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e A complementary approach of response surface methodology (RSM) modelling and an artificial neural network (ANN) prediction model
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o Sensitivity analysis of the RO desalination process parameters to the response target

e Discussion on the merits of each modelling methodology

ARTICLE INFO ABSTRACT
Keywords: The treatment of saline water sources by reverse osmosis (RO) is being utilized increasingly to address water
Reverse osmosis shortages around the world. The application of RO is energy-intensive; therefore, plant and process optimization

Response surface methodology
Artificial neural network
Low salinity

are crucial. The desalination of low salinity water sources with total dissolved solids (TDS) of <5000 mg/L is less
energy intensive than the desalination of highly saline seawater and brackish water. A gap exists in optimization
studies on lower salinity water (TDS = 500-5000 mg/L). The novelty of the study is the development of a
complementary approach using response surface methodology (RSM) and an artificial neural network (ANN) for
performance modelling, optimization, and prediction of RO desalination of low salinity water. Feed water salinity,
pressure, and temperature were controlled variables to model the performance of the RO system. A performance
index incorporating salt rejection efficiency and permeate flux was used as the response target of the system. The
optimal parameter combination within their modelled range for the best performance index occurred near the
highest pressure input of 150.57 psi, at the temperature of 38.8 °C, and at the lowest feed salt concentration of
577 mg/L. Both the RSM and ANN models demonstrated high validity. The RSM and ANN showed R? values of
0.99 each and with a root mean square error of 2.41 and 5.85 respectively. The RSM showed a small benefit in
model accuracy over the ANN, but the ANN has the benefit of not requiring the central composite design before
experimentation and being a continuously improving prediction method as more data becomes available. Further
applications of the optimization and modelling approach can be applied to RO system optimization considering
membrane types and additional feedwater characteristics.

1. Introduction One solution to this supply issue is the use of reverse osmosis (RO) to

desalinate seawater, brackish groundwater, or other saline sources. As

Fresh drinkable water is an essential human need. As a result of climate many cities are positioned near oceans and rivers, desalination may be

change, droughts are getting worse and leading to an increased shortage of the future of freshwater production as an increasing number of RO-based

fresh water supply for many regions around the world. Currently, there is a desalination plants are being planned, commissioned, and operated
high imbalance between clean water demand and supply, and around one- around the globe.

quarter of the global population is facing an economic water shortage [1].
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Potable fresh water is considered to have total dissolved solids (TDS)
of less than 500 mg/L [2]. All desalination techniques are energy
intensive. RO is considered to have lower energy consumption per litre of
fresh water produced when compared with other desalination methods
such as thermal processes and electrodialysis [3]. As a result of the
energy-intensive nature of RO-based desalination processes, system
optimization leads to greater cost-effectiveness.

Numerous publications have researched the optimisation of brackish
water reverse osmosis (BWRO) (5000-15,000 mg/L TDS) [4, 5, 6, 7, 8]
and salt water reverse osmosis (SWRO) (15,000 mg/L-35,000 mg/L) [4,
5, 9, 10, 11]. However, it is much less energy-intensive to perform
reverse osmosis on low salinity water between 500 and 5000 mg/L as
there is less osmotic pressure to overcome. Sources of low salinity water
would include rivers, groundwater sources, and some wastewater
streams. This paper outlines the optimisation of low salinity RO.
Research by Khayet et al. [4] found some differences in the response to
changing input parameters of SWRO and BWRO, which required unique
models for each. BWRO was found to be most sensitive to the feed inlet
pressure whereas SWRO was more sensitive to the feed TDS concentra-
tion. Li [5] optimized plant configurations for specific energy consump-
tion of BWRO and SWRO, further demonstrating different salinity ranges
of BWRO and SWRO cannot be optimized with the same plant settings. It
is with this knowledge that lower salinity RO is modelled to indicate the
most sensitive input parameters on the performance response.

