
Decomposing Neural Synchrony: Toward an Explanation
for Near-Zero Phase-Lag in Cortical Oscillatory Networks
Rajasimhan Rajagovindan, Mingzhou Ding*

The J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States of America

Abstract

Background: Synchronized oscillation in cortical networks has been suggested as a mechanism for diverse functions
ranging from perceptual binding to memory formation to sensorimotor integration. Concomitant with synchronization is
the occurrence of near-zero phase-lag often observed between network components. Recent theories have considered the
importance of this phenomenon in establishing an effective communication framework among neuronal ensembles.

Methodology/Principal Findings: Two factors, among possibly others, can be hypothesized to contribute to the near-zero
phase-lag relationship: (1) positively correlated common input with no significant relative time delay and (2) bidirectional
interaction. Thus far, no empirical test of these hypotheses has been possible for lack of means to tease apart the specific
causes underlying the observed synchrony. In this work simulation examples were first used to illustrate the ideas. A
quantitative method that decomposes the statistical interdependence between two cortical areas into a feed-forward, a
feed-back and a common-input component was then introduced and applied to test the hypotheses on multichannel local
field potential recordings from two behaving monkeys.

Conclusion/Significance: The near-zero phase-lag phenomenon is important in the study of large-scale oscillatory
networks. A rigorous mathematical theorem is used for the first time to empirically examine the factors that contribute to
this phenomenon. Given the critical role that oscillatory activity is likely to play in the regulation of biological processes at all
levels, the significance of the proposed method may extend beyond systems neuroscience, the level at which the present
analysis is conceived and performed.
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Introduction

Cortical information processing involves the coordinated

activity among many distinct regions of the brain. Statistically,

this coordinated activity manifests as correlated or synchronized

co-variations in the recorded multivariate data. Early studies in

animal preparations have shown that stimulus-evoked short-range

synchrony between neurons in the primary visual area subserves

perceptual binding of sensory information [1,2]. Simultaneous

action potentials fired by lower order neurons [3–5] provide an

effective drive on higher order neurons, the activations of which

enable object discrimination and perception. In humans, similar

observations have been made [6] where highly synchronized EEG

activity occurs in response to stimulus input. In all these cases, a

near-zero phase-lag relation between different data series is

observed, reflecting the millisecond or even sub-millisecond

precision required for feature integration [1,7–9].

Increasingly, long-range synchronization of oscillatory field

activity with near-zero phase-lag, often in the absence of stimulus

input, has been reported [8,10–13]. Depending on the task, the

strength of the synchronization can influence the efficacy of both

sensory and motor processing [12,14–16], suggesting that it has a

functional role. To date, however, an explanation of the observed

near-zero phase-lag relation in these large-scale networks has not

been forthcoming. Recent work has considered the importance of

the near-zero phase-lag phenomenon from the perspective of

neuronal communication. In particular, field oscillations provide

an index of the excitability level of a neuronal ensemble [17,18].

During the excitable phase of the oscillation cycle, presynaptic

neurons are more likely to fire action potentials, whereas for the

postsynaptic neuron, action potentials received during the

excitable phase are more effectively integrated, leading to a

response [18–20]. This suggests that long-range synchrony could

serve as a gating mechanism of information flow in cortical circuits

[20–23]. Given that the conduction delay between two brain areas

is only a small fraction of the oscillation cycle, a near-zero phase-

lag relation could stem either from reciprocal communication

between the two areas (bidirectional interaction) or from the two

areas being readied to communicate by a third set of areas

(common input). Mathematically, it is intuitively clear that a

positively correlated common input with no significant relative

time delay, if strong enough, can drive the two areas into near-zero

phase-lag synchrony. Alternatively, a recent computational model

based on the anatomical connectivity pattern in the visual system

examined the sufficient conditions underlying the emergence of

near-zero phase-lag synchrony in cortical networks experiencing
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bidirectional interaction [24]. The testing of these possibilities has

not been carried out empirically. The main reason is that the

commonly used methods such as cross correlation and coherence

lack the ability to decompose neural interactions into their

constituent components.

