
An approach to functionally relevant
clustering of the protein universe: Active
site profile-based clustering of protein
structures and sequences

Stacy T. Knutson,1,2 Brian M. Westwood,1,2 Janelle B. Leuthaeuser,3

Brandon E. Turner,1 Don Nguyendac,1 Gabrielle Shea,1 Kiran Kumar,1

Julia D. Hayden,5 Angela F. Harper,1 Shoshana D. Brown,4 John H. Morris,4

Thomas E. Ferrin,4 Patricia C. Babbitt,4 and Jacquelyn S. Fetrow 6*

1Department of Physics, Wake Forest University, Winston-Salem, North Carolina 27106
2Department of Computer Science, Wake Forest University, Winston-Salem, North Carolina 27106
3Molecular Genetics and Genomics Program, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
4Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158
5Biochemistry Program, Dickinson College, Carlisle, Pennsylvania 17013
6Department of Chemistry, University of Richmond, Richmond, Virginia 23173

Received 10 December 2016; Accepted 22 December 2016
DOI: 10.1002/pro.3112

Published online 5 January 2017 proteinscience.org

Abstract: Protein function identification remains a significant problem. Solving this problem at the
molecular functional level would allow mechanistic determinant identification—amino acids that

distinguish details between functional families within a superfamily. Active site profiling was devel-

oped to identify mechanistic determinants. DASP and DASP2 were developed as tools to search
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sequence databases using active site profiling. Here, TuLIP (Two-Level Iterative clustering Process)

is introduced as an iterative, divisive clustering process that utilizes active site profiling to separate
structurally characterized superfamily members into functionally relevant clusters. Underlying

TuLIP is the observation that functionally relevant families (curated by Structure-Function Linkage

Database, SFLD) self-identify in DASP2 searches; clusters containing multiple functional families
do not. Each TuLIP iteration produces candidate clusters, each evaluated to determine if it self-

identifies using DASP2. If so, it is deemed a functionally relevant group. Divisive clustering contin-

ues until each structure is either a functionally relevant group member or a singlet. TuLIP is vali-
dated on enolase and glutathione transferase structures, superfamilies well-curated by SFLD.

Correlation is strong; small numbers of structures prevent statistically significant analysis. TuLIP-

identified enolase clusters are used in DASP2 GenBank searches to identify sequences sharing
functional site features. Analysis shows a true positive rate of 96%, false negative rate of 4%, and

maximum false positive rate of 4%. F-measure and performance analysis on the enolase search

results and comparison to GEMMA and SCI-PHY demonstrate that TuLIP avoids the over-division
problem of these methods. Mechanistic determinants for enolase families are evaluated and shown

to correlate well with literature results.

Keywords: functional site profile; active site profile; mechanistic determinants; isofunctional clus-
ters; function annotation; functionally relevant clustering; misannotation

Introduction
Since the first sequencing of the Haemophilus influ-

enza genome in 1995,1 databases have exploded with

gene and protein sequences; however the majority of

this ever-increasing number of proteins and pre-

dicted proteins lack function annotation. Despite

development of some large scale experimental assays

for evaluating protein function, experimental deter-

mination remains expensive and time consuming: it

has been estimated that less than 5% of protein

functions have been experimentally determined.2

Computational methods to efficiently identify pro-

tein function are required; however, it is essential

that such methods be accurate, as mis-annotation is

a well-documented problem.3–5 The issue of over-

annotation—annotating function to a level of detail

beyond which the method can address—has also

been clearly demonstrated.6–8

The most useful function annotation methods

will identify molecular functional details and divide

protein superfamilies into functionally relevant

groups based on those details. Accurate clustering of

proteins centered on molecular functional details

would address the problem of over-annotation. In

this manuscript, we use the term “isofunctional fam-

ily” to describe a protein family in which all family

members share mechanistic details. Our goal is to

identify isofunctional families within protein super-

families. Importantly, mechanistic determinants—

those residues that are involved in the mechanism

or substrate specificity within an isofunctional fami-

ly—could be identified. Mechanistic determinants

drive function diversification of biological processes

in protein superfamilies; thus, simplifying their rec-

ognition would be valuable.