The present study aims to demonstrate a performance modelling,
optimization, and prediction method for a small-scale reverse osmosis
system desalinating low salinity feedwater. The motivation of this study is
to enable the understanding of the magnitude of input parameters' effects
on performance, while also using the same data to produce a continuously
improving prediction model. As the RO performance output is a function of
the feed solution TDS concentration, the pressure applied across the
membrane, and the temperature of the feed solution, they were selected as
the input parameters in this study. A simple modelling and optimization
method was designed by using response surface methodology (RSM), a
statistical method to model the interaction between the input parameters
and predict the performance of the RO system. The use of an artificial
neural network (ANN) for modelling the RO process together with RSM
was explored for comparison, but also for where these methods comple-
ment each other. As well-established techniques, RSM and ANNs have
often been compared for accuracy by researchers [12, 13, 14]. Few ex-
amples exist in using these methods in parallel [15, 16], taking advantage
of the merits of each of the methods. RSM can produce a mathematical
model with good insights into how each parameter affects the system
response. ANNs are somewhat of a ‘black-box’ in their modelling and do
not provide a numerical model, reducing the system insight available.
However, ANN does not require a pre-experimental plan and often be-
comes a better predictor as more data become available. Therefore, by
using both RSM and ANN, process insight becomes available as well as a
continuously improving prediction model.

2. Experimental design

A small-scale RO system for desalinating low salinity water was
developed and modelled to optimize its design and operation. An ideal
membrane would remove all salt from the feed water while allowing a
large amount of water to move through the membrane. This leads to the
two performance indicators of permeate flux and salt rejection efficiency
being measured.

Salt rejection efficiency is measured as a percentage of salt removed
across the RO membrane and is calculated by:

Rejection % = <C ;Cp) *100 )

where C is the TDS (mg/L) concentration of the feed and Cp is the TDS
(mg/L) concentration of the permeate.
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The permeate flux is the permeate flow rate across the membrane per
unit area and is calculated by:

Permeate Flowrate
Permeate Flux (L/m?s) = ()]
X ( / ) Membrane Surface Area

The performance index (Y) as adopted from ref [4] is the product of
the salt rejection efficiency given in Eq. (1) and permeate flux given in
Eq. (2) and is calculated by:

Y(L/m?s) = Permeate Flux*w 3

The membrane used for the study was the Dow Filmtec sw30-2521
which was 2.5-inches in diameter, 21-inches long, and with a surface
area of 1.2 m> [17]. The thin-film composite reverse osmosis membrane
is capable of filtering high salinity seawater. Using this membrane allows
this work to be compared with the previous work by Khayet et al. [4].

The controlled inlet feed parameters were temperature, pressure, and
salinity. The temperature was adjusted using a heating element within
the feed solution. A high-pressure (diaphragm) pump (HPP) was fed by a
low-pressure pump (LPP) to increase head pressure. Before entering the
HPP, feed water moves through a screen filter to ensure the removal of
particulate matter which could cause damage or clogging of the RO
membrane system. The HPP then increased the pressure of the RO
membrane inlet. The feed flow rate is a function of the backpressure and
was not adjustable due to the use of the diaphragm pump. From the
literature review, it was shown that adjusting the feed flow rate will have
little effect on the performance of the RO [4]. According to the manu-
facturer’s recommendation for the long-term performance of the Dow
Filmtec sw30-2521, the minimum feed flow rate is 0.2 m3/h [18]. In this
study, the feed flow rate was able to be achieved and set by tuning the
backpressure valve setting. A valve on the retentate outlet produces back
pressure to adjust the pressure across the membrane. The pressure is
measured using a manometer on this retentate outlet. The feed solution
TDS concentration was adjusted by adding NaCl to the feed tank and
measured using a water quality tester (EZ-9908) TDS meter where the
feed solution TDS concentration was reflected by the variation of its
electrical conductivity. The feed solution TDS concentration was
adjusted to the desired levels. Figure 1 depicts the designed configuration
of the small-scale reverse osmosis plant. Figure 2 shows the actual
experimental setup.

