimum and maximum values. The distribution of maxi-
mum compound concentrations from the reference data is
shown in Fig. 4b. Compounds increasing in concentration
were observed to have lower maximum concentrations
than decreasing ones, requiring the simulation to be based
on trend classification (with concave compounds being
treated as increasing). On a logarithmic scale, the spread

of maximum concentrations was reasonably modelled by
a mixture of two normal distributions with means of -0.4

Table 1 Parameter ranges used in the trend shape simulation of
reference data (via Egs. 1-3). Parameter values were drawn from a
uniform distribution constrained to the given ranges. Where two
ranges are given, the range was chosen randomly for each trend
based on the given probability

Trend Parameter Range 1 Range 2 P(Range 1)
a 0.200-0.600 0.600-0.900 0.05
Sigmoidal decrease
b 0.100-0.180 NA 1.00
) o a 0.045-0.055 0.945-0955 0.15
Sigmoidal increase
b 0.200-0.400 0.100-0.300 0.15
a 3.500-4.500 NA 1.00
Concave
b 2.500-3.500 NA 1.00
c 0.000-0.200 NA 1.00
d 0.800-0.900 NA 1.00
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and 0.8 (corresponding to approximately 0.4 mM and and unclassified trends respectively. Although a greater
6.3 mM respectively) and standard deviations of 0.35.  degree of fine tuning was possible to achieve better agree-
The probability density functions of the resulting dis- ment between observed and simulated distributions, the
tributions can be seen in Fig. 4a with the comparison  marginal improvement did not warrant deviating from
to observed values in Fig. 4b. The proportions between = more general consistency.

the lower and higher concentration clusters were chosen To avoid dealing with the correlation between max-
as 0.20, 0.70, and 0.35 for the decreasing, increasing, imum and minimum concentrations (for compounds
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with relatively small changes in concentration), minimum
values were generated from the simulation of net concen-
tration change as a fraction of maximum value. Relative
concentration changes were assumed to be less dependent
than minimum concentrations on maximum values. As
compounds with increasing concentrations were generally
observed to have an initial concentration of approximately
0, their percent change was taken as 100 % for the purpose
of the simulation. The distribution of fractional changes
for decreasing compound concentrations is shown in
Fig. 4d. One compound was practically exhausted in all 4
of the tested conditions, with the remainder of the com-
pounds being consumed to various degrees but clustering
around 25 % reduction. No change of less than 10 % can
be observed as this value had been chosen as a cutoff for
separating compounds with a significant trend. The simu-
lation distribution was modelled by a mixture of two beta
distributions — one to represent the distribution of non-
exhausted compounds (@ = 2, 8 = 5) and another to
increase the probability of values close to 0 and 1 (o = 0.5,
B = 0.5), with the proportion between the two set to 0.7
(Fig. 4c). The simulated distribution was truncated to the
range of 0.1-1.0 to reflect the reference data. Figure 4d
suggests that the simulation was in good agreement with
the reference data.

Measurement variability

A measurement variability distribution was developed
from our previous work on estimating 'H-NMR mea-
surement uncertainty for cell culture applications [18].
Briefly, a Plackett-Burman design was used to generate
a series of media-like formulations with an orthogonal
combination of high and low compound concentrations.
In this way, measurement standard deviations for each
compound could be estimated independently of other
compound concentrations. The result was a collection of
relative standard deviations (otherwise referred to as the
coefficients of variation) for all compounds in the media.
Relative standard deviations for compounds with a sta-
tistically significant change in concentration during cell
growth were estimated at both high and low concentra-
tions; a single estimate was used for compounds without a
significant change.

As the differences in relative standard deviation
between compound concentrations were not typically
large, all of the relative standard deviations were pooled
together into a single distribution of measurement uncer-
tainty (Fig. 4f). Three of the compounds that were
particularly challenging to quantify in [18] (and had
correspondingly high uncertainties) were excluded as
they were not representative of typical quantification
— compounds identified to have low concentrations
and considerable resonance overlap were not quanti-
fied in this work. The resulting distribution took the
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shape of a bimodal normal distribution (Fig. 4f) with
means of 4 % and 11 % and a common standard devi-
ation of 2 % (probability density function shown in
Fig. 4e).

Algorithm validation

The simulation framework was applied to answer two
fundamental questions. What is the minimum level of
bias that can be identified given normal measurement
variability? How is bias identification impacted by the
choice of smoothing model and experimental parameters?
Two smoothing models were considered — local linear
least squares regression and a cubic regression spline. The
former was implemented by the loess function in base
R and the latter as a general additive model (gam) pro-
vided by the mgcv package [19]. Both models made use
of a smoothing parameter. The loess approach required
a span that dictated what fraction of data points to use
in local regression. This parameter was varied from 2.0
(less smooth) to 0.5 (more smooth). The gam approach
required the choice of basis dimension number, which was
varied from 3 (less smooth) to 6 (more smooth). In the
text, models are referred to by their smoothing param-
eter i.e. loess-0.5 or gam-6. Combined with model type
and smoothing parameter, the number of quantified com-
pounds (20-60) and the number of observed data points
(10-20) were also seen as important factors that could
influence bias detection.

