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A common practice of metanalysis is combining the results of numerous studies on the effects of a risk factor on a disease outcome.
If several of these composite relative risks are estimated from the medical literature for a specific disease, they cannot be combined
in a multivariate risk model, as is often done in individual studies, because methods are not available to overcome the issues of risk
factor colinearity and heterogeneity of the different cohorts. We propose a solution to these problems for general linear regression
of continuous outcomes using a simple example of combining two independent variables from two sources in estimating a joint
outcome. We demonstrate that when explicitly modifying the underlying data characteristics (correlation coefficients, standard
deviations, and univariate betas) over a wide range, the predicted outcomes remain reasonable estimates of empirically derived
outcomes (gold standard). This method shows the most promise in situations where the primary interest is in generating predicted
values as when identifying a high-risk group of individuals. The resulting partial regression coefficients are less robust than the
predicted values.

INTRODUCTION

We propose essentially a multivariate metanalytic
technique. Many diseases have numerous risk factors,
which are often studied in diverse cohorts with only a
limited number of risk factors in each. We here propose
a method of combining univariate relative risks (betas)
from diverse studies into multivariate models.

Metanalysis has proven to be a powerful tool, when
handled appropriately, to summarize previous medical re-
search on a common topic, including epidemiologic re-
search [1, 2, 3]. Several issues need to be carefully con-
sidered in reaching conclusions from the metanalysis of
epidemiologic studies. Studies are often heterogeneous in
their findings [4], which can even be considered a bene-
fit in understanding the source of differences in research
findings [5]. Publication bias must also be evaluated in a
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field in which the decision to publish, the quality and size
of the study, and the publishing journal’s reputation are
strongly interconnected [6].

All authorities agree that the best means of combining
effect estimates is by a pooled analysis where the separate
study datasets are combined together with possible con-
founders [3], especially if this pooling is planned prospec-
tively. In general though, effect estimates (β coefficients)
are combined from published reports. Univariate betas
are combined as in the example of Ernst et al, who consid-
ered fibrinogen as a risk factor for cardiovascular disease
using univariate and age-adjusted parameters [7]. More
commonly, multivariate-adjusted odds ratios and relative
risks are used as by Etminan et al on the effects of NSAIDs
on Alzheimer’s disease onset [8] by Vincent et al on hy-
poalbuminemia in acute illness [9], or by Danesh et al in
summarizing various plasma risk factors and heart disease
[10].

Our method of preparing multivariate risk models
by metanalysis suggests a comparison with multivariate
metanalysis. Unfortunately this term covers several tech-
niques, none of which are similar to ours. In some cases it
refers to a metanalysis that considers several similar out-
comes with the same risk factor [11, 12, 13]. Another tech-
nique, also called metaregression, is essentially a weighted
multivariate analysis of all the confounders (and possible
sources of heterogeneity) in the summarized studies [11].
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Most true multivariate metanalyses are pooled analyses of
multiple studies together with possible confounders. Far-
rer et al used a pooled analysis to estimate the effect of the
interaction between age, sex, and ethnicity on the effect
of apolipoprotein E4 as a predictor of Alzheimer’s disease
[14].

There would be clear benefit to a metanalytic tech-
nique that could combine univariate risk factors for a
disease obtained from different studies. In the metanal-
ysis of Danesh et al, four blood parameters were deter-
mined to be significantly correlated with heart disease risk
[10]. However, it was impossible to combine those in any
meaningful way to determine their joint predictive power
or to determine their independence from one another. Of-
tentimes a researcher simply wants to add a single risk
factor to an established multivariate risk model. In a re-
cent example, coronary artery calcium score was com-
bined with the Framingham score for predicting heart dis-
ease [15]. Previous studies had showed that both scores
were strongly predictive of heart disease but to combine
them took a 7-year study with 1461 subjects on whom
both scores were collected.