The housing and pump were sourced from an off-the-shelf seawater
reverse osmosis (SWRO) unit, designed for use onboard seafaring boats.
The whole unit includes a pressure exchanger for energy recovery;
however, the energy recovery unit was not included in the setup as this
energy recovery unit is designed for the much higher-pressure applica-
tion of SWRO. The feed pump has the capabilities of producing feed
pressure up to 155 psi which was used as the upper limit of the working
range for this experiment. The maximum temperature that can be tested
without the risk of damaging the membrane was set by the manufacturer
as 45 °C. The feed concentration that the system is capable of desali-
nating is a function of the pressure and temperature. The working range
of the feed concentration was found to be approximately between 0 and
4500 mg/L TDS through testing the capabilities of the system input
parameters.

The three input control variables and corresponding output perfor-
mance indices calculated by Eq. (3) were modelled using response sur-
face methodology (RSM). In this case, the output selected is the
performance index (Y), which is the response of the system from the
series of designed experimental runs. Central composite design (CCD)
was used for the design of the experiment, which is an efficient method of
changing multiple input parameters and finding their response as an
output. CCD can avoid a great deal of trial and error and produce effec-
tive results from minimal experimental runs, which saves experimental
time and costs. By using CCD to design the experimental runs, the RSM
model can be developed from the input parameters and the experimental
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Figure 1. Design configuration for a small-scale RO testing system.

Figure 2. RO module, feed, and outlet lines in the actual built small-scale RO system.

output response. Different CCD methods can be used, however in this
case an orthogonal CCD design was implemented, as the orthogonal CCD
design is more centrally accurate than the other CCD methods [19]. For a
CCD of three input parameters, at least 15 experimental runs are
required, but more centre point experiments are used to assess the system
drift. In this case, 2 centre points (0, 0, 0) were used in the experiment,

and a total of 16 experimental runs were undertaken. The CCD theory
sets normalized dimensionless parameters (x;, X2, x3) within the mini-
mum and maximum range limits, then extended past this range for each
of the 3 parameters to the star points. In this case, the star points are at
+1.287, as dictated by the CCD theory. The normalized dimensionless
input parameters are shown in Table 1. The range (dz) and centre point
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(z9) are given by Egs. (4) and (5). The dimensional minimum and
maximum parameter range limits along with the calculated dz and zy are
shown in Table 2. Finally, the experimental unnormalized dimensional
run parameters (21, 22, 23) can be calculated using Eq. (6) and are listed in
Table 1.

— Zmin

~ Zmax
dz = 3

(€]

_ Zmax + Zmin
=TT

6]
where zp. is the maximum limit value of the range and zp;, is the
minimum limit value of the range.

(6)

z; = x;%dz + ¢

where z; is the unnormalized dimensional parameter value and x; is the
normalized dimensionless parameter value (i = 1,2,3). All equipment
and facilities were calibrated over the parameter ranges before the
experimental runs were conducted.

3. Results and discussion

The CCD input parameters and the experimental response of the
measured performance index (Y) are listed in Table 3. The values were
input into Design Expert 12 software to develop the RSM model, with a
polynomial regression relationship. The RSM model for Performance
Index in L/m?s is given by:
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Table 2. Minimum and maximum parameter values, dz and z.

min max dz Z0
2; Feed TDS Concentration (mg/L) 1000 4000 1500 2500
2, Feed Temperature (°C) 20 37.5 8.75 28.75
23 Feed Pressure (psi) 95 145 25 120

decrease the response performance index Y. This is intuitively supported
by the theory of reverse osmosis, as the feed concentration increases, the
required pressure to overcome osmotic pressure for reverse osmosis also
increases for maintaining a constant permeate flux. Generally, the feed
concentration is relatively constant when it is collected from a stable
water source. Therefore, for more cost-effectiveness and better RO per-
formance, a lower TDS source is ideal. As a result, low salinity ground-
water, river water, treated wastewater, or their mixture with seawater
would all be considered beneficial.