In this paper we attempt to address this problem by introducing

Geweke’s time series decomposition theorem into the analysis of

multivariate neural data. Let the two brain areas be denoted by A

and B. The interaction between these two areas may be mediated

by A influencing B (ARB), B influencing A (BRA), and/or A and

B both receiving a common input. Geweke’s theorem states that

the total interdependence (synchrony) between two stochastic

processes from A and B can be expressed as the sum of the three

components: (ARB)+(BRA)+(instantaneously correlated common

input). Here the arrow is understood in the sense of Granger

causality and the instantaneously correlated common input is

represented as instantaneous causality [25–28]. In this framework

it is hypothesized that bidirectional interaction or positively

correlated common input or a combination of both can contribute

to the establishment of near-zero phase-lag synchrony. In

particular, when the interaction is clearly unidirectional (e.g.

ARB equals zero but BRA does not), the phenomenon of near-

zero phase-lag is likely to be the result of strong positively

correlated common input with no significant relative time delay,

arising exogenously to A and B. We tested these ideas by first using

simulation examples and then analyzing local field potential data

recorded from behaving monkeys performing a visuomotor

pattern discrimination task.

Materials and Methods

Simulation
Setup. Auto-regressive model of the form in Eq. (1) was used

to generate all the simulated time series. Two representative types

of interaction pattern, namely (a) unidirectional interaction with

positively correlated common input and (b) bidirectional

interaction, were considered. The phase-lag as a function of

appropriate model parameters for both cases were studied.

Positively correlated common input. A bivariate AR(3)

process [p = 3 in Eq. (1)] in which X drives Y was used. The

coefficients of the model were a1 = 0.4428, a2 = 20.5134, a3 = 0,

d1 = 0.506, d2 = 20.6703, d3 = 0, b1 = b2 = b3 = 0, c1 = c2 = 0,

c3 = 0.1, and Sxx =Syy = 1. The cross terms in the noise

covariance matrix, Syx =Sxy, reflecting the strength of positively

correlated common input, was systematically varied. The

parameter choice above enabled the model to oscillate at 40 Hz

for which the phase-lag was computed. The dataset consisted of

100 epochs of 200 sample points each. The sampling rate was

assumed to be 200 Hz. Note that, for the given sampling rate, the

input correlation can be considered contemporaneous or

instantaneous since the noise terms in the AR model in Eq. (1)

are not correlated over time.

Bidirectional interaction. A bivariate AR(4) process [p = 4

in Eq. (1)] was used. The coefficients of the model were a1 = 0.9,

a2 = 20.5, a3 = 0, a4 = 0, d1 = 0.8, d2 = 20.5, d3 = d4 = 0,

Sxx =Syy = 1, and Sxy =Syx = 0 (no common input). The

coefficients of the interaction terms b1,2,3,4 and c1,2,3,4 were

varied in tandem to achieve simultaneous increase in the strength

of both feed-forward and feed-back interaction. The model

exhibited narrow frequency band oscillations with a frequency

peak at 32 Hz for which the phase-lag was computed. The dataset

consisted of 100 epochs of 200 sample points each. The sampling

rate was assumed to be 200 Hz.

Experiment
Behavioral paradigm. Two monkeys (GE and LU) were

trained to perform a GO/NO-GO visual pattern discrimination task

in the Laboratory of Neuropsychology at the National Institute of

Mental Health [10,29]. Animal care was in accordance with

institutional guidelines at the time. The monkey initiated each trial

by depressing a hand lever and maintained its depression while

anticipating the onset of a visual stimulus. Four squares arranged in

either a line (left-slanting and right-slanting) or a diamond (left-

slanting and right-slanting) shaped formation appeared on a visual

display after a random time interval triggered by the lever depression.

The monkey made either a GO (lever release) or a NO-GO

(maintaining lever depression) response upon discriminating the input

pattern. For the GO trials, the time between stimulus onset and the

lever release is defined as the response time (RT). The experiment

was conducted in sessions of approximately 1000 trials each.