In another example, Gail et al developed a model for
the prediction of breast cancer onset [16]. This was sub-
sequently modified by statisticians of the National Surgi-
cal Adjuvant Breast and Bowel Project (NSABP) to define
eligibility criteria for the Breast Cancer Prevention Trial
[17]. They used a new source of data, the Surveillance,
Epidemiology, and End Results (SEER) Program for new
incidence rates for invasive breast cancer to replace the
original incidence rates for total breast cancer. They also
used the same new dataset to determine race-specific inci-
dence rates to replace the Whites-only rate from the orig-
inal model [18]. Their method is reported in an NSABP
document [19]. In a final example, the need was simply
to modify the Framingham score [20] for heart disease
to a new, lower-risk, population. Based on the assump-
tion that the multivariate betas are similar across popu-
lations, some authors have suggested changing the equa-
tion intercept to reflect the underlying incidence rate of
the new population [21, 22]. Others have suggested also
modifying the risk factor values themselves by using the
prevalence rates of the new population [23, 24]. All of
these examples involve combining evidence from differ-
ent sources into unique multivariate risk models based
broadly on the assumption that the correlations among
risk factors and between risk factors and the endpoint
were not significantly different between data sources or
populations.

Matchar et al used a variety of techniques and datasets
to develop the Stroke Prevention Policy Model (SPPM)
[25]. While they concede difficulties and shortcomings of
such an approach, they conclude, for clinical and eco-
nomic applications, “that despite the difficulties in de-
veloping comprehensive models, . . . , the benefits of such
models exceed the costs of continuing to rely on more
conventional methods.” The SPPM was then used in
demonstrating the economic benefit of a stroke treat-

ment’s short-term effect on long-term economic out-
comes [26].

The method we are about to introduce can also be
used in datasets with a large fraction of missing values.
Generally two strategies exist for such situations, either
using modeling techniques to extract data from obser-
vations with incomplete data or data imputation [27].
Zhao et al have introduced a joint estimating equation
that robustly estimates effect size in multivariate models
with missing data [28]. Steyerberg et al address the re-
lated problem of underpowered small studies [29]. They
describe a method to combine results from the medical
literature with results from individual patient data and
conclude “that prognostic models {from small studies}
may benefit substantially from explicit incorporation of
literature data.”

We have developed a new statistical method to address
the question of combining estimates of partial regression
parameters across datasets. This method is intended to
provide an approximate solution in the circumstances il-
lustrated above. The performance of this method is as-
sessed via simulation.

METHODS

Notation

The continuous outcome variable is denoted by Y ,
and its predicted value by Ŷ . We first consider a “gold-
standard” dataset including all the predictors of interest.
Information from the gold-standard dataset is denoted
with an asterisk. In practice this gold-standard dataset
will not be available, and the predictors of interest will be
distributed across multiple “candidate” datasets. The goal
will be to estimate, using information from the candidate
datasets, the regression relationship between the risk fac-
tors and the outcome that would have been observed if the
complete dataset had been available.

Denote the vector of predictors in the gold-standard
dataset by

X∗ = (X∗0 , X∗1 , . . . , X∗Q ) (1)

with the first element X∗0 = 1 being included in order
to estimate the intercept and the remaining Q predictors
being of primary interest. The multivariable regression of
Y∗ on X∗ is

Ŷ∗ = β̂∗X∗, (2)

where Ŷ∗ is the predicted value of Y and β∗ is estimated
in the usual way as

B∗ = (X∗′X∗)−1(
X∗

′
Y∗
)
. (3)

In other words, the multivariable regression equation ob-
served in the data is

Ŷ∗ = a∗ + b∗1 X
∗
1 + b∗2 X

∗
2 + · · ·+b∗QX

∗
Q , (4)
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where, for example, b∗1 estimates β∗1 , and so forth. We will
focus on the regression coefficients observed in the data—
that is, on B∗ rather than β∗.