In this experiment, the feed pressure of the system was controllable,
similar to a real-world RO plant. Eq. (7) shows the absolute value of the
coefficient of x3 (105.97) has the second largest effect on the response
performance index output. As the feed pressure of the system (x3) increases,
the performance index Y increases. Once the osmotic pressure is overcome,
the increased pressure difference drives more fresh water through the
membrane. This mechanism requires several considerations in a real-world
application, including the ability of the membrane to mechanically with-
stand the pressure. In this case, the Dow SW30-2521 membrane has a
working pressure of up to 1000 psi [17]. Also, energy cost, brine manage-
ment, and membrane fouling/scaling are some of the other considerations
in determining the desired operating pressure of the RO systems.

Performance Index (Y) =363.40 — 178.37 *x; + 66.43 * X5 + 105.97 * X3 — 69.31 * X1 X,

—20.78 * X;1X3 +19.93 * X,%3 — 14.47x% — 14.86x% — 19.08 * X XX3 + 14.48%3x;

+10.03x3x3 — 14.06x; X

where x; is the normalized feed concentration, x5 is the normalized
temperature and x3 is the normalized feed pressure.

From the RSM model stated in Eq. (7), several significant findings can
be extracted. The absolute value of the coefficient of x; (—178.37) is the
largest among those of the three input variables. This corresponds to the
feed concentration (x;) having the greatest effect on the response, Y.
Being a negative value indicates increasing the feed concentration will

)

In Eq. (7), it is seen that the absolute value of the coefficient of x;
(66.43) is the least among those of the three input variables. Feed tem-
perature (x3) affects the performance index to a less extent than the feed
concentration (x;) and pressure (x3). When the feed temperature in-
creases, the response performance index Y increases. As the temperature
increases, the dynamic viscosity of the water decreases [20], and the
lower dynamic viscosity leads to less pressure head loss resulting in

Table 1. Experimental run dimensionless input parameters (x;, X», x3) and corresponding dimensioned parameters (23, 22, 23).

Experimental Run X1 X2 X3 z; Feed Concentration(mg/L) 2, Temperature (°C) z3 Feed Pressure (psi)
1 -1 -1 -1 1000 20 95

2 1 -1 -1 4000 20 95

3 -1 1 -1 1000 37.5 95

4 1 1 -1 4000 37.5 95

5 -1 -1 1 1000 20 145

6 1 -1 1 4000 20 145

7 -1 1 1 1000 37.5 145

8 1 1 1 4000 37.5 145

9 —1.287 0 0 569 28.75 120

10 1.287 0 0 4431 28.75 120

11 0 —1.287 0 2500 17.49 120

12 0 1.287 0 2500 40.01 120

13 0 0 —1.287 2500 28.75 87.82
14 0 0 1.287 2500 28.75 152.18
15 0 0 0 2500 28.75 120

16 0 0 0 2500 28.75 120
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Table 3. The experimental results and calculated Performance Index using Eq. (3).

Experimental Run Feed TDS Concentration Temperature Feed Pressure Permeate Flux Rejection Efficiency Performance Index (Y)
(mg/L) (z1) Q) (z2) (psi) (z3) (L/m?%) x107° (%) (L/m?%) x107°

