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Abstract: In this paper, we propose a latent pandemic space modeling approach for analyzing
coronavirus disease 2019 (COVID-19) pandemic data. We developed a pandemic space concept
that locates different regions so that their connections can be quantified according to the distances
between them. A main feature of the pandemic space is to allow visualization of the pandemic
status over time through the connectedness between regions. We applied the latent pandemic space
model to dynamic pandemic networks constructed using data of confirmed cases of COVID-19 in
164 countries. We observed the ways in which pandemic risk evolves by tracing changes in the
locations of countries within the pandemic space. Empirical results gained through this pandemic
space analysis can be used to quantify the effectiveness of lockdowns, travel restrictions, and other
measures in regard to reducing transmission risk across countries.

Keywords: coronavirus; network modeling; pandemic nowcasting; pandemic risk visualization;
pandemic network analysis; pandemic space

1. Introduction

Since early 2020, many countries have been affected by the novel coronavirus disease
2019 (COVID-19) pandemic. Large numbers of confirmed cases of COVID-19 have been
reported in the time since the World Health Organization’s (WHO) declaration of COVID-
19 as a global pandemic on 11 March 2020 [1]. By 22 July 2020, there had been 14,780,939
confirmed cases and 608,839 deaths [2]. There is no doubt that the outbreak of COVID-19
has resulted in a serious threat to public health. To stop the spread of the disease and
to reduce the risk from the pandemic, different countries have adopted various levels of
control measures, including, but not limited to, quarantining, social distancing regulations,
travel restrictions, and the locking down of entire cities.

There has been growing interest in research into various aspects of the COVID-19
pandemic, including the ways in which the disease is spreading [3–5]. There is also a lot of
ongoing research into the various psychological [6,7], environmental [8,9], economic [10,11],
and financial [12,13] impacts of COVID-19 and the policies that have been adopted in
response to these. There have been several studies carried out to evaluate the effectiveness
and impacts of social distancing measures [14]. The findings of these studies have shown
that lockdown measures, in particular, appear to be one of the most effective approaches to
limiting the spread of infections [15]. Studies have also shown that the imposition of travel
restrictions has been effective in reducing correlations in the numbers of infected people
across different countries [16,17]. In this paper, we develop a dynamic pandemic network
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model to evaluate the performances of several major policies in terms of controlling the
spread of COVID-19. The policies include travel restrictions, lockdowns, and reopenings,
and the adoption of these policies in different countries is investigated using a pandemic
space concept. The pandemic space considered here is not an absolute space, which defines
a coordinate system with objects inside the space linked under the governance of Euclidean
geometry [18]. Rather, the pandemic space refers to the relationship between objects under
the context of interest [19]. In our case, to have a numerical representation of similarities
in the prevalence of the pandemic between countries, we insert a coordinate system and
project our pandemic space onto the Euclidean space. By defining the pandemic space, any
similarity in the level of prevalence can be quantified by the distance between countries
within the space. In fact, the concept behind pandemic space is similar to the idea of social
space that is used in social network analysis, and has various applications in different
fields [20–22]. In social network analysis, the tightness of the social relationship between
two individuals is assessed by measuring the distance between them in a social space.
Typically, the locations of the individuals in a social space are latent variables and have to
be estimated using data. Similarly, in our pandemic network analysis, we study the effect of
COVID-19 related policies by tracking the distance between countries in a pandemic space.

With reference to the classical SIR model [23], we may describe the manner in which a
pandemic evolves as moving through four stages. In stage zero, there are no confirmed
cases, or occasionally there might be a few cases in a country. At this stage, the contribution
to the pandemic risk is low. Then, during the first stage, the daily number of new confirmed
cases increases and accelerates, indicating the beginning of rapid transmission and an
increase in the pandemic risk. The second stage begins some time after the initial outbreak,
and is characterized by the imposition of control measures against the outbreak and a
deceleration in the daily number of new confirmed cases, which peaks during this stage. It
is at this stage that the contribution to the pandemic risk is at its highest. Finally, in the third
stage, the daily number of new confirmed cases drops. During this stage, the contribution
to the pandemic risk is decreasing. As shown in Appendix E, one characteristic between
stages is that the correlation of the daily number of new confirmed cases between countries
is low when their contributions to the pandemic risk are in different stages. Therefore,
when a country has adopted a better policy to control the spread of the disease, that country
will enter the next stage faster than other countries. Even if a country has reached a later
stage, a loophole in the preventive measure can lead to another wave of rapid transmission.

To express stochastically the effect on the pandemic risk of the stage at which a country
finds itself within the pandemic space, we constructed dynamic pandemic networks that
link pairs of countries based on whether those two countries are highly correlated. We
did this because we knew that those countries that are in the same stage, except when
both are in stage zero, are highly correlated. Given a snapshot of the dynamic network at
any particular time point, a situation of high connectedness implies that there is similar
prevalence, either an upward, a flattened, or a downward trend in the pandemic risk, in
most countries. We expect that in a situation like this, there may occur major events related
to COVID-19 and that these events may happen either across a group of several countries
or right across the whole world. These major events might include, but are not limited to,
rapid transmission of the disease across countries at a time when people remain unaware
of its infectiousness and severity, simultaneous lockdown restrictions and border closures
across a group of countries, and large-scale vaccination. Otherwise, we should see multiple
clusters or groups, which would be indicative of a situation in which there are different
levels of prevalence or different stages of pandemic evolution in different countries.

By taking this pandemic space perspective, it is possible to detect similarities in the
prevalence of each country in contributing to the pandemic risk by measuring the distance
between two countries in the pandemic space. When two countries get closer in the
pandemic space, we expect that they will exhibit similar patterns of infections (or a higher
probability of being linked together in the pandemic network) and that there will be a
similar level of prevalence between these two countries. While by using dynamic pandemic
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networks, it is possible to detect occasional fluctuations in the linkages between two
countries at consecutive time points, we can use the pandemic space to detect fluctuations
more accurately and robustly based on the distance between two countries over time. Our
model can also estimate which countries exhibit similarities in cases where they may not
be linked through the pandemic networks.