In the above equations, the estimates of the partial
regression coefficients produced from the gold-standard
dataset are

B∗ = (b∗1 , b∗2 , . . . ,b∗Q). (5)

In contrast, each of the “univariable” regression coeffi-
cients, denoted, for example, by b∗u1, is the result of fitting
a univariable regression model with a single predictor—
for example,

Ŷ∗ = a∗1u + b∗1uX
∗
1 . (6)

We assume that there are Q univariable regression coeffi-
cients available for use, one from each candidate dataset.
The vector of univariable regression coefficients from the
candidate datasets is denoted as

Bu =
(
bu1, bu2, . . . , buQ

)
. (7)

In practice, the observed values of Bu and B∗u can differ
because of (a) differences between βu and β∗u and (b) sam-
pling variability within each of the datasets in question.

For concreteness, our goal is to estimate the multivari-
able regression model, as summarized through the set of
Q partial regression coefficients (b∗1 , b

∗
2 , . . . , b

∗
Q) and the

predicted values Ŷ∗ that could have been produced were
the gold-standard dataset is available. In the absence of
this gold-standard dataset, we assume that from Q candi-
date datasets, each containing exactly one predictor vari-
able, we have available its standard deviation (for study j,
denoted by s j and combined into a vector S), as well as its
univariable regression coefficient (for study j, denoted by
buj , and combined into a vector Bu). We also assume that
from one or more additional datasets, the various first-
order correlations between each set of predictors (denoted
by ri j , and combined into a matrix R) are available. (These
additional datasets need not contain Y .)

It is important to note that this formulation of the
problem includes, as a special case, the situation where
the various studies include overlapping risk factors. In
particular, for each study (whose number need not equal
Q) we could estimate a set of univariable regression
coefficients—that is, one coefficient per risk factor per
study. The additional problem induced by overlapping
predictors is that different estimates of buj will be available
for some or all of the risk factors, and that each of these
estimates must somehow be reconciled into a single “best”
estimate. In this case, we might (1) use standard metana-
lytic techniques to combine the various estimates of buj or
(2) select the buj from the “best” available datasets. Esti-
mates of S and R that reconcile multiple estimates can be
generated in a similar fashion.

Proposed approach

To illustrate our proposed approach, termed the
univariable synthesis method, first consider the gold-

standard dataset. Within this dataset, we can calculate (1)
univariable regression coefficients for each predictor, de-
noted by B∗u , (2) standard deviations for each predictor,
denoted by S∗, and (3) the set of all pairwise correlations
between the predictor variables, denoted by R∗. Denoting
element-wise multiplication by “·,” and element-wise di-
vision by “/,” the core of the univariable synthesis method
relies on noting that (b∗1 , b

∗
2 , . . . , b

∗
Q)—that is, the portion

of B∗ excluding the intercept—can also be estimated by
[30, equation 1]

B∗ =
(
R∗−1

(
B∗u · S∗

))
S∗

. (8)

The basic idea behind the univariable synthesis
method is that, when candidate datasets must be used,
the various elements of Bu, R, and S can nevertheless be
accumulated across these multiple data sources. In order
to do so, it must be assumed that the relevant standard
deviations, univariable regression coefficients, and corre-
lations are comparable across studies. (More precisely, we
are assuming, in analogy to the random-effect model used
in metanalysis, that each of the above terms represents a
realization from the same superpopulation. Thus, the as-
sumption is not that the various studies are “identical,”
but rather that they are “similar.”) The fundamental in-
sight is that Bu,R, and S are more likely to be similar across
datasets than are the partial regression coefficients.

In order to obtain appropriately calibrated values of
Ŷ , an estimate of the intercept of the above multivariable
regression model is also required. This can be obtained by
forcing the predicted regression function to pass through
the point (Xm,Ym), where Xm is the vector of mean values
of the predictors, and Ym is the mean response.

Assessment

The fundamental assumption of the univariable syn-
thesis method is that the various first-order summary
measures Bu, R, and S are comparable across datasets.
More precisely, this fundamental assumption holds that
the values of Bu, R, and S, obtained from various can-
didate datasets, are similar to those values of B∗u , R∗,
and S∗ that would have been obtained from the gold-
standard dataset, if these data were available. If the above
inputs are comparable, then applying (8) for B∗1Q to the
set of first-order summary measures from the candidate
datasets is conceptually equivalent to calculating B∗1Q

from the gold-standard dataset, and thus to recreating the
best possible estimate of the desired gold-standard regres-
sion model.