Data acquisition. Local field potentials (LFPs) were recorded

with bipolar teflon-coated platinum microelectrodes (51-mm

diameter and 2.5-mm tip separation) from up to 15 distributed

sites located in the hemisphere contralateral to the dominant hand

(right hemisphere in monkey GE and left hemisphere in monkey

LU). The data collection period started 90 ms before the stimulus

onset and ended approximately 500 ms after stimulus onset [10].

LFPs were amplified by Grass P511J amplifiers (26 dB at 1 and

100 Hz, 6 dB/octave falloff) and digitized at 200 Hz. As this study

is concerned with the phase-lag between two signals, the bipolar

derivation carries certain arbitrariness. Reversing the order of the

two subtracting electrode leads can change the phase from 0 to p
or vice versa. This can affect the formulation of the hypothesis to

be tested. See Results and Discussion sections for more details.

Data set selection. Previous analysis of the same experiment

[11,30] has identified a coherent beta (14 to 30 Hz) oscillatory

network in the sensorimotor cortex involving both pre- and post-

central sites during the prestimulus time period. For this work the

three recording sites that are common to both monkeys were

selected for further analysis: primary somatosensory area (S1),

primary motor area (M1) area, and posterior parietal area 7b.

Trials contaminated with artifacts or associated with incorrect

behavioral responses were rejected. To achieve a sufficient number

of trials, different sessions having similar RT distributions were

combined to yield a data set of approximately 2400 and 1400 trials

for monkeys GE and LU, respectively. The time interval from

290 ms to 20 ms was considered, which was 110 ms in duration

and contained 22 sample points. We henceforth refer to this time

interval the prestimulus time interval since it took the stimulus

more than 20 ms to reach the cortex.

Time series decomposition. Let the LFP data from two

recording sites be denoted by Xt and Yt. Jointly, they can be

represented by the following bivariate autoregressive model

Xt~
Xp

j~1

ajXt{jz
Xp

j~1

bjYt{jzet

Yt~
Xp

j~1

cjXt{jz
Xp

j~1

djYt{jzgt

ð1Þ

where the noise terms et and gt are uncorrelated over time, and

their contemporaneous covariance matrix is

S~
Sxx Sxy

Syx Syy

� �
ð2Þ

If bj is not uniformly zero for j = 1,2,…, p, then Yt is said to have a

causal influence on Xt. Likewise, Xt is said to have a causal

Decomposing Neural Synchrony

PLoS ONE | www.plosone.org 2 November 2008 | Volume 3 | Issue 11 | e3649



influence on Yt if cj is not uniformly zero for j = 1,2,…, p. If

Sxy =Syx?0, indicating that the noise terms et and gt are correlated

instantaneously, then the interdependence between Xt and Yt has

another contributor that is not explained by the interaction

between Xt and Yt. This contributor, possibly representing

influences exogenous to the (X,Y) system such as a common

input with no significant relative time delay from a third system,

will be referred to as the instantaneous causality [26,27].

Fourier transforming Eq. (1) and performing proper ensemble

average, we obtain the spectral matrix

S vð Þ~
Sxx vð Þ Sxy vð Þ
Syx vð Þ Syy vð Þ

� �
~H vð ÞSH� vð Þ, ð3Þ

where * denotes complex conjugate and matrix transpose, and

H vð Þ~
Hxx vð Þ Hxy vð Þ
Hyx vð Þ Hyy vð Þ

� �
ð4Þ

is the transfer function matrix. The total interdependence between

Xt and Yt at frequency f (v= 2pf) is defined as

fx,y vð Þ~ln
Sxx vð ÞSyy vð Þ

S vð Þj j ~{ln 1{C vð Þð Þ ð5Þ

where C vð Þ~ Sxy vð Þj j2
Sxx vð ÞSyy vð Þ is the coherence function. The phase-lag