1 1000 20 95 289.81 96.47 279.57

2 4000 20 95 51.85 70.85 36.74

2} 1000 37.5 95 515.74 97.33 501.99

4 4000 37.5 95 71.3 81.67 58.23

5 1000 20 145 480.56 98.87 475.11

6 4000 20 145 242.59 92.94 225.47

7 1000 37.5 145 871.3 97.97 853.58

8 4000 37.5 145 276.85 90.43 250.37

9 569 28.75 120 593.52 95.25 565.36

10 4431 28.75 120 124.07 85.56 106.16

11 2500 17.49 120 288.89 96.79 279.61

12 2500 40.01 120 472.22 95.43 450.63

13 2500 28.75 88 212.04 93.93 199.17

14 2500 28.75 152 481.48 98.03 471.98

15 2500 28.75 120 371.3 96.67 358.92

16 2500 28.75 120 377.78 97.05 366.65

greater output response. Higher feed temperatures will also increase the
permeate flux due to physical changes in the membrane such as changes
in pore size [21]. However, the feed temperature is limited by the
manufacturer’s  specifications of the membrane wused. The
upper-temperature limit is 45 °C in this case [17].

In Eq. (7), it is seen that the absolute value of the coefficient of x;x
(—69.31) is the largest among those of the two coupling input variables.
This means that the interaction between the feed concentration and
temperature (x;x2) also has a large influence on the response output. The
negative sign indicates that by increasing the coupling effect of the input
variables x; and xy, the response output will decrease. This finding in-
dicates although temperature itself has only a small effect on perfor-
mance, due to the coupling effect it could still be an important
consideration for greater performance, especially for feed sources with
variable temperatures.

Interestingly, when compared to the study conducted by Khayet et al.
on SWRO and BWRO [4], the RSM model for low concentration saline
water RO corresponds more closely to the SWRO RSM model than to the
BWRO RSM model. For their SWRO RSM model, the effect of the feed
concentration had a greater effect on the performance index than the feed
pressure. For their BWRO RSM model, the feed pressure had a greater
effect on the performance than the feed concentration. This is another
example of how the optimization process requires different models for
different ranges of TDS feed sources. It would be beneficial to run all the
experiments on the same RO plant, to remove discrepancies caused by
the different setups and membranes.

To validate Eq. (7), the analysis of variances (ANOVA) has been
conducted. The ANOVA results of the RSM modelling are listed in
Table 4. The optimal model equation coefficients (Eq. (7)) were deter-
mined with a squared correlation coefficient R? of 0.9999 being ach-
ieved. The R? value is a statistical measure, being very close to one that
indicates a well-fitting model.

It is seen from Table 4 that the F-value of the model is 1805.9 and the
p-value is less than 0.0001. The model F-value and p-value indicate that
the model is significant and not by chance. All individual variable co-
efficients of the polynomial regression equation have high F values and
very low p values, as desired. The ANOVA data indicates that the model is
statistically significant and valid. The sensitivity analysis of the ANOVA
has validated the coefficients of the RSM model in Eq. (7).

The measured performance index listed in the last column of Table 3
and the predicted performance index through Eq. (7) (the RSM model)
are compared in Figure 3. The RSM predicted performance indices are
very close to the experimentally measured values suggesting

Table 4. The ANOVA analysis results for the RSM Modelling.

Sum of Squares df Mean Square F value P-value
Model 6.64x10° 12 55325.55 1805.86 <0.0001
x1 1.05x10° 1 1.05x10° 3441.27 <0.0001
X2 14623.92 1 14623.92 477.33 0.0002
X3 37211.77 1 37211.77 1214.62 <0.0001
X1X2 38433.59 1 38433.59 1254.50 <0.0001
X1X3 3455.02 1 3455.02 112.77 0.0018
XoX3 3178.68 1 3178.68 103.75 0.002
x3 1193.48 1 1193.48 38.96 0.0083
x% 1211.33 1 1211.33 39.54 0.0081
X1X2X3 2912.72 1 2912.72 95.07 0.0023
x3xy 491.08 1 491.08 16.03 0.028
X3x3 235.72 1 235.72 7.69 0.0693
x1x§ 463.29 1 463.29 15.12 0.0301
Residual 91.91 3 30.64
Lack of Fit 62.06 2 31.03 1.04 0.5699
Pure Error 29.85 1 29.85
R® 0.9999
Adjusted R? 0.9993
Predicted R? 0.9761
Adeq Precision 163.7217

performance indices predicted by the RSM model are accurate, reliable,
and indicative of a closely modelled system.