The validity of this basic assumption, and thus of
the methodology as a whole, can potentially be assessed
in two ways. First, we could ask the empirical question,
namely, to what degree do estimates of R, Bu, and S tend
to be similar across multiple datasets? (The question of
whether Bu is similar across datasets is a standard prob-
lem in metanalysis—the question of whether R and S are
similar has been less exhaustively studied.) Second, we
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could ask the mathematical question, namely, what is the
impact, on the partial regression coefficients and predicted
values for individual subjects, of discrepancies between the
gold-standard estimates of R∗, B∗u , and S∗ and estimates of
R, Bu, and S obtained from the candidate datasets? In other
words, we could perform a mathematical sensitivity anal-
ysis to determine the degree to which the above discrep-
ancies in the inputs are likely to affect the outputs.

Both assessment approaches suffer from a fundamen-
tal difficulty; namely, that the number of potential re-
gression models to which the proposed technique could
be applied is infinite (eg, regression models can differ in
the number of predictor variables as well as the values of
Bu, R, S, and B). Therefore, (a) demonstrating that the
method works well in one circumstance does not neces-
sarily demonstrate that it will work well in others; and (b)
the number of possible circumstances is so large that it is
difficult to develop a set of scenarios that would be suffi-
ciently representative. We deal with this difficulty by set-
ting up a single scenario (described in detail later) that
is both simple and typical. Given this scenario, we then
perform a mathematical sensitivity analysis across a wide
range of parameter values and observe the effects of these
changes on (a) the estimated regression coefficients and
(b) set of the predictions generated by the model. Though
not intended to be a definitive analysis, this approach
does allow us to assess the robustness of the methodol-
ogy in its most basic form; and also to illustrate how the
users of this methodology can set up a sensitivity anal-
ysis that is tailored to the characteristics of their own
data.

Sensitivity analysis methods

The dataset for the sensitivity analysis has 84 subjects
and 3 variables: an outcome Y , a commonly accepted pre-
dictor X1, and a new predictor X2. (The raw data hap-
pened to be taken from a study in exercise physiology, but
the source is not as important as the fact that X1 and X2

operate in exactly the same fashion as risk factors in epi-
demiologic investigations.) Table 1 provides a list of the
data.

The gold-standard multivariable regression, having
R2 = 0.67, is

Ŷ∗ = 1743.94− 92.65X∗1 + 39.44X∗2 . (9)

The standard deviations of b∗1 and b∗2 above are 7.93 and
12.07, respectively. The univariable regressions are

Ŷ∗ = 1751− 76.53X∗1 , (10)

where R2 = 0.62 and

Ŷ∗ = 576.19− 48.34X∗2 , (11)

where R2 = 0.11. The standard deviations of these uni-
variable regression coefficients b∗u1 and b∗u2 are 6.56 and
15.38, respectively. All of the regression coefficients are

Table 1. Raw data used in simulation examples.