Although methods that focus on molecular func-

tion details are limited, protein clustering has a long

history. Large databases, such as CATH9,10 and

PFAM,11–13 divide protein superfamilies into groups

based on structural and/or sequence similarity. Fun-

Fams14 are an extension to CATH that use an auto-

matic hierarchical clustering approach and hidden

Markov models (HMMs) to identify functional fami-

lies within superfamilies exhibiting the same

Enzyme Commission (EC) number. There is no tun-

ing to a particular family; however, the advantage of

this method is automation. The Enzyme Function

Initiative approach classifies large numbers of homo-

logues using sequence similarity networks,15 provid-

ing a way to analyze an entire superfamily. Yet, the

correlation between full sequence similarity and the

details of molecular function are not well under-

stood.16 Indeed, it is this relationship between

molecular function and computational clustering

that is critical to such methods. Validation of func-

tionally relevant clustering methods must be accom-

plished on groups for which the functional

relationship is known (such as those in the

Structure-Function Linkage Database, SFLD).17,18

In 2007, the Subfamily Classification in Phylo-

genomics (SCI-PHY) algorithm emerged as a large-

scale method to group proteins into functional fami-

lies using phylogenomic classifications.19 A hierar-

chical tree is created from a starting set (typically a

Pfam family or SFLD superfamily) based on profile

comparisons; the tree is cut to optimize the balance

between number of clusters and sequence diversity

within the clusters. Subsequently, HMMs are creat-

ed for each cluster19 and new sequences are evaluat-

ed against each HMM to identify the cluster to

which each sequence belongs (if any). SCI-PHY dem-

onstrated superior performance compared to other

sequence-based methods in clustering functionally

related proteins within a superfamily. However, SCI-
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PHY requires a multiple sequence alignment (MSA)

of all proteins in the superfamily; thus, the method

is limited by the attendant issues of alignment accu-

racy and gap placement.

Three years later, the Genome Modelling and

Model Annotation (GeMMA) method was developed.20

GeMMA utilizes pairwise sequence comparisons

(rather than a MSA) to create a hierarchy of proteins

from a known protein superfamily. In addition, the

hierarchical clustering is considered complete once

the profile comparisons no longer pass the signifi-

cance threshold. Although the execution of GeMMA

results in high performance scores,20 GeMMA subdi-

vides superfamilies into many clusters with little evi-

dence to suggest these many small groups each

represent distinct functions. Both GeMMA and SCI-

PHY utilize alignment of full sequence within a large

family, rather than focusing on functional sites; con-

sequently, mechanistic determinants of subfamilies

might be evaluated after the completion of the pro-

cess, but are not identified during the process.

Active Sites Modeling and Clustering (ASMC)

was also developed in 2010 to identify and cluster

proteins into isofunctional groups by focusing on the

functional site details.21 In ASMC, active sites are

identified in proteins of known structure and homol-

ogy models are built for proteins of unknown struc-

ture within the superfamily. Features of the

homology models are compared by creating a MSA

of active site fragments, similar to the approach

used in active site profiling,22 and then hierarchical-

ly clustering those fragments. ASMC demonstrated

high performance on the validation test set. Subse-

quently, ASMC was used in conjunction with phylo-

genetic analyses, genomic context, and sequence

similarity to characterize the BKACE superfamily

into functionally relevant groups based on active

site similarity.23 Because of homology modeling accu-

racy, the approach is limited to sequences with

greater than 30% sequence identity to a character-

ized superfamily structure. Though mechanistic

determinants of functional sites can be identified,

the lack of widespread structural characterization in

some superfamilies diminishes ASMC’s ability to

cluster all protein superfamilies.

To easily identify and compare mechanistic

determinants in known functional families, we pre-

viously developed active site profiling.22 In this

approach, key functional residues are identified in a

given protein [Fig. 1(A), black side chains]. All resi-

dues within 10 Å of a key residue are identified

[Fig. 1(A), colored fragments]. These active site frag-

ments are concatenated N- to C-terminus to create

an active site signature for each protein; signatures

are aligned to create an active site profile (ASP)

[Fig. 1(B)]. As defined by Cammer and coworkers,22

an ASP score defines the similarity between the sig-

natures in the profile. A profile allows identification

of potential molecular determinants common across

the whole family [Fig. 1(B), black arrows] or consis-

tent within subfamilies [Fig. 1(B), red arrows].