There are several ways to measure the distances between countries in the pandemic
space. One possible approach is to make use of the network statistics in pandemic network
data [24]. There have been recent research papers published that propose the use of
COVID-19 pandemic network data to predict and estimate the pandemic risk across
countries [25–28]. The authors of those papers based their conclusions on the study of
pandemic risk scores and network connectedness, using network density, the clustering
coefficient, and the assortativity coefficient. These statistics are useful for tracking pandemic
risk and can also offer an early indication of an acceleration in the number of confirmed
cases. Our main contribution in this paper is to construct the pandemic space using a latent
pandemic space modeling approach, which provides a view of the pandemic network data
that is different from that provided by an analysis that relies on using network statistics.
We first performed latent pandemic space modeling [29] using the pandemic network
data to determine a time-dependent location for each country, and then measured the
distance between every pair of countries via their coordinates in the pandemic space. This
practice of applying latent space modeling to analyze network data can be dated back
to the use of multidimensional scaling on sociometric data [30]. Since then, there have
been further advancements in the analysis of social network data of both static [31] and
dynamic [21] networks. Our proposed pandemic space concept, together with the latent
space modeling, enables us to visualize clusters of countries representing different levels
or stages of pandemic risk contribution at any time point and keep tracking the risk over
time. Furthermore, this latent pandemic space model can estimate the size of an effect on
the risk of pandemic based on distance in the pandemic space, and the country-specific
effect of the distance on the probability of being linked.

The remainder of the paper proceeds as follows. Section 2 describes the statistical
methods that we have used to construct the pandemic space. Section 3 gives the results
of our analysis, while Section 4 provides a discussion of results. Finally, Section 5 offers
some conclusions.

2. Materials and Methods
2.1. Construction of Pandemic Network

As mentioned in the introduction, we built the pandemic space from dynamic pan-
demic networks using latent pandemic space modeling. The dynamic pandemic networks
consisted of 164 countries, visualized as nodes in the networks. We list the details of the
164 countries, including the total infected numbers in those countries as of 22 July 2020,
in Appendix D. The edges among the countries in the pandemic networks change every
day in our study period. With reference to the number of confirmed cases in the WHO’s
situation reports [32], we linked a pair of countries by an edge in day t if, for the last 14 days
(i.e., from day t− 13 to day t), the correlation between the daily change in square root of
the cumulative number of cases was larger than 0.5 [25–27]. The study period was from 21
January 2020 to 22 July 2020. Following this [16,25], we made use of a moving-window
scheme to calculate the 14-day historical correlation. We constructed the network starting
from the fourteenth day onward. In the statistical estimation, we regarded the fourteenth
day in the data (i.e., 4 February 2020) as day 1 in our network. The data were sufficient for
us to create time-varying pandemic networks of T = 170 days.

Denote Cit as the number of confirmed cases of COVID-19 in country i on day t, where
i = 1, . . . , n, and t = −12, . . . , T. We performed square root transformation to the number
of cases in country i from day t − 1 to day t before calculating the daily increment of
cases, i.e.,

Dit =
√

Cit −
√

Ci(t−1), (1)
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to make the counts more stable statistically [26,27,33]. Then, to determine the growth
pattern between country i and j, we computed the 14-day historical correlation between
Dit and Djt for i 6= j, i, j = 1, . . . , n, and t = 1, . . . , T, i.e.,

ρijt =
∑14

k=1

(
Di(t−k+1) − Dit

)(
Dj(t−k+1) − Djt

)
√

∑14
k=1

(
Di(t−k+1) − Dit

)2
√

∑14
k=1

(
Dj(t−k+1) − Djt

)2
, (2)

where Dit = ∑14
k=1 Di(t−k+1) is the 14-day moving average. Finally, for the pandemic

network at day t, we assigned the (i, j) entry of the adjacency matrix Yt to be 1 if the
historical correlation ρijt was greater than 0.5 [27], and 0 otherwise. The collection of
all adjacency matrices formed the dynamic network of pandemic Y . In case when the
correlation was undefined, we followed the approach in Appendix A to determine the
corresponding value in Yt.

2.2. Pandemic Space via Latent Space Modeling

A novelty of the latent space modeling approach is its ability to construct a pandemic
space from which we can study the tightness between the pandemic situations in different
countries over time graphically. Assume that each country has a latent position on the
s-dimensional pandemic space, where s = 2 in our case for the sake of visualization. Each
country moves in the pandemic space every day to reflect the change in pandemic risk. If
two countries are close to each other, the probability that they will have co-movement in
their number of confirmed cases (i.e., be linked in the network) is high. In the pandemic
perspective, this co-movement in the number of confirmed cases can be partly attributed
to the possibility of cross-border transmission in the early stages of the pandemic, and
similarities in the effect of pandemic preparedness between the two countries—infection
measures and hygiene awareness for stopping local and community transmission, and
vaccination in the future.

Let Zt be an n× s matrix so that its i-th row Zit is the position of country i at day t on
the pandemic space. We assume the initial coordinates Z1 follow a multivariate normal
distribution, with the joint density

π(Z1|τ2) :=
n

∏
i=1

N(Zi1|0, τ2 Is).