between Xt and Yt at a given frequency is given by

tan{1 Im Syx vð Þf g
Re Syx vð Þf g

� �
. The Granger causality between the two time

series is

fx?y vð Þ~{ln 1{
Sxx{

S2
yx

Syy

� �
Hyx vð Þ
�� ��2

Sxx vð Þ

0
B@

1
CA ð6Þ

and

fy?x vð Þ~{ln 1{
Syy{

S2
xy

Sxx

� �
Hxy vð Þ
�� ��2

Syy vð Þ

0
B@

1
CA ð7Þ

In addition, the frequency domain expression for the instanta-

neous causality is

fx:y vð Þ

~ln
Sxx vð Þ{Hxy vð Þ Syy{

S2
xy

Sxx

� �
H�xy vð Þ

� �
Syy vð Þ{Hyx vð Þ Sxx{

S2
yx

Syy

� �
H�yx vð Þ

� �
S vð Þj j

0
B@

1
CA: ð8Þ

It can be shown that the above set of variables are related

through

fx,y vð Þ~fx?y vð Þzfy?x vð Þzfx:y vð Þ: ð9Þ

Intuitively, the decomposition in Eq. (9) means that the total

amount of statistical synchrony between two LFP signals is the sum

of their causal drives on one another and a common input

component. The expression in Eq. (9) can be integrated over the

entire frequency domain to yield the time-domain counterpart:

Fx,y~Fx?yzFy?xzFx:y: ð10Þ

While the frequency-domain formulation [25] is convenient for

estimation, the above time-domain decomposition is more readily

interpretable and will be used here.

Data analysis protocol. For each monkey there are 3

distinct pairs of recording sites: (M1, S1), (M1, 7b) and (S1, 7b).

For each pair, previous work [11,30] has identified a prominent

coherence peak in the beta frequency range (14 to 30 Hz). Except

for (M1, S1) in monkey LU, the coherence in other five channel

pairs is concentrated in the beta frequency range. These five

channel pairs are further analyzed due to the reason that for these

channel pairs, the time-domain quantities are equivalent to that in

the beta range and as pointed out earlier, the Geweke

decomposition is more readily interpretable in the time domain.

The relative phase, referred to as the phase-lag in this study, is

well-defined for the peak frequency. The dependence of this

phase-lag on the factors in Eqs. (9) and (10) was investigated by

carrying out the following procedure:

(1) For a given pair of recording sites, the phase-lag in the beta

frequency range was estimated for each single trial by Fast

Fourier Transform (FFT) and sorted according to its value.

The sorted trials were grouped into subensembles with 30%

overlap, resulting in 33 and 19 groups in monkeys GE and

LU, respectively. Each subensemble contained 100 trials.

(2) For each subensemble the ensemble mean was estimated and

removed from the individual trials within the subensemble.

This is to ensure that the data may be treated as coming from

a zero-mean stochastic process.

(3) An AR model of order p = 9 was fit to the mean-removed data

in each subensemble. Power, coherence, causality spectra as

well as phase-lag at the peak frequency were derived from the

AR model [25,26].

(4) Spearman rank correlation (SRCC) and Spearman rank

partial correlation [31] (SRPCC) were computed between the

instantaneous causality measure and the estimated phase-lag

to assess the prediction that the two variables are negatively

correlated. To remove the effect of directional influences, a

partial correlation analysis was performed. Significance was

determined through one tail t-test with a significance level of

p,0.05.

(5) For channel pairs determined to have bidirectional interac-

tions, Spearman rank correlation (SRCC) and Spearman rank

partial correlation [31] (SRPCC) were computed between the

magnitude of the sum of the two directional influences and the

estimated phase-lag to assess whether they exhibit negative

correlation.