In 2005, we subsequently developed an

approach called DASP (Deacon Active Site Profiler)

that uses the active site profiling concept to search

sequence databases24–26 (Fig. 2). We have applied

ASP-based sequence searching (DASP) to the perox-

iredoxin (Prx)25 and cytochrome P45027 superfami-

lies with good success. Like DASP, PSI-BLAST uses

profiling of multiple sequences; however, profiles are

calculated across the entire sequence, rather than

across the active site fragments. Comparison of

DASP to PSI-BLAST in Prx searches has demon-

strated the superior accuracy of DASP towards func-

tional family-specific searches (Supporting

Information File 1, Fig. S1).

Despite these developments, there remains a

need to develop automatable methods to cluster pro-

teins in functionally relevant ways. We are working

Figure 1. Active Site Profiling (ASP) approach to identify features of the active site microenvironment. In a protein struc-

ture, key residues (represented as black side chains) important for molecular function are identified. All residues within 10 Å of a

key residue are selected (colored fragments, A and B). The sequences of these discontinuous fragments or motifs are concatenat-

ed N-terminus to C-terminus to create the active site signature for each protein (B, individual lines) which we hypothesize contains

all or most of the active site’s functionally relevant features; letter colors represent continuous fragments or motifs extracted from

the structure. Multiple signatures are aligned to create an active site profile, ASP (B). An ASP score (see Methods) 22 quantifies

the sequence similarity across the profile. Black arrows represent positions conserved throughout the entire profile. Red arrows

represent some of the positions that differ between functional groups and may indicate specificity determining positions.
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to develop such a method using active site profiling,

in which active site similarities drive clustering of

functional groups. One limitation of the approach

applied to the Prxs is that identification of the input

clusters was manual, relying on expert analysis.

Thus, the method identifies mechanistic determi-

nants, but only with a priori knowledge of group

members. In this contribution, we address this limi-

tation. We introduce a process called TuLIP (Two-

Level Iterative clustering Process), an iterative, divi-

sive clustering process that utilizes pairwise ASP

scores as the edge metric in a similarity network

approach to cluster the structurally characterized

members of a superfamily into groups. Our previous

work16 suggested such clusters should correlate with

molecular function, and in this contribution we show

that TuLIP-identified clusters do, in fact, correlate

with functional families identified by SFLD curators.

TuLIP is part of a two-step process for clustering

both protein structures (TuLIP) and protein sequen-

ces (MISST).28

Results and Discussion

ASPs discretely identify most SFLD-identified

enolase superfamily subgroups and families
We hypothesize that ASPs capture key functional

site features or functional determinants, a hypothe-

sis supported by previously published results on the

Prxs25,29 and other protein families.16 If this hypoth-

esis is correct, database searches with ASPs created

for functionally relevant groups should identify only

group members and no other proteins at significant

scores. Because subgroups and families within each

SFLD enzyme superfamily represent curated func-

tionally relevant groups, we initially asked whether

ASPs created for proteins of known structure in

each SFLD-identified subgroup in the enolase super-

family would identify subgroup members only, but

not other superfamily members. A summary of the

enolase superfamily subgroups and families used in

this work is listed in Table I; details of the enolase

superfamily hierarchy used throughout this manu-

script are provided in Supporting Information File 2.

ASPs were created as previously described22

(process outlined in Fig. 1) for each of the seven sub-

groups in the enolase superfamily: enolase, manno-

nate dehydratase (ManD), glucarate dehydratase

(GlucD), galactarate dehydratase (GalD), methylas-

partate ammonia lyase (MAL), mandelate racemase

(MR), and muconate cycloisomerase (MLE). Profiles

were created using structures present in the 2011

SFLD (Table I, column 3). DASP searches26,30 (meth-

od outlined in Fig. 2) of the 2013 Protein Databank

(PDB) (Table I, column 4) were then performed

using these profiles.