Furthermore, we assume that the transition of a latent position in the pandemic space
from t− 1 to t is also normally distributed, with the joint density

π(Zt|Zt−1, σ2) :=
n

∏
i=1

N(Zit|Zi(t−1), σ2 Is),

for t = 2, 3, . . . , T, where Is is the s× s identity matrix and N(z|µ, Σ) is the (multivariate)
normal density evaluated at z with mean µ and covariance matrix Σ. The parameter τ2 is
involved in the calculation of the average initial distance, E||Zi1 − Zj1||, in the pandemic
space between countries on day 1. Since the distance ||Zi1 − Zj1|| between country i and j

is
√

2τ
√

χ2
2 distributed and has a mean of τ

√
π, we can use the mean distance to estimate

the pandemic risk across countries at t = 1. The parameter σ2 is involved in specifying the
distribution of the daily transition in the latent position, ||Zit − Zi(t−1)||. It can be shown

that ||Zit − Zi(t−1)|| is distributed as σ
√

χ2
2 and has a mean of σ

√
π/2. This mean helps us

to understand how fast a country contribution of pandemic risk can build up or fall off
due to the changes in latent positions. If this mean is large, we expect that two countries
separated by long distance on the pandemic space might get closer over a short period
of time.
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To connect the latent position to the pandemic network, we first re-write the joint
density of the adjacency matrix Yt at day t to be

P(Yt|Zt) =∏
i<j

P(yijt = 1|Zt)
yijt P(yijt = 0|Zt)

1−yijt

=∏
i<j

p(yijt),

where

p(yijt) =
exp(yijtηijt)

1 + exp(ηijt)

also depends on ηijt = log P(yijt = 1|Zt)− log P(yijt = 0|Zt). Then, we model ηijt, the
logit of the conditional probability, with

ηijt = β

(
2− dijt

(
1
ri
+

1
rj

))
, (3)

where the parameters carry the following meaning:

• dijt =
∥∥Zit − Zjt

∥∥, the distance between two countries in the pandemic space;
• β > 0, the overall effect of distance on the link probability P(yijt) and the associated

pandemic risk;
• ri > 0 (with constraint ∑i ri = 1), can be interpreted as the country-specific effect of

the distance on the link probability.

The parameters ri and rj are two factors based on country i and j respectively to adjust
the effect of the distance dijt on the logit of the link probability ηijt. Comparing two pairs of
countries, i and j, and i′ and j, if the ratio of the country-specific risk factors of country i to
country i′ is the same as the ratio between country j to country j′, i.e., ri/ri′ = rj/rj′ = k for
some k > 1, these two pairs have the same probability of being linked when dijt = kdi′ j′t.
In other words, even though the distance between country i and j is k times of the dis-
tance between country i′ and j′, their high country-specific risk factors counterbalance
the distancing effect, leading to the same link probability, which implies a similar level
of prevalence risk between country i and j and between country i′ and j′. An application
of the country-specific risk is that when the distance between country i and j is equal to
the harmonic mean of their corresponding country-specific risk, i.e., dijt = 2/(r−1

i + r−1
j ),

these two countries have a probability 0.5 of being linked together. Based on ri and rj,
it is useful to determine a cut-off distance to classify countries i and j into a cluster, or
a group, based on the possibility of their being in the same stage in contributing to the
pandemic risk. With the latent space location of country i as the center and ri as the radius,
we can draw a circle around country i. Graphically, we can determine whether a pair of
countries, say country i and j, have a probability of being linked together exceeding 0.5 by
considering whether their pandemic space locations lie inside the circles for country i and j
simultaneously.

Parameter β works like a regression coefficient to measure the effect of the distance dijt
on the logit link ηijt. It also determines the maximum probability for two countries being
linked together. The maximum is attained when two countries coincide in the pandemic space,
that is, when dijt = 0. In this case, the conditional probability is exp(2β)/(1 + exp(2β)),
which is strictly increasing and reaches 1 when β → ∞. Therefore, in the pandemic space,
even if two countries are separated by a distance of zero, this does not imply that there must
be a link between them, as β is finite.

One remark on the position of countries on the pandemic space is that any distance-
preserving transformation in the pandemic space gives an identical value of ηijt. We
followed the approach in Appendix B to handle the identifiability issue.
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2.3. Estimation of Parameters

We adopted Bayesian methods for estimating the unknown parameters τ2, σ2, ri, and
β in the latent space model. First of all, we assigned a normal prior for β, an inverse gamma
prior for τ2 and σ2, and a Dirichlet prior for r. All the priors were set to be uninformative to
allow variability. However, the full posterior is highly complex and intractable. Therefore,
we performed Markov chain Monte Carlo (MCMC) sampling with a total of 200,000 iterates
to obtain the posterior estimate. This approach has been widely adopted in many previous
Bayesian analyses [29,34–40]. All full conditional densities required for MCMC are listed
in Appendix C.

Denote ζ(l) as the parameter ζ, which is one of the parameters to be estimated in the
l-th iteration, and ζ̂(l) as the proposed value in the l-th iteration, which was randomly
drawn from the proposal distribution with density fζ(·; θζ), where θζ governs the step size
of the proposal. At the beginning of Markov chain Monte Carlo (MCMC), we set an initial
value ζ(0) for each parameter. We also set this value to be the prior mean. In each iteration,
we sequentially sampled all unknown parameters from proposal distribution. In particular,
during the l + 1-th iteration, we

1. Draw β from N(β(l), θβ) with truncation on the non-positive values.

2. Draw log τ2 from N(log τ2(l) , θlog τ2).

3. Draw log σ2 from N(log σ2(l) , θlog σ2).

4. Draw r from Dirichlet distribution with concentration parameter θrr(l).

5. Draw Zit from N(Z(l)
it , θZit Is), for i = 1, . . . , n, and t = 1, . . . , T.

In each of the above steps, we calculate the acceptance probability

α(ζ̂(l+1), ζ(l)) = min

{
1,

π(ζ̂(l+1)) fζ(ζ
(l))

π(ζ(l)) fζ(ζ̂(l+1))

}
, (4)

where π(ζ) is the posterior density of ζ, to decide whether to accept the proposed value
ζ̂(l+1) as the next current value, i.e., setting ζ(l+1) = ζ̂(l+1). If not, we reject the proposed
value and keep the current value, i.e., setting ζ(l+1) = ζ(l).