y x1 x2 y x1 x2

223.1 19.8 8.3 149.0 21.1 8.6

105.4 21.0 8.5 171.0 20.3 8.8

161.9 21.4 8.8 111.0 21.4 8.9

161.3 21.3 9.0 99.0 21.8 9.2

94.1 21.0 8.2 267.0 19.0 8.4

280.5 19.7 8.3 98.0 21.0 8.6

183.6 19.7 8.0 184.1 19.0 8.4

204.4 21.0 8.7 416.1 19.0 8.4

140.2 20.2 8.1 112.3 20.5 8.6

73.0 21.4 9.1 583.6 19.0 8.5

194.0 20.4 8.4 53.4 21.8 8.9

118.0 21.1 8.6 180.4 19.8 8.1

68.3 22.0 9.6 128.0 21.6 8.8

131.0 21.4 9.1 82.4 21.7 9.1

127.0 21.0 8.5 230.8 20.4 8.7

72.2 21.6 8.9 135.2 21.6 8.9

93.0 21.8 9.5 90.8 22.0 9.6

94.9 21.0 8.9 181.0 20.5 8.8

108.3 22.0 9.2 99.0 21.7 8.7

118.9 20.3 6.7 321.6 19.0 8.6

83.8 20.9 6.6 134.7 21.5 8.7

66.6 22.0 9.9 342.0 19.9 8.4

117.7 21.1 8.6 115.0 20.9 8.6

209.6 19.0 6.3 185.0 20.9 8.7

137.0 20.8 8.5 164.0 20.0 8.9

66.0 21.2 8.8 89.6 22.0 9.8

174.8 21.1 8.4 225.7 20.5 8.5

427.8 19.0 9.0 179.1 20.7 8.5

179.6 21.4 8.9 54.9 22.0 9.3

237.3 19.5 8.0 96.3 21.5 8.3

209.9 19.8 8.4 71.0 21.2 8.9

319.0 19.3 8.1 62.5 22.0 10.0

89.7 21.6 8.6 191.8 19.5 8.1

122.0 22.0 9.4 65.0 21.9 9.2

112.1 22.0 9.2 201.0 21.2 8.8

131.8 21.5 8.7 116.0 21.0 8.7

80.0 22.0 9.6 191.0 20.3 8.3

87.0 21.5 8.6 136.7 21.1 8.8

247.0 19.0 8.3 137.4 21.1 8.8

70.0 21.1 9.2 67.0 22.0 10.0

63.5 22.0 9.3 207.0 19.4 8.4

224.7 20.4 8.7 122.0 21.3 9.3

statistically significant. The correlation between the pre-
dictors is 0.62, and the standard deviations of the predic-
tors are 0.94 and 0.62, respectively. In this dataset (a) the
commonly accepted risk factor is a relatively good predic-
tor of the outcome; (b) once the commonly accepted risk
factor is included in the model, the new predictor has an
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incremental benefit which is of moderate magnitude; (c)
the commonly accepted and new risk factors are positively
correlated; and (d) when comparing the multivariable and
univariable models, some of the parameter values differ
(indeed, the regression coefficient for X∗2 changes sign).
These characteristics are present in many epidemiological
datasets.

To implement the sensitivity analysis, we modified
three of the inputs: (a) the values of R∗ were varied
by adding from −0.10 to +0.10, in increments of 0.01,
to the baseline value of 0.62; (b) the values of B∗u were
varied by adding from −15 to +15, in increments of
1.5, to the baseline values of −76.54 and −48.34; and
(c) the values of S∗ were varied by adding from −0.15
to +0.15, in increments of .015, to the baseline values
of 0.94 and 0.62. The differences between these inputs
and the true values from the gold-standard dataset play
the role of the variability likely to be observed by us-
ing the candidate datasets rather than the gold-standard
dataset. (The above perturbations of the inputs were de-
rived on intuitive grounds in order to represent from
small to moderately large differences between the above
datasets—for example, the extreme values for B∗u are
in the range of 1–2 standard deviations from the val-
ues in the gold-standard dataset. In practice, the user
might base the choice of perturbations on more sub-
stantive considerations pertinent to the scientific issues at
hand.)

For each set of simulation inputs, we reestimated the
multivariable regression model using (8), thus obtain-
ing the following: (a) new multivariable regression coef-
ficients and (b) new predicted values. To determine how
close the new multivariable regression coefficients were
to the gold-standard values, we calculated a standardized
distance (D) [30]:

D =
{{[(

b1 − b∗1
)
/s
(
b1
)]2

+
[(
b2 − b∗2

)
/s
(
b2
)]2}

2

}1/2

.