Five of the seven subgroups (enolase, ManD,

GlucD, GalD, and MAL) produced ASPs with posi-

tive profile scores (Fig. 3). Searching the PDB with

these profiles identified all subgroup members,

including those not used to build the profile, at

scores more significant than the trusted DASP score

threshold (1e-10, dashed line, Fig. 3; “trusted score

threshold” defined in Methods), and subgroup mem-

bers were distinct from members of other subgroups

Figure 2. DASP method using ASPs to search for

sequences that contain functional site features similar to

those represented in the original profile. Sequence data-

bases can be searched for proteins containing active site fea-

tures similar to those in the original ASP using a tool called

DASP24,30; DASP2 was developed to improve input and algo-

rithmic details35. As described in Methods, the ASP is split

into individual motifs (representing the colored, structurally

continuous fragments in Fig. 1) (top). A position-specific scor-

ing matrix (PSSM) is created for each motif. For each

sequence in the database, the best match (most-significant

p-value) of each motif-specific PSSM to a sequence fragment

is identified using a sliding window search. The individual

motif p-values are combined using QFAST, which produces

the DASP score, which represents the statistical significance

of the fragment matches to all ASP motifs. This process of

motif matching and significance calculation is repeated for

every sequence in the database.
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(blue bars distinct from red bars, Fig. 3). Thus, ASPs

built from SFLD-identified subgroup members cap-

ture relevant active site features and utilize those fea-

tures to identify other members of the subgroup.

Members of two subgroups of the enolase super-

family, MR and MLE, were not discretely identified

in DASP searches using subgroup-specific ASPs—

meaning enolase superfamily sequences which were

not subgroup members were identified from the

subgroup-specific searches (interwoven red and blue

bars, Fig. 3, bottom). These subgroups are well-

represented in the PDB (Fig. 3, column 3). Such rep-

resentation results in diversity of the active site,

producing negative ASP scores (Fig. 3, column 4),

suggesting further subdivision of these two sub-

groups is required. In the SFLD hierarchy, a finer

level of functional detail is represented by family17;

therefore, ASPs were built for each family in the

MR and MLE subgroups. These profiles were used

as input to DASP searches of the PDB.

In the MR subgroup, ASPs were built for the D-

tartrate dehydratase (DTartD), L-fuconate dehydra-

tase (LFucD), L-talarate/galactarate dehydratase

(LTalGalD), mandelate racemase (MR), and rhamn-

onate dehydratase (RhamD) families. The higher

ASP scores [Fig. 4(A), column 4] indicate these

family-specific profiles are less diverse than the

overall subgroup ASP. In DASP searches, every

family identifies its members discretely, as the fami-

ly members [blue bars, Fig. 4(A)] are distinguished

from the nonfamily members [red bars, Fig. 4(A)] by

at least two DASP score orders of magnitude. Thus,

ASPs built from each MR family capture functional

site features that are sufficient to distinguish family

members from nonfamily members, similar to what

was observed for the other five enolase superfamily

subgroups (Fig. 3).

ASPs were also built for each family in the MLE

subgroup: muconate cycloisomerase-anti (MLE-anti);

muconate cycloisomerase-syn (MLE-syn); chloromuco-

nate cycloisomerase (Chl-MLE); dipeptide epimerase

(DipepEp); o-succinylbenzoate synthase (OSBS); N-

succinyl-amino acid racemase (NSAR); and N-

succinyl-amino acid racemase 2 (NSAR2). ASPs for

three of the seven families (MLE-anti, NSAR, and

NSAR2) distinguished family members from the oth-

er MLE and enolase superfamily families [blue bars

separated from red bars, Fig. 4(B)]. Searches using

ASPs for the other four MLE families were less

robust. DASP searches with these ASPs identified

family members [blue bars, Fig. 4(B)] as well as

members of other MLE and enolase superfamily fam-

ilies [red bars, Fig. 4(B)] at significant scores. Such

cross-hits showed that the MLE-syn, Chl-MLE, Dipe-

pEp, and OSBS families are less easily distinguished

using the ASP approach. These families were also dif-

ficult to distinguish by expert curators.31–33

TuLIP: An ASP-based method to cluster

superfamilies into functionally relevant groups
The ability to use ASPs to identify and retrieve 13 of