Logic of the analysis protocol. The goal of this work is to

test that (a) positively correlated common input with no significant

relative time delay and (b) bidirectional interaction contribute to

the formation of near-zero phase-lag. In the simulation examples,

this is accomplished by changing the strength of input correlation

and bidirectional interaction and observing the corresponding

change in the phase-lag. For actual data, while Geweke’s theorem

allows the extraction of various causal influences through the

decomposition of synchrony, the strength of input correlation and

bidirectional interaction is not easily manipulated. The sorting of

trials according to their phase-lag is the strategy to deal with this

(8)
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problem. Each subensemble of trials gives rise to a different phase-

lag value. Performing Geweke’s decomposition for each

subensemble provides the avenue to observe the correlation

between phase-lag and common input/bidirectional interaction. It

is important to note that, for a given pair of recording sites, both

instantaneous causality and the two directional influences may

change as functions of the sorted phase-lag. A simple pairwise

correlation analysis may thus become confounded. Partial

correlation is used here to make possible the examination of one

factor’s contribution to near-zero phase-lag with the contribution

of other factors statistically removed. To generalize the above five-

step protocol to other problems of interest, one can replace beta

frequency by other relevant frequencies and suitably modify the

subensemble size and the degree of overlap. In addition, since

phase-lag is a bivariate phenomenon involving two simultaneous

time series and our hypothesis does not distinguish whether the

common input stems from the sites within the multivariate data set

or sources not observed in the experiment, a pairwise analysis is

sufficient for the purpose of this study. In general, however, one

may wish to apply conditional Granger causality [25,26] to

ascertain that the causal influence between two recording sites is

not mediated by other recorded sites before applying the above

analysis protocol.

Results

Simulation
The impact of (a) instantaneously positively correlated common

input and (b) directional interaction on phase-lag is examined

using simulated time series and summarized in Tables 1 and 2. In

the case of the AR(3) model with unidirectional interaction,

increased correlation in common input, as measured by increased

instantaneous causality, reduces the magnitude of phase-lag from

2.19 radians to a near-zero value of 0.16 radians (Table 1). Similar

effect was observed in networks with bidirectional interaction (not

shown). In the case of the AR(4) model, the parametric increase in

the model coefficients b1,2,3,4 and c1,2,3,4 in Eq. (1) resulted in

increased bidirectional interaction, as measured by increase in

feed-forward and feed-back causal influences, leading to decrease

in the magnitude of phase-lag to near-zero values (Table 2).

Experiment
Network identification. Granger causality spectra are

shown in Fig. 1 for a pair of sites experiencing unidirectional

interaction (A) and another pair of sites undergoing bidirectional

Table 1. Influence of increased instantaneous causality on
phase-lag.

Network with unidirectional interaction pattern

Instantaneous Causality Phase-lag (radians)

0.00 2.19

0.04 1.16

0.29 0.44

1.02 0.16

Simulated data were generated by a bivariate AR(3) model with unidirectional
interaction. Here instantaneous causality characterizes the strength of
correlation in common input. Magnitude of phase-lag is seen to decrease with
increase in instantaneous causality.
doi:10.1371/journal.pone.0003649.t001

Table 2. Effect of increased bidirectional interaction on
phase-lag.

Network with bidirectional interaction pattern

FXRY/FYRX FXRY+FYRX Phase-lag (radians)

0.038/0.081 0.119 1.31

0.085/0.117 0.202 0.94

0.267/0.131 0.398 0.36

Simulated data were generated by a bivariate AR(4) model with bidirectional
interaction. FXRY and FYRX denote the feed-forward and feed-back causal
influences. Magnitude of phase-lag is seen to decrease with increase in strength
of bidirectional interaction.
doi:10.1371/journal.pone.0003649.t002

Figure 1. Granger causality spectra. (A) a pair of sites experiencing unidirectional interaction and (B) a site pair experiencing bidirectional
interaction in the beta frequency band. The threshold level for significance at p,0.005 is overlaid as a flat line.
doi:10.1371/journal.pone.0003649.g001
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interaction (B). Figure 2 shows the interaction patterns among the

three recording sites in both monkeys in the beta frequency range

where the same significance threshold criterion described in [11]

were used. Except for (S1,7b) in monkey GE and (M1,S1) in

monkey LU, the remaining site pairs in both monkeys exhibited

unidirectional interaction. Unlike the other five site pairs where

the interaction is concentrated in the beta range (see Fig. 1), the

(M1,S1) pair in monkey LU also exhibited significant interaction

in the gamma frequency range, in addition to that in the beta

range. For this pair, the causal influences in the time-domain

where instantaneous causality is most readily interpreted, are

confounded and is thus excluded from further analysis.