(12)

For example, for the simulation with Bu unchanged,
S unchanged, and R increased from 0.62 to 0.66, the esti-
mated partial regression coefficients become −98.87 and
51.36. The standardized distance is

D =
{

1
2

([
6.22
6.56

]2

+
[

11.92
15.38

]2
)}1/2

= (0.75)1/2 = 0.87

(13)

implying that the average change in the partial regression
coefficients is a bit less than one standard deviation. To de-
termine how consistent the predicted values were, we took
the correlation between Ŷ and Ŷ∗, where Ŷ and Ŷ∗ are
the vectors (ie, across all subjects) of predicted outcomes
for the two models in question. For the above example,
the correlation was 0.997.
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Figure 1. (a) Univariable synthesis method—effect of perturb-
ing R on partial regression coefficients. The x-axis represents the
perturbation; the y-axis represents the change in the regression
coefficient in standardized distance between the perturbed and
unperturbed models. (b) Univariable synthesis method—effect
of perturbing R on correlations. The x-axis represents the per-
turbation; the y-axis represents the correlation between the pre-
dicted values for the perturbed and unperturbed models.

RESULTS

Figures 1–5 summarize the results. In particular, each
set of figures describes the impact, on either the stan-
dardized difference between B and B∗ (Figures 1a, 2a,
and 3a) or the correlation between Ŷ and Ŷ∗ (Figures
1b, 2b, and 3b), of perturbing one of the inputs, while
keeping all other inputs at the true values from the gold-
standard dataset. Figure 1 shows the effects of perturbing
R. Figure 2 shows the effects of perturbing bu2. Similar re-
sults were found for perturbing bu1. Figure 3 shows the
effects of perturbing s1. Similar results were found for per-
turbing s2.

Figures 4 and 5 show the effects of perturbing both bu1

and bu2 on the estimated values of Y(Ŷ) and on the model
residuals compared to the unperturbed model. Similar re-
sults were found for perturbing both s1 and s2. The resid-
uals from the perturbed models had similar distributions
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Figure 2. (a) Univariable synthesis method—effect of perturb-
ing bu2 on partial regression coefficients. The x-axis represents
the perturbation; the y-axis represents the change in the regres-
sion coefficient in standardized distance between the perturbed
and unperturbed models. (b) Univariable synthesis method—
effect of perturbing bu2 on correlations. The x-axis represents
the perturbation; the y-axis represents the correlation between
the predicted values for the perturbed and unperturbed models.

compared to those of the unperturbed model (data not
shown). Also, plots of the residuals from the perturbed
and unperturbed models against X1, X2, and Ŷ∗ were very
similar (data not shown).

Even modest perturbations of the inputs affect the es-
timated values of the partial regression coefficients; for ex-
ample, varying R by 0.05 units is associated with an ap-
proximately 1-unit difference between B and B∗. Perturb-
ing the inputs has much less impact on the correlation
between the predicted values. For example, applying the
above perturbation to R resulted in a correlation between
Ŷ and Ŷ∗ exceeding 0.99. Similar results were observed
when perturbing all the inputs simultaneously (data not
shown).

In summary, the univariable synthesis approach ap-
pears to be robust to changes in its inputs, so long as what
the user is ultimately interested in is the predicted values
resulting from the multivariate regression. The methodol-
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Figure 3. (a) Univariable synthesis method—effect of perturb-
ing s1 on partial regression coefficients. The x-axis represents the
perturbation; the y-axis represents the change in the regression
coefficient in standardized distance between the perturbed and
unperturbed models. (b) Univariable synthesis method—effect
of perturbing s1 on correlations. The x-axis represents the per-
turbation; the y-axis represents the correlation between the pre-
dicted values for the perturbed and unperturbed models.

ogy is relatively less robust when estimating the values of
the partial regression coefficients.

DISCUSSION

Creating multivariable regression models containing
partial regression coefficients is central to the practice
of epidemiology. It is quite common for the risk factors
(predictors) of interest to be distributed across multiple
datasets. Because the value of partial regression coeffi-
cients depends upon the choice of the other variables that
are included in the model, simply combining partial re-
gression coefficients across datasets may be dangerous.
Indeed, combining partial regression coefficients across
datasets is the most dangerous in the situation of most
practical interest, that is, when the correlations among
the risk factors in question are moderate to strong. One
strength of the univariable synthesis method is that the
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Figure 4. Univariable synthesis method—effect of perturbing both bu1 and bu2 on correlations between the predicted values for the
perturbed and unperturbed models. The x-axes represent the estimated Y of the unperturbed model (Ŷ gold); the y-axes represent
the estimated Y of the perturbed models. The y-axes labels indicate the perturbation. For example, for Y1, both bu1 and bu2 were
perturbed by adding 15. The estimating equation was then computed and Ŷ1 was calculated.

correlations among the predictors are explicitly consid-
ered in the quantitative estimation of the partial regres-
sion coefficients.