We also implemented the following MCMC adaptations to improve the convergence
of results [41,42]. In the first stage, which consists of the first 5% of iterates, we allowed
the Markov chain to move in order to find the best initial position. In the second stage, we
controlled the acceptance rate by adjusting the step size (i.e. θζ) until we completed the first
30% of iterates. After the MCMC adaptations, we let the chain burn-in by neither changing
the step size nor including them into our sample for the next 20% of iterates. Finally, after
the burn-in period, we took the last 50% of iterates to estimate the posterior. In order to
reduce the autocorrelation and speed up the convergence, we recorded one observation
for every 100 iterations. Moreover, starting from the 10% of total iterates, every time after
we recorded an observation, we calculated the effective sample size, which was measured
by the reciprocal of autocorrelation in the latest 100 iterates, and used it to determine the
probability for each parameter to be sampled in the next iteration. This probability was
fixed after we completed 30% of total iterates. In Figure 1, we provide a plot of the posterior
to show the convergence. The plot on the left-hand side shows the posterior in each MCMC
iteration. The plot on the right-hand side focuses on the post-burn-in period, with which
our posterior estimates and standard deviation were calculated.
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Figure 1. Posterior (left) when the observation was drawn. The plot on the right-hand side focuses
on the last 50% of observations after the burn-in.

3. Results

In this section, we present the statistical results from the latent pandemic space model.
As mentioned in previous sections, we linked two countries together and believed that they
had a similar level of prevalence if the growth pattern of their confirmed COVID-19 cases
showed a certain extent of similarity. Using a 14-day moving-window scheme allowed us
to gather enough observations to calculate moving correlations, and also reduce fluctuation
due to a single-day spike in the data. The WHO’s situation report records the daily number
of confirmed cases since 21 January 2020. As we needed 14 days data to calculate the
correlation, the study period of our pandemic network was from 4 February 2020 to 22
July 2020.

Before analyzing the modeling results, we followed [25] to present Figure 2, which
shows the pandemic network on the eighteenth day of each month. We can see that in
February, there are only a few edges. One month later, we see that there are many more
edges in the pandemic network, indicating that more countries are experiencing similar
levels of prevalence. If we also take into account the daily number of confirmed cases at
that time, it begins to appear that there were major events that accelerated the pandemic
risk during that period. After that, although the number of edges in April to June was fewer
than in March, indicating a diverging scenario in the daily number of confirmed cases,
most countries had at least one link to another country, showing that the pandemic risk
(between countries, or community transmission) may be lower but had not disappeared.
For July, we again found an increment in the number of edges. We believe that this should
be interpreted as signaling an upcoming change in the pandemic risk. This signal can also
be detected in the preparedness risk score [25].

In our estimated pandemic space, we can visualize the above changes in network
connectedness in terms of the distances between countries. A shorter distance implies
a higher probability of connection and thus a synchronized change in the prevalence of
cross-border or community transmission in two countries. Figure 3 shows the pandemic
space on the eighteenth day in each month with the top five countries having the highest
number of confirmed cases of COVID-19. As of 22 July 2020, the five countries which
contributed around 60% of the total number of infections were the United States of America,
Brazil, India, the Russian Federation, and South Africa [2]. In Figure 3, the radii of those
circles surrounding the country names represent the country-specific effects. Depending on
whether the distance between two countries is smaller than or larger than both radii of their
corresponding circles, we can determine whether the probability of a link between them is
more than or less than 50%. In particular, if two countries have the same country-specific
effect, and if the center of one circle lies on the boundary of the second circle, and vise
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versa, the probability of the two countries being linked is exactly 50%. Since all circles have
similar radii in our case, we can simply consider whether their centers are included in both
circles in order to classify whether or not there is a similar level of prevalence between two
countries. Therefore, excluding those marginal cases, among the top five countries in the
figure, USA–India, USA–South Africa, USA–Russia, Brazil–Russia, Brazil–South Africa,
and Russia–South Africa had potentially similar levels of prevalence on 18 March 2020;
and USA–India, India–South Africa, and Brazil–South Africa had potentially similar levels
of prevalence on 18 July 2020.

Figure 2. Snapshots of the pandemic network on the eighteenth day of each month from February to
July 2020.
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Figure 3. Snapshots of the latent positions of those countries that were in the top 5 list in terms of
the cumulative number of confirmed COVID-19 cases on the eighteenth day of each month from
February to July 2020. Inclusion of centers in two circles implies that the corresponding pair of
countries had a similar level of prevalence, either because of possible transmission between the
countries or because there was a common trend in the severity of community transmission. The
line segment between two countries refers to a link between them on that day in the pandemic
network. To view an animation of the changes in the latent positions in the pandemic space, please
go to “Top 5 list” (https://drive.google.com/file/d/18ENvRXQlvaWJFSyBregzB_sLQ3Ewm7P7
/view?usp=sharing), or “All countries” (https://drive.google.com/file/d/1a0oWJJm47N9cQEsg02_
RhpEWIchQu56n/view?usp=sharing).

https://drive.google.com/file/d/18ENvRXQlvaWJFSyBregzB_sLQ3Ewm7P7/view?usp=sharing
https://drive.google.com/file/d/18ENvRXQlvaWJFSyBregzB_sLQ3Ewm7P7/view?usp=sharing
https://drive.google.com/file/d/1a0oWJJm47N9cQEsg02_RhpEWIchQu56n/view?usp=sharing
https://drive.google.com/file/d/1a0oWJJm47N9cQEsg02_RhpEWIchQu56n/view?usp=sharing
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Figure 4 studies the pandemic risk between countries. We again selected those coun-
tries which were in the top five list in terms of the cumulative number of confirmed
COVID-19 cases and produced boxplots of the distance between each pair of countries
over time. To construct the boxplots, we calculated the distance according to the latent
coordinates in the pandemic space, a total of 10 distances from the top five countries in
each day. In Figure 4, we categorize the countries by continent according to the WHO’s
classification, which has also been implemented in the literature on pandemic network
research [25]. We created daily boxplots for the five regions—Africa, the Americas, Asia,
the Eastern Mediterranean, and Europe—and we aggregated the top five countries in each
of the five regions and labeled them as “Top 5”. In general, it is unlikely that all countries
would be separated by small distances, as this would imply a high degree of similarity in
prevalence between all countries. However, if this is the case, we will see that the boxplots
are short and located at a low position. Based on the variability and maximum distances,
we have a conservative measure of classifying the periods of high pandemic risk based on
the network connectedness. From the “Top 5" graph for the whole world, the pandemic
emerges in February 2020, when the median distances are large. The situation seems to
get worse in late February 2020, when the median distance drops more than 50% in a
week. In fact, the highest levels of connectedness are mid-March and late June to mid-July
2020, at the times of the two main waves of the pandemic. In addition to the two periods
previously identified, there are also two other periods of high connectedness or potentially
high pandemic risk in the five regions: one in Europe during mid-May 2020, and the other
in the Americas during mid-June 2020.