1000 experiments were simulated for each factor com-
bination (with the number of trends making up a single
experiment varied as a parameter). Half of the experi-
ments were subject to normal measurement variability,
while half were further perturbed with a systematic bias
of 5 % at a single randomly selected timepoint. Algorithm
performance was assessed by smoothing the simulated
data using a given model and calculating the median
relative deviation of observations from the fit for each
timepoint in each experiment. The result was a pool
of median values for each timepoint corresponding to
a certain factor combination. Full R code is available in
Additional files 3 and 4 for loess and gam simulations
respectively.

Implementation

The algorithms and all analysis has been implemented in
the R programming language [20]. Figures were generated
using the ggplot2 package [21].

Results and discussion

Application

The correction algorithm was applied to the example data
from Fig. 1 and the results can be seen in Fig. 5. Although
only glycine and lysine results are shown, all 43 observed
compounds were used in the calculation (using a gam-5
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smoothing model and a threshold of 2.5 % median devi-
ation). The algorithm provided strong evidence that the
jumps in glycine and lysine concentration were not due to
metabolic shifts but were the result of a systematic error.
Figure 5a also demonstrates that random measurement
error such as the pronounced deviation in glycine con-
centration on day 6 was not impacted by the correction
as it was not general to all metabolites. The influence
of the correction was most pronounced in the rates of
concentration changes calculated as the derivatives of the
smoothing curves (Fig. 5b). As a result of the changes
in concentration, both compounds went from being pro-
duced then consumed to a steady pattern of increasing
consumption. More importantly, the correction of only
two points resulted in considerable changes to deriva-
tive estimates across all time-points. This can have an
important impact on the use of spline smoothing for
flux estimation in metabolic flux analysis (as in [13], for
example).

Validation

Smoothing bias

The smoothing model used in the correction algorithm
must strike a balance in having enough flexibility to follow

metabolism related changes in compound concentrations
while avoiding undue influence from deviating observa-
tions. A lack of flexibility can result in systematic devia-
tions from a smoothing fit where no errors are present,
while too much flexibility can underestimate deviations
due to error. The simulated trends described in the
Algorithm validation section were smoothed using loess
and gam models (with varying smoothness parameters)
and the median deviations from each experiment were
averaged to identify overall trends (Fig. 6). Unsurpris-
ingly, a greater degree of smoothing resulted in less biased
deviations i.e. loess-0.5 and gam-6/gam-5 models had
practically constant deviations across all timepoints. On
the other hand, using an inadequate amount of smooth-
ing generally resulted in an underestimated fit early in
the culture (positive deviations from the smoothing fit)
and an overestimated fit later. Between the two smoothing
functions, gam was found to have a better discrimination
of artificially biased timepoints than loess at comparable
smoothing levels (gam-5/6 and loess-0.5) — the deviations
were more consistent across different timepoints and were
not as sensitive to the number of observations. Although
the jump from loess-0.5 to loess-1.0 in Fig. 6 is quite con-
siderable, further analysis using other span parameters
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reinforced the observation that gam smoothing is superior
for bias discrimination. As gam-5 requires less informa-
tion than gam-6, it can be seen as a good compromise
between an unbiased fit and deviation identification. For
best results, the smoothing model should be tailored to
the data under study.

Apart from smoothing model, the number of observa-
tions over the course of a culture was also found to have
an influence on deviation estimation (Fig. 6). Increased
sample frequency yielded a more accurate deviation esti-
mate for biased timepoints. However, the net impact of
having a greater number of observations remained quite
small. For gam-5, for example, a true bias of 5 % was esti-
mated as approximately 4 % with 15 or 20 observations
and closer to 3.5 % with only 10 observations. Further
simulations on lower observation numbers suggested that
comparable performance could be attained down to 8
observations before degrading to a significant degree (data
not shown). As batch processes may be operational for as
few as 5 days, this translates to a required sampling fre-
quency of two samples a day. Since 12 h sampling may
not always be practical, the effect of a staggered sampling
on the correction algorithm was also investigated. With
gam-5 smoothing, little to no difference was observed
between even 12 h sampling and a routine where 2 sam-
ples are taken 8 h apart, followed by a break of 16 h (data
not shown).

Confidence intervals

The variability of median deviations is particularly
important for the selection of a correction threshold. The
threshold must be high enough to avoid correcting devia-
tions due to random measurement noise while remaining
sensitive to systematic sources of error. Empirical 90 %
confidence intervals were constructed from the simulated
data by excluding the 5 % highest and 5 % lowest median
deviations at each timepoint (Fig. 7). Between the number
of compounds and the number of observations, only the
number of compounds was found to have an effect on
confidence interval width. Naturally, the observation of
more compounds reduced the impact of measurement
noise and allowed for a more robust median estimate.
However, the simulation of more compounds assumed
equal quantification quality. If the number of observed
compounds is increased by profiling highly convoluted or
otherwise poorly quantifiable compound resonances, the
beneficial impact is likely to be limited.