We know of no ideal solution to this problem, but
have proposed the univariable synthesis method as a pos-
sible way forward. The most critical assumption under-
lying this method is that first- and second-order infor-
mation such as univariable regression coefficients, stan-
dard deviations, and correlations are comparable across
datasets. Admittedly, the assumption of comparability is
strong, but it is not essentially different from what must be
assumed in order to make qualitative conclusions about
epidemiological phenomena based on information from
multiple sources, or what must be assumed when in-
formation about individual risk factors is quantitatively
combined across studies using metanalysis. In any event,
it might be argued that (a) these assumptions are be-
ing made explicitly rather than implicitly; (b) sensitivity
analyses can be performed in order to assess the impact
of these assumptions; and (c) the alternatives—namely,

ignoring the issue entirely or limiting the number of
risk factors to be modeled—have significant difficulties of
their own.

The univariable synthesis method has a number
of limitations. As discussed above, it assumes that
first- and second-order information can be combined
across datasets. Fortunately, the technique appears to
be reasonably robust to modest departures from these
assumptions—particularly when the focus of inference is
on the predictions generated by the model rather than
the parameter estimates themselves. Other limitations in-
clude the inability to deal with interactions and the dif-
ficulty of generating estimates of precision (eg, standard
errors of regression coefficients).

A limitation of our assessment is the less-than-
comprehensive nature of the sensitivity analyses. In
essence, by selecting a single dataset to use as an archetype,
we implicitly assume that the goal of the sensitivity anal-
yses is demonstration of the plausibility of the concept
rather than definitive proof. This is a generic problem in
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Figure 5. Univariable synthesis method—effect of perturbing both bu1 and bu2 on residuals of the perturbed and unperturbed models.
The x-axes represent the residuals of the unperturbed model (Y res gold); the y-axes represent the residuals of the perturbed models.
The y-axes labels indicate the perturbation. For example, for RES1, both bu1 and bu2 were perturbed by adding 15. The estimating
equation was then computed and Y1 residual was calculated.

the use of simulation methodology to analyze the proper-
ties of statistical methods having application across a wide
range of conditions.

An implication of the above is that before using the
univariable synthesis method in practice, the user should
always perform a sensitivity analysis relevant to his or her
application. The observed data should be assumed to rep-
resent the gold-standard, and the implications of permut-
ing the inputs to the synthesis analysis techniques can be
assessed as illustrated here. (Thus, a further assumption
is being made—namely, that the local behavior of the sys-
tem near the values of the gold-standard estimates can be
adequately modeled by the local behavior of the system
near the sampled values from the candidate datasets.)

A final limitation applies to those applications where
the regression coefficients are of more interest than the
predicted values. The univariable synthesis method is
more robust with respect to its predicted values than to
the values of its regression coefficients. In large part, this
may simply be a reflection of the general instability of par-
tial regression coefficients.

Under what circumstances might the univariable syn-
thesis method be applied? Perhaps the most natural appli-
cation would be to generate lists of patients at high-risk.
For example, a predicted length of stay for post-stroke re-
habilitation could be generated, the 10% of patients with
the highest predicted lengths of stay could be identified,
then be targeted for an intervention intended to reduce
this length of stay. Such an application focuses much more
on predicted values than regression coefficients, and thus
makes use of the component of this methodology with the
greatest apparent robustness. In this case, the interpreta-
tion of the simulation results indicates that the correlation
between the gold-standard and the candidate datasets be-
comes critical. For example, (assuming a normal distribu-
tion of predicted values) if this correlation is 0.95, 0.97,
and 0.99, then, of those patients with the highest 10%
of predicted values generated by the univariable synthe-
sis methodology, approximately 79%, 83%, and 91% of
patients will be in the top 10% generated from the gold-
standard database. (If the distribution of predicted val-
ues has heavier tails than the normal distribution, then
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these percentages will be even higher.) Thus, the magni-
tude of correlations observed in our simulations implies
that those patients identified by the univariable synthe-
sis method as having extreme predicted values of the out-
come are likely to be actually extreme.