Besides intra-continental pandemic risk, we also studied inter-continental risk. In
Figure 5, we calculated for each day the median distances between clusters of the top five
countries from each continent. For example, if country A belongs to Africa, and country B
belongs to the Americas, we include the distance between A and B when we calculate the
median for the Africa-Americas distance (i.e., the second plot in the first row of the matrix
plot in Figure 5). We observe that the distances in all plots decrease from around 0.125 in
late February to 0.025 in mid-March, showing that the “inter-continental risk” builds up
quickly in this period. The distances stay in the range of 0.025 to 0.05 for most of the time
after March. For the plots among Africa, the Americas, and Asia, the minimum distance
over the whole period of study is attained in mid-March. The distance between Europe
and the Americas is relatively small in early June and early July. From Figure 5, we cannot
observe any sign that the pandemic is coming to an end as the distances are mostly below
0.05 till mid-July 2020.

Table 1 summarizes the results with the estimate (posterior mean) and the standard
deviation (SD) of each parameter in our pandemic space model. The parameter β deter-
mines the highest probability of linking two countries when they have the same location,
or dijt = 0. Based on the estimate of β, the highest probability was 72.40%. The parameter
τ and σ are the standard deviations of latent coordinates on the first day, and of the daily
transition in coordinates, respectively. Therefore, in this pandemic space, we can estimate
the mean distance between countries on the first day by τ

√
π = 0.1504, and the average

distance each country travels in one day by σ
√

π/2 = 0.0100. Consistent with the results
shown in Figure 4, the initial pandemic risk between countries is small. Potentially high
pandemic risk (i.e., small distance) can be seen in two weeks from mid-February, with
reference to Figure 5, such that the median of distances is not greater than 0.05 for most of
the time. From the latent space modeling, we can deduce that the COVID-19 pandemic
evolves quickly and that the outbreak situation can become worse within a matter of just
two weeks.

The variable invr is the mean of the inverse of country-specific risk factor, r−1
i . Based

on our model assumptions, the sum of all country-specific risk factors is fixed to be 1 for the
sake of identifiability. If invr attains its minimum value, which is the number of countries,
every country has the same probability of linking to another country provided that their
distances are the same. On the other hand, countries having larger ri will have a relatively
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higher probability of linking to another country. In this study, the estimate of invr is close
to the minimum, implying that there is no country dominating the contribution to the
pandemic risk. From another perspective, if we compare the country-specific risk factor ri,
Serbia and New Zealand have the minimum and maximum country-specific risk at 0.0057
and 0.0066, respectively. The minimum and maximum are not far from the mean value
of country-specific risk of 0.0061. We list the country-specific risk factor for each of the
164 countries in Appendix D.

Figure 4. Time series of the boxplots of the distance among countries, which are in the top 5 in
terms of the cumulative number of confirmed COVID-19 cases in the whole world or in each of the
five continents.
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Figure 5. Time series plot of the median distance between clusters of the top five countries from
each continent.

Table 1. Estimate of the parameters in the latent space model. The first column contains the posterior
mean. The second column contains the posterior standard deviation. β is the regression coefficient, τ

is the standard deviation of latent coordinates on the first day, σ is the standard deviation of daily
transition in coordinates, and invr is the mean of inverse of country-specific factor.

Estimate SD

β 0.482092 0.005071
τ 0.084863 0.004512
σ 0.007961 0.000055

invr 164.198509 0.014353

4. Discussion

Although the exact date depends on each country, most countries set up their travel
restriction policies by 31 March 2020 [43]. Therefore, we set 31 March 2020 as a cutoff
date for further discussion. Prior to travel restrictions coming into effect, a traveler who
was an asymptomatic COVID-19 carrier could transmit the disease to other people in
different countries. After the cutoff date, most incoming air traffic was prohibited and
many lockdown policies were put in place. The main focus switched to the question of
when a suitable time to reopen would be, and another focus was which countries had
relatively smaller contributions to the pandemic risk.
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In Figure 3, we notice that for 18 March 2020, the first period of increasing pandemic
risk observed in Figure 4, there were six pairs of countries out of a total of 10 that had
similar levels of prevalence. This result coheres with the rapid increase in the number
of edges in the pandemic network. In fact, referring to the literature [27,44], the number
of confirmed cases and the network connectedness accelerated during this period. We
believe that the importation and exportation risk of COVID-19 cases via air travel poses a
risk in the transmission of COVID-19 [45]. Within one month after the declaration of the
COVID-19 pandemic, by which time most countries had imposed travel restriction, we see
from Figures 3–5 the effectiveness of such measures in increasing the distance between
countries in the pandemic space compared to the situation in March 2020.

Although none of the 10 country pairs had similar levels of prevalence until mid-
July 2020, the distances in the 10 country pairs were not as large as they appear to have
been in February 2020. The pandemic risk still existed and had the potential to lead to
another wave of rapid transmission if travel restrictions were lifted [46]. We also see that
on 18 July 2020, there was one edge between USA and India, and one edge between India
and South Africa. The close distances between them put those countries into the cluster
of similar prevalence, together with the Brazil–South Africa pair, which had no link on
that day. Instead of importation and exportation, we believe that the reason behind this
closing distance was the partial re-opening of the two countries’ economies [47] and the
permitting of inter-state air travel [48]. In fact, these measures may also be considered
the reason behind the period of increased risk in Europe during mid-May 2020 and in the
Americas during mid-June 2020. Figure 5 provides another view from the inter-continental
perspective, showing that while most of the restrictions on international air travel remained
valid, the inter-continental distances in July 2020 stayed in the low-value range (below
0.05), implying that the similarity in the levels of prevalence across continents was still
quite high in mid-July 2020.