17 SFLD-identified enolase superfamily subgroups

Table I. Subgroup and Family Members of the Enolase Superfamily for DASP Searches and TuLIP

Subgroup Family
Structs

(Aug 2011)
Structs

(June 2013)
TuLIP

Structsa

Enolase Enolase 37 56 18
Mannonate Dehydratase (ManD) Uncharacterized 2 14 8

Mannonate Dehydratase (ManD) 4 22 9
Glucarate Dehydratase (GlucD) Uncharacterized 1 8 4

Glucarate Dehydratase (GlucD) 7 22 12
Galactarate Dehydratase (GalD) Galactarate Dehydratase (GalD) 5 6 1
Methylaspartate Ammonia-Lyase

(MAL)
Methylaspartate Ammonia-Lyase (MAL) 4 6 3

Mandelate Racemase (MR) Uncharacterized 24 76 37
D-Tartrate Dehydratase (DTartD) 3 3 1
L-Fuconate Dehydratase (LFucD) 4 5 2
L-Talarate/Galactarate Dehydratase

(LTalGalD)
5 5 2

Mandelate Racemase (MR) 6 8 2
Rhamnonate Dehydratase (RhamD) 11 11 3
D-Galactonate Dehydratase (DGalnD) 0 0 1

Muconate Cycloisomerase (MLE) Uncharacterized 7 11 7
Muconate Cycloisomerase – anti (MLEanti) 3 3 1
Muconate Cycloisomerase – syn (MLEsyn) 9 10 3
Chloromuconate Cycloisomerase (Chl-MLE) 2 2 2
Dipeptide Epimerase (DipepEp) 21 29 9
N-Succinylamino Acid Racemase (NSAR) 9 9 2
N-Succinylamino Acid Racemase 2 (NSAR2) 3 3 1
O-Succinylbenzoate Synthase (OSBS) 24 27 12

a Nonredundant structures utilized in the TuLIP profiles.
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and families suggests the ASPs pinpoint molecular

details that distinguish functionally relevant groups,

a result that prompts the following question: Is it

possible to create an automatable procedure that

uses active site profiling to divisively cluster protein

superfamily members of known structure into func-

tionally relevant groups?

TuLIP was developed to accomplish this goal.

This process, described in detail in Methods and out-

lined in Figure 5, begins by creating an active site

signature for each superfamily member whose struc-

ture is known. A pairwise ASP score is calculated

for each pair of signatures, creating an all-by-all

pairwise score matrix. These pairwise ASP scores

Figure 3. ASPs distinguish subgroup members from all other enolase superfamily proteins in five of seven subgroups.

An ASP was built for the nonredundant proteins of known structure (April 2011) in each enolase superfamily subgroup. Each

ASP was used to search the 2013 PDB using DASP. Search results are displayed as a distribution of DASP search scores.

Blue bars indicate proteins that are SFLD-identified subgroup members. Red bars represent enolase superfamily proteins that

are not members of the subgroup used for the search. The black dotted line indicates the original trusted DASP score threshold

of 1e-10. The third and fourth columns indicate the number of protein sequences used to create the profile and the ASP score

(see Methods) for that profile, respectively. Domains that are 100% identical are counted only once in a given bin.
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serve as the edge metric for network-based cluster-

ing of active site signatures. Discrete clusters are

identified by gradually increasing the pairwise score

threshold and executing MCL clustering,34 a process

which isolates clusters of signatures that are more

similar to each other than to any of the other signa-

tures [Fig. 5(A)]. Each discrete cluster is examined

for validity as a functionally relevant cluster by cre-

ating a profile for the cluster members and analyz-

ing if a DASP search of PDB distinctly identifies

only cluster members. To support TuLIP, a new ver-

sion of DASP, DASP2,35 was developed to improve

the efficiency of database searching and overcome

certain edge case anomalies noted in the original

DASP implementation (see Methods).