The RSM model of Eq. (7) was used to optimize the input variables of
the small-scale reverse osmosis plant process for the maximum perfor-
mance index output. The objective optimization was conducted for the
three normalized input values ranging from —1 to +1, using mathe-
matical optimization embedded in the software of Design Expert 12. The
RSM model predicted the highest performance index over the normalized
values ranging from —1 to 1 to be 852.25 x 10> L/m?s. This is compared
with the highest performance index measured experimentally at 853.58
x 107° L/m?s for the same normalized range from —1 to +1. The com-
binations of the three input parameters for the highest performance index
are the same for the experiments and RSM prediction. The optimal
parameter combination for this range is: x; (feed concentration) = —1
(1000 mg/L), x2 (feed temperature) = +1 (37.5 °C) and x3 (feed pres-
sure) = +1 (145 psi) which was obtained from running Design Expert 12
software.
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Figure 3. Comparison of the measured, RSM, and ANN predicted output performance index response.

RSM Performance Index prediction at 40° C
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Performan

Figure 4. Three-dimensional response surface of the input parameters within the star point ranges with the temperature set to the Star point of 40 °C.

achieved with the input parameters: x; (feed concentration) = —1.282
(577 mg/L), x3 (feed temperature) = 1.149 (38.8 °C), and x3 (feed
pressure) = 1.223 (150.57 psi).

When the parameter range is extended to the largest normalized
experimental value range (—1.287, 1.287) the highest performance index
achieved is 1023.23 x 107> L/m?s. The highest performance index is
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Figure 6. The regression of the ANN model.

Figure 4 depicts a three-dimensional surface response of the RSM
model over the experimental range, set at the maximum experimental
temperature of 40 °C.

Using an ANN designed in Matlab, composed of a single hidden layer
with 10 neurons and the Bayesian regularisation training algorithm, a
network model was developed. The first layer used the TRANSIG transfer
function and the output layer the PURELIN function. The Bayesian reg-
ularisation was used as it is known to be robust even with a small sample
set and not prone to overfit [22]. The model was found to be a close fit to

the experimental data, with an overall R% equal to 0.999 shown in
Figure 6. 12 of the experimental runs were used for training, 2 for vali-
dation, and 2 for testing. The ANN model does not require the input
parameter variables and measured responses in the carefully planned
(CCD) experiments to be trained and can continually be trained using
more available unplanned experimental data.

Table 5 lists the related error between the experimental and ANN
prediction, most of the response output value errors are close to 0. Those
used for testing and validation (runs 3, 13, 15, and 6) have a slightly
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Table 5. Comparison of the response output values of the performance index predicted by the RSM and ANNs models with those measured by the experiments and their

associated errors.

Experimental Run Experimental Value RSM Model Predictions

ANN Model Predictions RSM Model Error ANN Model Error

x107° L/m?s x107° L/m?s x107° L/m?s x107° L/m?s x107° L/m?s

1 279.57 278.51 279.46 1.06 -0.12
2 36.74 35.67 37.00 1.07 0.26

8 501.99 500.93 509.41 1.06 7.42
4 58.23 57.17 58.26 1.06 0.03
5 475.11 474.05 475.21 1.06 0.10

6 225.47 224.41 225.31 1.06 -0.16
7 853.58 852.51 852.93 1.07 -0.65
8 250.37 249.31 250.48 1.06 0.11