Functionally, the observation that S1 and 7b play a pivotal role

in the organization of the network has led to the hypothesis that

the beta network supports the maintenance of lever depression by

facilitating sensorimotor integration [11,26,30].

Phase-lag distribution. For a given site pair, the phase-lag

at the peak beta frequency was estimated for each trial. Figure 3

shows the phase-lag distributions for two different pairs of sites in

monkeys GE and LU. Both distributions are unimodal. In

particular, despite a unidirectional interaction pattern between

M1 and 7b (Fig. 2(B)), the phase-lag is approximately centered

around zero with a mean of 0.04 radians. This suggests that for

such pairs the instantaneous causality may contribute significantly

to the overall degree of synchrony. Table 3 summarizes the mean

phase-lag in the beta band for all five pairs of recording sites.

Synchrony decomposition and near-zero phase-lag. For

recording sites A and B, according to Eqs. (9) and (10), the total

synchrony derived from the coherence function can be written as

the sum of two directional influences (ARB) and (BRA) and

instantaneous causality (A.B). Intuitively, positively correlated

common input with no significant relative time delay, measured by

the instantaneous causality, has the effect of bringing phase-lag

closer to zero. This is particularly so for pairs experiencing

unidirectional causal influence. In monkey LU, the phase-lag

between M1 and 7b is near zero (Fig. 2(B) and Fig. 3(B)), and not

surprisingly, the instantaneous causality in this case makes up 72%

percent of total interdependence, a substantial percentage. Below

we tested the idea by carrying out an analysis for the site pairs

characterized by unidirectional interaction with the analysis

protocol outlined in the Methods section.

Instantaneous causality and phase-lag. For each site pair

the phase-lag was estimated for each trial and the estimated value

was used to sort all trials into subensembles. The phase-lag and the

instantaneous causality measure for each subensemble constituted

a point on a scatter plot. Figure 4 shows the result for (S1,7b) in

monkeys GE and LU. Clearly, the two quantities are negatively

correlated, indicating that as the instantaneous causality increases,

the phase-lag decreases and, in fact, approaches zero. Spearman’s

rank correlation and Spearman’s rank partial correlation

coefficients were computed for all the site pairs and listed in

Figure 2. Schematic Granger causality graph. (A) monkey GE and
(B) monkey LU. Solid arrows indicate directions of causal influence in
the beta frequency band that were significant at p,0.005.
doi:10.1371/journal.pone.0003649.g002

Figure 3. Phase distribution. Histogram of single trial phase-lag values at peak beta frequency for site pairs (A) (S1, 7b) in monkey GE and (B)
(M1,7b) in monkey LU.
doi:10.1371/journal.pone.0003649.g003

Table 3. Mean phase-lag.

Mean phase-lag in beta band

GE LU

M1,S1 21.34 -

M1,7b 0.9 0.04

S1,7b 20.42 20.4

Mean phase-lags (in radians) measured at the peak frequency in beta band for
monkeys GE and LU.
doi:10.1371/journal.pone.0003649.t003
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Table 4 and 5. All correlation coefficients were negative. Except

for (M1,7b) in monkey GE, these correlation coefficients were

statistically significant at p = 0.05 level (one tail t-test) (Table 4). By

partialing out the effects of the directional influences, the

correlation for (M1,7b) also became significant (Table 5).

Bidirectional interaction and phase-lag. Inspection of the

causality spectrum between the site pair (S1,7b) in monkey GE

revealed the presence of bidirectional interaction in the beta band

(Fig. 1(B) and Fig. 2(A)). The coherence function and the

associated phase spectrum are shown in Figure 5. This channel

pair was further analyzed to identify the effect of bidirectional

interaction on phase-lag. The strength of directional interaction is

expressed as the sum of feedforward and feedback influences. After

partialing out the influence of the common input, the magnitude

of phase-lag was found to be negatively correlated with the

strength of reciprocal interaction (r = 20.455, p = 0.0045). This

result supports our early assertion that, in addition to

instantaneous causality, bidirectional interaction may also

contribute to near-zero phase-lag.