A two-stage process identifies validated clusters,

first using stringent criteria (strict, or Sct, clusters),

and second using less stringent criteria (relaxed, or

Rlx, clusters) [Fig. 5(B); see Methods]. The relaxed

stage identifies weaker relationships in which pro-

teins share active site similarity, but which may

have been obscured by the strong relationships iden-

tified in the strict clustering stage.

TuLIP was validated by applying the process to

a set of 160 nonredundant enolase superfamily pro-

teins of known structure present in the 2014 SFLD

(representing 339 enolase superfamily sequences;

Table I; Supporting Information File 2). Twenty

three functionally relevant groups were identified:

16 and 7 groups from the strict (Sct) and relaxed

(Rlx) stages, respectively (groups listed in Table II).

TuLIP placed 23 proteins into their own groups as

singlet proteins, including the lone nonredundant

structures representing the GalD, NSAR2, and

MLE-antifamilies (Supporting Information File 1,

Fig. S2, blue bracket). Singlet identification indi-

cates the active site features of each protein were

dissimilar from all other superfamily members of

known structure.

The SFLD-defined annotation of each protein

was compared to the TuLIP groupings (Supporting

Information File 1, Fig. S2). High correspondence

between the TuLIP and SFLD groups is observed,

including five of the seven subgroups identified

distinctly and four of the six MR families identi-

fied distinctly. Notably, 12 MR subgroup

Figure 4. ASPs can distinguish all five MR families (A) and three of seven MLE families (B) from among all PDB sequences.

Columns and axes are as in Figure 3. Blue bars indicate proteins that are SFLD-identified family members in either the MR (A) or

MLE (B) subgroups. Red bars are proteins that are not members of the family used for the search. The black dotted line indicates

the original DASP score threshold of 1e-10. Domains that are 100% identical are counted only once in a given bin.
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uncharacterized proteins were assigned by TuLIP

to clusters that correspond to SFLD families.

TuLIP also identifies new potentially functionally

relevant clusters not previously identified by

SFLD curators: 25 of the 48 MR proteins which

SFLD labels as “uncharacterized MR family” were

clustered into seven newly identified TuLIP

groups (Supporting Information File 1, Fig. S2,

orange bracket).

Two exceptions to the strong qualitative corre-

spondence between SFLD and TuLIP groups are

observed. In the MR subgroup, TuLIP combines the

LFucD and LTalGalD families into one cluster,

Sct23 (Supporting Information File 1, Fig. S2, black

arrow). In the MLE subgroup, TuLIP combines the

MLE-syn and Chl-MLE families into one group

(Sct30) (Supporting Information File 1, Fig. S2, pur-

ple arrow) and subdivides both the OSBS and Dipe-

pEp families into multiple clusters (Supporting

Information File 1, Fig. S2, orange arrows), similar

to the results observed for the DASP searches using

ASPs built from the expert-identified groups (Fig. 4).

Notably, in the most recent curation of SFLD, MLE-

syn and Chl-MLE are no longer distinguished as

two separate families, consistent with Sct30 identi-

fied by TuLIP.

Strong correspondence with SFLD subgroups

and families suggests that TuLIP-identified clusters

are functionally relevant; however, the number of

proteins in the PDB is insufficient to perform mean-

ingful statistical analysis. Previous work on the

Prxs shows that DASP searches of GenBank using

ASPs of known functionally relevant groups distinct-

ly identify other members of those groups (Support-

ing Information File 1, Fig. S1).25 Thus, ASPs

constructed from proteins in each TuLIP-identified

group were used to search GenBank, a significantly

larger sequence database, to determine the quantita-

tive correlation between TuLIP groups and SFLD

annotations.

Figure 5. TuLIP, an automatable process of functionally relevant clustering of proteins of known structure, identifies

functionally relevant enolase protein clusters. (A) An illustration of MCL clustering34 through stepwise increases in ASP score

thresholds to identify groups in which the active sites of group members are more similar within the cluster than they are to all

other proteins. This concept underlies the TuLIP algorithm. (B) The TuLIP algorithm outlines the iterative, two-stage process.