Based on the results, the observation of 40 compounds
at 10 timepoints (typical of the data obtained in our
lab) will exhibit a natural variation in median deviation
of approximately 2—2.5 %. Thus, deviations beyond this
threshold have a high probability of occurring due to a
source of bias such as internal standard addition or quan-
tification. The results also show that a 5 % bias is more
likely to be identified as anywhere between 2.5-5 % (with
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further reduction in performance at earlier timepoints),
meaning that a subtraction of the estimated median devia-
tion is more likely to dampen the bias, rather than remove
it. Reduced performance at the end-points reflects the rel-
ative lack of trend data and can be ameliorated by adding
replicates or extending the observation time beyond the
span of direct interest.

Simulation extension

To determine how robust the correction method is to
changes in the underlying data, four modifications to the
simulated data were considered. The ratio of decreasing to
increasing trends (intially taken as 35 %:30 % based on our
cell culture data) was set to 60 %:5 % as well as 5 %:60 %.
Despite these dramatic shifts, both average bias and confi-
dence interval trends remained very similar to those pre-
sented in Figs. 6 and 7. The only exception was at the end
points, where lower concentration magnitudes resulted in
much more variable relative deviations. Since increasing
and decreasing trends reach their minimum concentra-
tions at different endpoints, the overall effect on median
relative deviations is not pronounced when the two trends
are balanced in number. However, the extreme case of a
12:1 imbalance between increasing and decreasing trends
resulted in larger variability ranges at time-course edges.
With 60 % of the trends increasing, the bias threshold at
early timepoints increased from 2.5 % to 5 %. With 60 %
of the trends decreasing, the bias threshold increased at
late timepoints but did not go beyond the overall aver-
age of 2.5 % (as the threshold at these timepoints was

already low). The difference between the two conditions
can be explained by the fact that all increasing trends start
at or very close to 0, while only some of the decreasing
trends reach such low concentrations. Since a more bal-
anced proportion of increasing and decreasing trends is
expected in real data, the overall effect would be minimal.
Two other conditions — increasing the net concentration
changes of decreasing trends (by doubling the proportion
of compounds with large relative changes) and increasing
the variability of observations (by doubling the standard
deviation of highly variable compounds) did not appear
to have any impact on the threshold calculation. For all
conditions, gam-5 smoothing remained the best choice.
Taken together, these results suggest that a bias thresh-
old of approximately 2.5 % using gam-5 smoothing would
be an adequate default choice for diverse data sets.
Beyond cell culture applications, we predict the bias cor-
rection algorithm to be just as useful for other time-
course metabolomic data. One such example is biofluid
analysis in toxicology. The Consortium for Metabonomic
Toxicology (COMET) has already established a large
collection of time-course urine samples that meet the
requirements for systematic error correction [22]. While
the proposed correction is not designed to replace stan-
dard normalization techniques, it can build on the devel-
opment of recent smoothing spline techniques [14] and
serve a complementary role in the identification of spuri-
ous results. Further extension to mass spectrometry (MS)
methods is also likely to be fruitful. Techniques such
as multiple reaction monitoring (MRM) are commonly
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used for pharmaceutical and toxicological metabolomics
[23, 24] and suffer from similar dilution effects as NMR
(exacerbated by the need for more sample manipulation
such as liquid extraction steps). The correction of sys-
tematic biases may serve to reduce the relative standard
deviations of quantified compound concentrations.

Conclusions

The growing popularity of quantitative metabolomics
for time-course applications presents a new context for
data processing and acquisition. While this work deals
primarily with the correction of internal standard quan-
tification in cell culture data, it’s not difficult to imagine
similar approaches applied to other analytical methods.
Improvements in accuracy, precision, and analysis speed
can be best achieved by leveraging the replication inherent
to the parallel observation of multiple metabolite trends.
The algorithm presented in this work took advantage of
inherent autocorrelation to identify and correct system-
atic bias originating from internal standard addition and
quantification. The gam-5 model was identified as the best
smoothing function for the task, with the ability to detect
a bias greater than 2.5 % across most of a culture’s time-
course. The simulation framework followed the context-
driven approach by capturing the key elements of a cell
culture time-course. Although the presented validation
has focused on trends typically observed in our lab, full
code has been provided to allow rapid adaptation to user
needs.

Availability and requirements

¢ Project name: metcourse

¢ Project home page: https://github.com/ssokolen/
metcourse

e Operating system: Platform independent (tested on
Linux)
Programming language: R (version 3.2.1)
Other requirements: R packages — dplyr (version
0.4.2), mgcv (version 1.8—-6)
License: Apache (version 2.0)
Any restrictions to use by non-academics: no
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Additional file 1: Internal standard error correction algorithm. R script
containing two function definitions — f_smooth() used to generate the
smoothing fit and correct_relative_deviation() to perform the corrections.
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Additional file 2: Stochastic trend generation functions. R script
containing all the functions used to simulate realistic timecourse trends.
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