To investigate the effectiveness of lockdown policy, we refer to the “Top 5 in Europe”
plot in Figure 4, as most of the European countries experienced a lockdown in late March to
late April 2020. Between mid-March and late March 2020, the median distance stayed small
and the boxplots are short, indicating that the impact from the first wave of transmission
lasted for at least half a month before the lockdown. After two weeks of lockdown (i.e., by
around mid-April 2020) the median distance increased to a relatively high level, and for
the same time period in the graph, the boxplots become taller. Similarity in the levels
of prevalence between countries is weakened as the implementation of social distancing
measures restricts opportunities for transmission of the disease, though it should be noted
that the effectiveness of measures against the transmission of COVID-19 varies across
countries. We also discovered that the median distances of the boxplot dropped again after
early May 2020. However, we found that the daily number of new cases was decreasing at
that time, indicating that they had a decreasing contribution to pandemic risk. Around that
period of time, most European countries began to re-open in a stepwise manner [49,50]. We
believe that the imposition of a lockdown is effective in reducing the pandemic risk, as the
distances among countries during periods of lockdown were larger than those before the
lockdown in the pandemic space. However, by beginning the process of reopening at a time
when the daily number of new cases has not yet reached a stable low value, the distances
among countries may decrease again, together with further waves of mass transmission.

5. Conclusions

In this paper, we developed the pandemic space approach, which was built upon the
concept of dynamic latent space modeling, to explore the pandemic risk across countries
around the world. Using the pandemic space, we investigated and provided hints on
whether the various control measures adopted in different countries, including travel
restrictions and lockdowns, were effective at reducing the pandemic risk or not. We first
constructed the pandemic network using 14-day data in a moving window scheme. We
linked two countries together if their correlation in terms of numbers of infections was
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high. We followed this rule to build a daily network from 4 February 2020 to 22 July 2020.
Then, based on the pandemic network, we performed latent space modeling to produce
our pandemic space.

The pandemic space allowed us to identify country pairs that had potentially high
transmission risks in some periods, or a synchronized increase in the severity of commu-
nity transmission. We also explained the different pandemic periods using the maximum
distances and the height from time series boxplots of distances. We also investigated the
inter-continental risk with the time series of the median distance between each pair of
continents. Moreover, using the parameters obtained from our estimation, we examined the
highest probability of two countries being linked, the country-specific effect, the initial av-
erage distance, and the speed to build up the pandemic risk. As in other papers [28,51–53],
using this pandemic space analysis, we concluded that both lockdown and travel restric-
tions are effective at reducing the pandemic risk across countries. Nevertheless, these two
measures, and probably also other control measures, are not sufficient to wipe out the risk
of pandemic across countries.

Future works might include considerations of exogenous variables, such as statistics
related to travel between countries, the number of people who have received at least
one vaccine dose, and lockdown activities, so as to make it possible to conduct Bayesian
predictions about similarities in levels of prevalence between countries and the pandemic
risk. It would also be interesting to consider pandemic spaces with higher dimensions and
interpretations of the latent dimensions in the pandemic space in future research.
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Appendix A. Handling Missing Values

To allow every country to have a location in the pandemic space on each day, we
impute those missing links between countries as empty; i.e., yijt = 0. In the pandemic
network, a pair of countries has a missing link when the correlation at time t is undefined—
i.e., there have been no confirmed COVID-19 cases in the previous 14 days for at least
one country in that pair. It is reasonable to claim that the pandemic risk between these
countries is negligible when a country has had no new cases in 14 consecutive days.

Appendix B. Identifiability of Latent Position

Since the ηijt in Equation (3) depends on the distance between countries in the pan-
demic space instead of their coordinates, if we hold other variables unchanged, any distance
preserving transformation in the pandemic space, like translation, reflection and rotation,
gives an identical value of ηijt. To handle the identifiability issue on latent positions, we
use the Procrustes transformation [54] to translate and rotate the whole space at time t such

https://covid19.who.int/table
https://covid19.who.int/table
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that the sum of squared distance traveled by all countries from t− 1 to t, and from t to
t + 1 is minimized; i.e.,

min
Zt

n

∑
i=1

∥∥∥Zit − Zi(t−1)

∥∥∥2
+
∥∥∥Zi(t+1) − Zit

∥∥∥2
. (A1)

Appendix C. Posterior Distribution

We denote φ as all parameters, including β, τ2, σ2, ri, and Zit, which are not specified
as arguments but appearing in the following posterior density function. We first write the
likelihood of Y , as a product of conditional distribution:

P(Y |φ) =
T

∏
t=1

P(Yt|φ) =
T

∏
t=1

∏
i<j

p(yijt).

Then, we derive the following posterior densities:

• The joint posterior density of Zit is

π(Zit|Y , φ) ∝

(
∏
j:j 6=i

p(yijt)

)
·

t+1

∏
t′=t

N(Zit′ |Zi(t′−1), σ2
(t′) Is),

for t = 1, . . . , T, where Zi0 is a zero vector of length s, Zi(T+1) = ZiT , and

σ2
(t) =


σ2 if t = 2, . . . , T,
τ2 if t = 1,
0 otherwise.

• The posterior densities of τ2 and σ2 are

π(τ2|Y , φ) = IG

(
ντ2 +

1
2

sn, ξτ2 +
1
2

n

∑
i=1
‖Zi1‖2

)
(A2)

and

π(σ2|Y , φ) = IG

(
νσ2 +

1
2

sn(T − 1), ξσ2 +
1
2

n

∑
i=1

T

∑
t=2

∥∥∥Zit − Zi(t−1)

∥∥∥2
)

(A3)

respectively, where ντ2 and νσ2 are the shape parameters in the inverse gamma prior, and
ξτ2 and ξσ2 are the scale parameters of the inverse gamma prior.