One principle that is implicit in the above discussion is
that, because the univariable synthesis method is assump-
tion intensive, in any given circumstance its application
will involve a trade-off between its approximate nature
(a negative) and the improvement in prediction obtained
by being able to include additional risk factors (a posi-
tive). Thus, this trade-off would be most likely to favor
the adoption of the new method in situations where (a)
substantive considerations suggest that the various candi-
date datasets are comparable (ie, thus reducing the neg-
ative impact of the assumptions); (b) the new predictors
explain a substantively important amount of the variation
outcome, above and beyond the traditional predictors (ie,
thus, increasing the positive impact of being able to in-
clude new predictors); and (c) the primary focus is on
the predicted values themselves rather than the models’
partial regression coefficients (ie, because the robustness
of the method is greatest for their predicted values). En-
couragingly, these conditions describe a significant area of
epidemiological practice, especially if the set of potential
outcomes is expanded to include dichotomous outcomes
(such as the incidence of disease) and time until survival.
Extensions of the univariable synthesis and related meth-
ods to other types of outcomes will be presented else-
where. Ongoing challenges for the developers involve both
extending these methods and determining the set of appli-
cations for which these new tools are best suited.

APPENDICES

A SAS implementation of univariable
simulation method

The input file, named inputs, contains x0, x1, x2, and
y;

proc iml;
use inputs (keep=y);
read all into y;

use inputs (keep=x_0);
read all into x0;

use inputs (keep=x_1);
read all into x1;

use inputs (keep=x_2);
read all into x2;

x1x2=x1||x2;
x0x1=x0||x1;
x0x2=x0||x2;
x=x0||x1||x2.

This portion of the code generates the standard
regression results;
xpxi=inv(t(x)∗

x);
beta=xpxi∗(t(x)∗y);
yhat=x∗beta;
resid=y-yhat;
sse=ssq(resid);
n=nrow(x);
dfe=nrow(x)-ncol(x);
mse=sse/dfe;
cssy=ssq(y-sum(y)/n);
rsquare=(cssy-sse)/cssy;
r=corr(x1x2);

stdb=sqrt(vecdiag(xpxi)∗mse);

beta1=inv(t(x0x1)∗x0x1)∗(t(x0x1)∗y);
beta2=inv(t(x0x2)∗x0x2)∗(t(x0x2)∗y);
This portion of the code implements the univariable

synthesis approach;

s1=sqrt((ssq(x1-sum(x1)/n))/(n-1));
s2=sqrt((ssq(x2-sum(x2)/n))/(n-1));

bu=beta1[2,1] // beta2[2,1];
s=s1 // s2;
invr=inv(r);
bus=bu#s;

invrbus=invr∗bus.

b syn is the estimated regression coefficient, yhat syn
is the predicted outcome, where yhat syn can be further
modified to lie on the line with slope b syn and passing
through the point consisting of the means of all variables;
b_syn=(inv(r)∗(bu#s))/s;
yhat_syn=x1x2∗b_syn;

print b_syn yhat_syn;

quit;
run.

B Illustration of the calculations for
the univariable synthesis method

From the dataset in Table 1,

R = [1.0000000, 0.6223841]
[0.6223841, 1.0000000],

Bu= [-76.52528]
[-48.34035],

S = [0.9403281]
[0.6177001].
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The steps in the calculation are as follows:

R−1= [1.6322853, -1.015908]
[-1.015908, 1.6322853],

Bu · S =[-71.95886]
[-29.85984],

R−1(Bu · S) = [-87.12253]
[24.363844],

(R−1(Bu · S))/S = [-92.65121]
[39.442839].
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