9 565.36 569.02 565.83 -3.67 0.48
10 106.16 109.83 105.95 -3.67 -0.22
11 279.61 277.89 279.53 1.71 -0.08
12 450.63 448.91 451.01 1.72 0.38
13 199.17 202.38 177.72 -3.20 -21.45
14 471.98 475.18 472.65 -3.20 0.67
15 358.92 363.40 362.38 -4.48 3.46
16 366.65 363.40 362.38 3.25 -4.26

higher error, with the prediction of run 13 having a maximum error of
-21.45. This error is likely to decrease as more training data becomes
available. It would be possible to retrain the network with all data
including the test and validation sets. As the model has been shown to
have decent accuracy, this could improve the model further. More
experimental runs could then be used as validation for the new model
and then used for further training. This is the aspect of continuous
improvement of the prediction model. In addition, the optimization
prediction results based on the RSM model were verified for the
dimensionless input parameter combination of (—1, 1, 1), producing a
response output value of the performance index of 852.93 x 107> L/m?s.
The optimization prediction results of the RSM model are very close to
that of the ANN prediction and experimental results. The ANN model has
been validated by the RSM model and experiments. The ANN prediction
was similarly represented by a 3D surface plot at 40 °C in Figure 5. The
trend observed when comparing Figures 4 and 5 is very similar, further
indicating the close performance of the RSM and ANN prediction models.

Table 5 compares the predicted response output or performance index
values of the RSM and the ANN models, and their errors with respect to the
experimentally measured values. Table 6 presents the root-mean-square
error (RMSE) of the calculated response output values of the RSM and
ANN predictions. The RSM model is currently more accurate than the ANN
model. It is seen from Table 5 that many of the ANN errors are close to 0.
The larger error of the ANN response output values (runs 3, 13, 15, and 16)
produces a large RMSE. If the amount of experimental data sets increases,
the ANN model is expected to become more accurate than the RSM model.

The major benefits of the RSM method and CCD of input parameters
are being able to fit a good response prediction model from fewer ex-
periments and an explicit polynomial regression equation can be fit and
presented, which helps to further understand the relationship between
input and output for the process. The RSM model allows for parameter
study and design optimization. The RSM modelling does require careful
design of experiments by CCD and understanding of the capabilities of
the equipment used, as the maximum and minimum input parameter
values need to be defined for the experiments. Alternatively, an ANN can

Table 6. The root-mean-square error of the response output calculated by the
RSM and ANN models.

Root Mean Square Error
RSM 2.41
ANN 5.85

take any experimental run input and output values as training data,
generally, the more training data the more accurate the ANN model will
be for the response output prediction. Using the RSM data provides a
good platform for training the ANN as it is a good representation of the
design space. ANN does not provide insight into how the process oper-
ates, but ANN provides the mechanism of the learning process with
hidden layers and high levels of iteration to predict output from input.

The RSM and ANN complement each other as the RSM provides
insight into the most effective input parameters on the response but also
provides good, dispersed training data over the design space for training
an ANN. The ANN is likely to provide better response prediction as more
data is fed into the model. Therefore, for the optimization and prediction
of performance for low salinity RO, the RSM can be used to better un-
derstand the system before using the ANN as an evolving, continuously
improving prediction model. When researchers compare the accuracy of
both RSM and ANN, it is greatly affected by the accuracy and quality of
the data. Some examples show the ANN is more accurate [13, 14],
especially considering it is not bound by linear or quadratic terms. But,
RSM has a great deal of merit in understanding the system and providing
a good representation of the design space data.

The feed flow rate was found to have no significant impact on the
performance index of an RO plant [4], therefore it was not controlled for
this experiment. However, in practice, the feed flow rate is an important
consideration as it has an implication on membrane fouling/scaling which
can degrade the long-term performance of the RO systems. If the system is
run continuously with a feed flow rate that is too low, the salt build-up or
scaling occurs as freshwater is extracted and the salts exceed solubility
limits, leading to crystallization on the membrane surface reducing the
effective area of the RO [23]. So, the feed flow rate should be great enough
to avoid this premature fouling but does not drastically change perfor-
mance over a certain minimum value. RO plants can mitigate scaling by
maintaining a sufficient feed flow rate, lowering permeate recovery,
and/or using antiscalants. In many cases, the RO retentate/brine needs to
be disposed of, therefore the highest possible water recovery is ideal for
reducing the volume of plant waste requiring appropriate disposal. This is
just another example of the complexity of designing an RO plant, the
feasibility of which is heavily reliant on the costs of waste handling,
environmental impact management, and power consumption.