• The posterior density of β is

π(β|Y , φ) ∝

(
T

∏
t=1

∏
i<j

p(yijt)

)
· N(β|νβ, ξβ), (A4)

where νβ and ξβ are the mean and variance respectively of the normal prior.
• The joint posterior density of r = (r1, . . . , rn) is

π(r|Y , φ) ∝

(
T

∏
t=1

∏
i<j

p(yijt)

)
·

n

∏
i=1

rαi−1
i , (A5)

where αi, for i = 1, . . . , n, are the concentration parameters of the Dirichlet prior.

Appendix D. Table of Countries
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Table A1. A list of the 164 countries considered in this study, their total number of cases as of 22 July 2020, their corresponding
continents, their ranks in their continents, and their estimated country-specific risks. Countries are listed in descending
order of the total number of cases.

Country Name Total Number of Cases Continent Rank in Continent Country-Specific
Risk Factor

United States of America 3,805,524 Americas 1 0.0059
Brazil 2,118,646 Americas 2 0.0062
India 1,192,915 Asia 1 0.0064

Russian Federation 789,190 Europe 1 0.0060
South Africa 381,798 Africa 1 0.0061

Peru 357,681 Americas 3 0.0060
Mexico 349,396 Americas 4 0.0061
Chile 334,683 Americas 5 0.0060

The United Kingdom 296,912 Europe 2 0.0062
Iran 278,827 Eastern Med. 1 0.0060

Spain 278,528 Europe 3 0.0059
Pakistan 267,428 Eastern Med. 2 0.0063

Saudi Arabia 255,825 Eastern Med. 3 0.0058
Italy 244,752 Europe 4 0.0060

Turkey 221,500 Europe 5 0.0061
Bangladesh 210,510 Asia 2 0.0060
Colombia 204,005 Americas 6 0.0061
Germany 202,799 Europe 6 0.0061

France 166,511 Europe 7 0.0059
Argentina 130,774 Americas 7 0.0059

Canada 111,124 Americas 8 0.0062
Qatar 107,430 Eastern Med. 4 0.0063
Iraq 97,159 Eastern Med. 5 0.0061

Indonesia 89,869 Asia 3 0.0060
Egypt 89,078 Eastern Med. 6 0.0061

Kazakhstan 76,799 Europe 8 0.0063
Ecuador 76,217 Americas 9 0.0063
Sweden 74,766 Europe 9 0.0061

Philippines 70,764 Asia 4 0.0064
Oman 69,887 Eastern Med. 7 0.0059

Belarus 66,348 Europe 10 0.0065
Belgium 65,093 Europe 11 0.0062
Ukraine 60,995 Europe 12 0.0060
Bolivia 60,991 Americas 10 0.0061
Kuwait 60,434 Eastern Med. 8 0.0063

United Arab Emirates 57,498 Eastern Med. 9 0.0057
Dominican Republic 54,797 Americas 11 0.0060

Panama 54,426 Americas 12 0.0062
Israel 52,431 Europe 13 0.0061

Netherlands 52,073 Europe 14 0.0059
Portugal 48,898 Europe 15 0.0061

Singapore 48,434 Asia 5 0.0061
Poland 40,782 Europe 16 0.0060

Guatemala 40,229 Americas 13 0.0061
Romania 39,133 Europe 17 0.0062
Nigeria 37,801 Africa 2 0.0061
Bahrain 37,316 Eastern Med. 10 0.0061

Afghanistan 35,813 Eastern Med. 11 0.0061
Armenia 35,693 Europe 18 0.0062
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Table A1. Cont.

Country Name Total Number of Cases Continent Rank in Continent Country-Specific
Risk Factor

Honduras 34,611 Americas 14 0.0061
Switzerland 33,655 Europe 19 0.0060
Kyrgyzstan 29,359 Europe 20 0.0059

Ghana 28,989 Africa 3 0.0062
Azerbaijan 28,242 Europe 21 0.0060

Japan 26,303 Asia 6 0.0057
Ireland 25,802 Europe 22 0.0060
Algeria 24,278 Africa 4 0.0064
Serbia 21,605 Europe 23 0.0057

Republic of Moldova 21,442 Europe 24 0.0059
Austria 19,818 Europe 25 0.0058

Uzbekistan 18,171 Europe 26 0.0061
Nepal 17,994 Asia 7 0.0061

Morocco 17,742 Eastern Med. 12 0.0061
Cameroon 16,522 Africa 5 0.0060

Cote d lvoire 14,531 Africa 6 0.0063
Czechia 14,324 Europe 27 0.0062
Kenya 14,168 Africa 7 0.0061

Republic of Korea 13,879 Asia 8 0.0058
Denmark 13,302 Europe 28 0.0057

Puerto Rico 12,940 Americas 15 0.0062
El Salvador 12,582 Americas 16 0.0065
Australia 12,428 Asia 9 0.0062
Venezuela 12,334 Americas 17 0.0057
Costa Rica 11,534 Americas 18 0.0064

Sudan 11,127 Eastern Med. 13 0.0061
Ethiopia 11,072 Africa 8 0.0062

North Macedonia 9412 Europe 29 0.0061
Bulgaria 9254 Europe 30 0.0059
Norway 9038 Europe 31 0.0065
Senegal 8985 Africa 9 0.0060

Malaysia 8815 Asia 10 0.0064
Bosnia and Herzegovina 8786 Europe 32 0.0062

Democratic Republic of the Congo 8533 Africa 10 0.0063
Finland 7351 Europe 33 0.0063
Guinea 6625 Africa 11 0.0062
Gabon 6433 Africa 12 0.0064

Mauritania 5985 Africa 13 0.0064
Luxembourg 5725 Europe 34 0.0062

Djibouti 5027 Eastern Med. 14 0.0062
Central African Republic 4561 Africa 14 0.0062

Croatia 4422 Europe 35 0.0062
Hungary 4366 Europe 36 0.0060
Albania 4290 Europe 37 0.0060
Greece 4048 Europe 38 0.0062

Paraguay 3748 Americas 19 0.0060
Zambia 3326 Africa 15 0.0060

Thailand 3261 Asia 11 0.0063
Somalia 3135 Eastern Med. 15 0.0062

Maldives 3044 Asia 12 0.0060
Nicaragua 3004 Americas 20 0.0058
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Table A1. Cont.