Discussion

The relative phase between two neural signals A and B at a

given frequency, referred to as phase-lag here, can be calculated

from the cross-spectrum. For decades, the sign and magnitude of

phase-lag have been used to infer direction of information

transmission and delay [32]. Increasingly, phase-lag is found to

be near-zero in synchronous cortical networks, sometimes

involving distant sites. Such phenomenon renders the use of

phase-lag as a measure to identify directional influences ineffective.

Recently, the phenomenon of near-zero phase-lag has been

examined from the point of view of neuronal communication and

is considered a manifestation of the brain integrating information

from diverse sources [1,8,11,16]. Two factors, among possibly

others, could be identified that contribute to the formation of near-

zero phase-lag: (a) positively correlated common input with no

significant relative time delay and (b) bidirectional interaction.

Reports of near-zero phase-lag arising in networks with a

predominantly unidirectional interaction pattern further highlights

the importance of the first factor.

Table 5. Partial correlation between instantaneous causality
and phase-lag.

SPRCC between IC & phase-lag

P,.05 GE LU

M1,S1 20.79 -

M1,7b 20.31 2.44

S1,7b 20.41* 2.81

Spearman’s partial rank correlation coefficient between instantaneous causality
and magnitude of phase-lag in the beta band between site pairs for monkeys
GE and LU. The partialing is against the directional influences. All the results are
significant at p,0.05.
*denotes the channel pair that exhibits bidirectional interaction in the beta
frequency band. The symbol ‘‘-’’ indicates that a value is not available.

doi:10.1371/journal.pone.0003649.t005

Figure 4. Influence of common input on phase-lag. Scatter plot showing strong negative correlation between instantaneous causality (IC) and
magnitude of phase-lag between site pairs (S1,7b) in monkeys (A) GE and (B) LU.
doi:10.1371/journal.pone.0003649.g004

Table 4. Correlation between instantaneous causality and
phase-lag.

SRCC between IC & phase-lag

P,.05 GE LU

M1,S1 20.79 -

M1,7b 20.33 (.058) 2.70

S1,7b 20.68* 2.73

Spearman’s rank correlation coefficient between instantaneous causality and
magnitude of phase-lag in the beta band between site pairs for monkeys GE
and LU. The results that did not meet significance at p,0.05 are included with
their corresponding p-value.
*denotes the channel pair that exhibits bidirectional interaction in the beta
frequency band. The symbol ‘‘-’’ indicates that a value is not available.

doi:10.1371/journal.pone.0003649.t004
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The influence of the two factors on phase-lag was tested on

simulated datasets generated by bivariate autoregressive models.

First, it was observed that, for a linear system with unidirectional

interaction, a near-zero phase-lag was unlikely in the absence of an

instantaneously positively correlated common input. As such an

input is introduced and increased, phase-lag is seen to decrease

and approach zero. A similar influence of instantaneously

positively correlated common input on phase-lag was also

observed in networks with bidirectionally interacting. Second,

for the case of a bidirectionally interacting system with no

common input, increase in the strength of both feed-forward and

feed-back interaction leads to the reduction in the magnitude of

phase-lag. It is worth noting that not all reciprocally interacting

systems exhibit near-zero phase-lag synchrony. The actual phase-

lag in a network is likely a function of such factors as relative delays

involved in the feed-forward and feed-back pathways and the

strength/type of coupling.

The empirical testing of the above ideas faces considerable

challenge as a standard correlation or coherence analysis do not

offer sufficient information on the relation between the two signals

A and B. Recently, advanced connectivity tools have been

proposed [25–28,32–40] which aim at parsing the synchrony into

directional interaction. Mathematically, a theorem by Geweke

promises deeper insights [27]. It states that the total interdepen-

dence between A and B can be written as the sum of three

contributing factors: (ARB), (BRA) and (A.B). The arrow is

understood in the sense of Granger causality and (A.B) signifies

instantaneous causality which could be interpreted as reflecting the

effect of a common input. In the present study Geweke’s theorem

was applied to study the contribution of the two factors identified

above to near-zero phase-lag.