4. Conclusions

An RSM prediction model has been developed for low salinity feed-
water to optimize input parameters for the largest predicted performance
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index of 1023.23 x 107> L/m?%s. The predicted performance index was
achieved with low feed concentration, high feed pressure, and high feed
temperature. The corresponding parameters were obtained through the
polynomial regression relationship between the input parameters and
output response target using RSM. They were x; (feed concentration) =
—1.282 (577 mg/L), x» (feed temperature) = 1.149 (38.8 °C) and x3 (feed
pressure) = 1.223 (150.57 psi). An ANN was also used to model the data,
showing slightly less, but still acceptable accuracy. The close tie between
the RSM and ANN results shows the validity of the methods for this
system. The paper outlines where the RSM and ANN models can be
complementary to each other to optimize the system parameters for the
best performance while also producing a continuously improving pre-
diction model.

Future work should look at using a BWRO membrane and actual
brackish water in place of potable water-NaCl solution. The method
proposed for performance modelling, optimization, and prediction can
be used and further validation experiments can be undertaken. To further
progress this research a single system could be set up to run a compli-
mentary RSM and ANN performance modelling, optimization, and pre-
diction process as outlined in this paper for the low salinity RO, BWRO,
and SWRO to remove discrepancies that can occur from different
equipment.

5. Experimental method

The temperature sensor was calibrated before the experimental
runs. The temperature was measured using a handheld thermometer
and was compared with that measured by a K-type thermocouple over
the temperature range of 17-40 °C. It was found that the difference in
the readings was within +0.1 °C. When the feed solution was heated,
time was taken to ensure the heat had diffused throughout the
solution.

The TDS meter/water quality tester (EZ-9908) was calibrated for
measuring the Total Dissolved Solids (TDS) before the experimental runs.
Electrical conductivity (EC) was measured against a known calibration
solution. For the handheld device, TDS is calculated from the measured
EC. The handheld meter calibrated for EC has an accuracy of +2% per the
manufactures specification. The conversion formula from EC to TDS is
approximately equal to EC x 670 up to the seawater salinity. This for-
mula is considered adequate when the solute was NaCl as used in this
experiment [24].

The readings of multiple manometers/pressure gauges were cali-
brated over the range of the measured pressure, from 95 psi to 152 psi.
Two gauges made by different manufacturers were used to measure the
same pressure for each experimental run. The difference in the readings
of the two gauges was +2 psi. Flowrate was measured manually. The
permeate and retentate were collected in separate vessels for
measurement.

Each of the 16 experimental runs was completed by filling the feed
tank with tap water and then heating the tank water to the required
temperature for the experimental run parameters. The next step was
adding salt (NaCl), letting it dissolve, and mixing thoroughly. To ach-
ieve desired salinity, the solution salinity was measured using the TDS
meter adding NaCl or more water as required. The temperature was
rechecked and adjusted if required. The pumps were run with the valve
open to the atmosphere for ~10 s, allowing the system to flush water
and air. The valve was closed to produce the desired pressure, letting
the permeate production commence, and allowing the line to run and
flush, for ~10 more secs to rid the line of residual fluid. Then samples
were collected for the retentate and permeate for 30 s (for the calcu-
lation of flow rate), repeating the collection three times. The TDS was
measured and recorded for the permeate using the TDS meter. The
weights of the retentate and permeate samples were measured and
recorded. Pumps were shut down and the system rest before the next
experimental run.
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