Country Name Total Number of Cases Continent Rank in Continent Country-Specific
Risk Factor

Lebanon 2980 Eastern Med. 16 0.0061
Congo 2851 Africa 16 0.0061

Sri Lanka 2730 Asia 13 0.0058
Montenegro 2567 Europe 39 0.0061

Cuba 2449 Americas 21 0.0059
Equatorial Guinea 2350 Africa 17 0.0063

Estonia 2022 Europe 40 0.0060
Slovakia 2021 Europe 41 0.0060
Slovenia 1977 Europe 42 0.0059

Lithuania 1949 Europe 43 0.0060
Eswatini 1894 Africa 18 0.0064
Iceland 1839 Europe 44 0.0058
Benin 1690 Africa 19 0.0061

Rwanda 1655 Africa 20 0.0061
Tunisia 1394 Eastern Med. 17 0.0061

Namibia 1366 Africa 21 0.0065
New Zealand 1205 Asia 14 0.0066

Latvia 1193 Europe 45 0.0062
Jordan 1181 Eastern Med. 18 0.0063
Liberia 1108 Africa 22 0.0062
Niger 1108 Africa 23 0.0061

Suriname 1079 Americas 22 0.0065
Georgia 1073 Europe 46 0.0060

Burkina Faso 1065 Africa 24 0.0062
Uruguay 1064 Americas 23 0.0059
Cyprus 1040 Europe 47 0.0061
Chad 889 Africa 25 0.0060

Andorra 884 Europe 48 0.0063
Jamaica 809 Americas 24 0.0059

Togo 790 Africa 26 0.0066
San Marino 716 Europe 49 0.0060

Malta 675 Europe 50 0.0060
United Republic of Tanzania 509 Africa 27 0.0059

Viet Nam 401 Asia 15 0.0059
Mauritius 343 Africa 28 0.0061
Guyana 337 Americas 25 0.0059
Guam 319 Asia 16 0.0060

United States Virgin Islands 308 Americas 26 0.0063
Mongolia 287 Asia 17 0.0058

Cayman Islands 203 Americas 27 0.0063
Cambodia 197 Asia 18 0.0061

Faroe Islands 191 Europe 51 0.0060
Gibraltar 180 Europe 52 0.0061
Bahamas 174 Americas 28 0.0061
Bermuda 153 Americas 29 0.0062

Brunei Darussalam 141 Asia 19 0.0062
Trinidad and Tobago 137 Americas 30 0.0062

Gambia 132 Africa 29 0.0060
Aruba 115 Americas 31 0.0061

Seychelles 108 Africa 30 0.0060
Barbados 106 Americas 32 0.0059
Bhutan 92 Asia 20 0.0064

Liechtenstein 87 Europe 53 0.0061
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Table A1. Cont.

Country Name Total Number of Cases Continent Rank in Continent Country-Specific
Risk Factor

Monaco 81 Europe 54 0.0060
Sint Maarten 79 Americas 33 0.0058

Antigua and Barbuda 76 Americas 34 0.0061
French Polynesia 62 Asia 21 0.0062

Saint Vincent and the Grenadines 50 Americas 35 0.0060
Saint Martin 46 Americas 36 0.0062

Curacao 28 Americas 37 0.0061
Fiji 27 Asia 22 0.0060

Saint Lucia 23 Americas 38 0.0059
New Caledonia 22 Asia 23 0.0059

Greenland 13 Europe 55 0.0058

Appendix E. Effects of Infection Parameters and Recovery Parameters in the SIR
Model on Correlations

In this appendix, we demonstrate with heatmaps the 14-day historical correlations of
the daily number of new confirmed cases between pairs of countries under the susceptible-
infected-recovered (SIR) model. The SIR model assumes that among the population N who
get infected with a certain kind of disease, people can be divided into three classes. The
first class “susceptible”, S(t), contains individuals who are at risk at time t. The second
class “infected”, I(t), contains those individuals who have been infected and are able to
spread the diseases. The third class “recovered”, R(t), contains those who have recovered
from the infection and have become immune to the disease. We can use the following
mathematical equations to formulate the relationship among these three classes:

dS(t)
dt = − βS(t)I(t)

N ,
dI(t)

dt = βS(t)I(t)
N − γI(t),

dR(t)
dt = γI(t),

(A6)

where β is the infection parameter and γ is the recovery parameter. In our demonstration,
we assume that the recovery parameter is equal to one-tenth of the infection parameter
for simplicity. Moreover, we allow countries 1 and 2 to have infection parameters β1
and β2, respectively. We repeat the calculation after changing these two parameters to
be combinations of 0.14, 0.17, 0.2, 0.25, 0.33, 0.5, and 1. Following Equation (1), we first
calculate the square root transformed daily number of new cases, Dt =

√
S(t− 1)−

√
S(t).

Then, we calculate the correlation by Equation (2) from t = 1 to t = 170. Notice that
in the first 13 days, there are insufficient data to calculate the correlation. Therefore, the
corresponding entries are colored in grey. In Figure A1, the x-axis and y-axis in each plot
refer to the number of days since the first confirmed case in the two countries. The region
in green represents the scenarios when the correlation between the two countries is greater
than 0.5. We can roughly see three stages: one at the bottom left, a bridge in the middle,
and one at the top right.
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Figure A1. The x-axis and y-axis in each plot refer to the number of days since the first confirmed
case in each of the two countries, respectively. The region in green represents the scenarios when the
correlation between the two countries is greater than 0.5.
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