Local field potentials from primary somatosensory (S1), primary

motor (M1), and posterior parietal (7b) areas from two monkeys

performing a sensorimotor integration task were analyzed. A beta

oscillatory network involving all three sites was identified by

coherence. The total interdependence between two sites was then

decomposed into its directional components. Out of five distinct

pairs of recording sites studied, four exhibited predominantly

unidirectional interaction in the beta band. The phase-lag was

near-zero for one of the five pairs and relatively small for another

three. Unlike simulated models, neither the strength of input

correlation nor the strength of feed-forward/feed-back interaction

can be manipulated to infer their influences on phase-lag. The

sorting of trials according to their phase-lag is a strategy to deal

with this problem. By sorting the trials according to single trial

estimated phase-lag, a negative correlation was found between the

phase-lag and instantaneous causality for all pairs of sites, implying

that the stronger is the common input the closer to zero is the

phase-lag. Despite this tendency, the actual value of the phase-lag

for a given pair depends on the relative contribution of the each of

the factors in Eqs. (9) and (10), and may vary broadly [from 0.04

(near-zero) to 21.34 (far-from-zero), see Table 3].

If the common input is negatively correlated, then the stronger is

this input the closer to 6p is the phase-lag. A careful inspection of

the five pairs of recording sites revealed that the noise terms in their

respective autoregressive models (see Eq. (1)) were all positively

correlated, with the exception of the pair (S1,7b) in GE, where the

noise terms was negatively correlated. Since the order of the

recording leads used for the bipolar derivation was arbitrary, the

signal from S1 was reversed in polarity, which is equivalent to a

depth-to-surface subtraction. This correction enables the data from

all five pairs to be considered under the same hypothesis. Channel

pair (S1, 7b) in monkey GE also has another differing characteristic:

the interaction is bidirectional in the beta range. In light of the

earlier discussion, the bidirectional interaction in addition to

common input could also contribute to the observed near-zero

phase-lag. This prediction was confirmed by a partial correlation

analysis between the phase-lag and the strength of feedforward and

feedback interaction after statistically removing the influence of the

instantaneously correlated common input.

In sum, based on our simulated as well as experimental data, for

two cortical regions engaged in unidirectional interaction, a

positively correlated common input with no significant relative

time delay, quantifiable by instantaneous causality, is likely a main

contributor tor the near-zero phase-lag between the sites. On the

other hand, for two cortical areas engaged in bidirectional

interaction, near-zero phase-lag synchrony can emerge as a result

of reciprocal interaction or positively correlated common input or

Figure 5. Coherence and phase spectra for site pair (S1,7b) in monkey GE. (A) Coherence spectra for site pair (S1,7b) in monkey GE
indicating strong beta band synchrony. (B) The relative phase spectra for the same site pair. The near-zero phase-lag in the beta band is the result of
both positively correlated common input and reciprocal interaction.
doi:10.1371/journal.pone.0003649.g005
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a combination of both. Geweke’s decomposition theorem,

combined with the analysis protocol outlined in the Methods

section, can help to ascertain the exact network mechanism for a

given problem. Each measure obtained through this decomposi-

tion technique has the desirable feature that they all have clear

physiological correspondence. For example, bidirectional interac-

tion is highly interpretable in terms of the anatomical connectivity

principle of reciprocity in the cortex [41]. Instantaneous causality/

common input may be taken to collectively reflect activation of

one or several cortical or subcortical regions that project to the

sampled sites. Volume conduction, while a possible contributor to

instantaneous causality, is unlikely a factor in the present study as

bipolar derivation localizes neural activity to its generator.

However, for scalp EEG, the influence of volume conduction is

known to be significant and must be carefully taken into

consideration [42,43].
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