The two stages, strict and relaxed (defined in Methods), are shown on dark and light gray backgrounds respectively. In each

stage, the algorithm proceeds through iterative MCL clustering at increasing edge thresholds, as illustrated visually in A. Upon

completion of the algorithm, all proteins are either members of a functionally relevant group (purple parallelogram) or have been

subdivided into singlets (red circle). All steps outlined in (B) are automatable, meaning that each step uses objective criteria and

no step requires human interpretation of data. (C) TuLIP-identified clusters for the enolase superfamily. The node color repre-

sents SFLD subgroup designation of the protein, according to the legend. Clusters of the enolase superfamily satisfying either

strict or relaxed criteria, and thus identified as functionally relevant clusters, are shown on the dark (strict) and light gray

(relaxed) backgrounds, respectively. Singlet proteins not included in any cluster by TuLIP are displayed on white background.

Cluster edge colors (A and C) represent pairwise ASP scores (scoring function as previously defined22), according to the color

legend (A).
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Proteins identified by DASP2 searches of

GenBank using TuLIP-based profiles correlate

with SFLD subgroups and families
ASPs were created for each of the 23 TuLIP-

identified groups and used in DASP2 searches of the

GenBankNR sequence database (ASPs provided in

Supporting Information File 3). For purposes of com-

parison to SFLD, engineered ASPs (see Methods and
25) were constructed for three singlet proteins. These

singlets are the only nonredundant structural repre-

sentatives of their respective families (GalD,

MLEanti, and NSAR2); those engineered ASPs were

also used to search GenBankNR (GalD-eng,

MLEanti-eng, and NSAR2-eng). The search tool

DASP2 allowed us to identify additional proteins

with functional site features similar to those in each

TuLIP group.

These 26 GenBank searches (one for each of the

23 TuLIP-identified groups and each of the three

engineered singlet ASPs) identified 15,737 proteins

at the trusted DASP score threshold of 1e-12 (Table

II), a 50-fold increase over the coverage in the PDB

database. (All sequences identified at DASP2 score

threshold of �1e-8 are provided in Supporting Infor-

mation File 4.) Comparison of each DASP2-

identified protein to its respective SFLD classifica-

tion indicates that most of the DASP2-identified pro-

teins are annotated as enolase superfamily

members: of the 15,737 proteins identified, 96%

were present in February 2014 SFLD (15,144

sequences) and 4% were not (593 sequences; Table II

and Supporting Information File 4), representing a

modest false positive rate of less than 4%. Member-

ship of these 593 sequences in the enolase

Table II. DASP2 Sequences Identified, and SFLD Mapping, for Each TuLIP Group

TuLIP
group

Known
structuresa

Total
DASP2

hitsb
Hits in
SFLDc

SFLD
subgroup

Hits in
SFLD

subgroup
SFLD
family

Hits in
SFLD
family

%
Coveraged

Hits
not in
SFLD

TuLIP
groups
mapped
to SFLD
Sub-
groups
and
Families

Sct3 17 795 778 ManD 746 ManDe 575 91.3 17
Sct5 18 7338 7175 Enolase 7142 Enolasee 7021 88.6 163
Sct6 16 1779 1721 GlucD 1701 GlucDe 1473 99.1 58
GalD-eng 1 10 10 GalD 3 GalDe 2 100 0
Sct7 3 204 59 MAL 59 MALe 37 84.1 145
Sct13 8 380 369 MR 366 RhamDe 241 60.0 11
Sct23 6 486 473 MR 467 LFucDe 134 27.5 13

LTalGalDe 137 99.3
Sct27 3 38 38 MR 38 MRe 7 100 0
Rlx39 4 57 57 MR 55 DGalnDe 52 6.9 0
Rlx45 2 235 229 MR 228 DTartDe 135 100 6
Sct20 4 688 672 MLE 672 OSBSe 670 30.2 16
Sct22 7 598 589 MLE 588 NSARe 9 100 9

OSBS 161 7.3
Sct30 5 641 630 MLE 630 MLEsyne 594 87.5 11

Chl-MLEe 32 76.2
DipepEp 1 0.05

Sct31 4 66 60 MLE 60 DipepEpe 57 2.6 6
OSBS 1 0.05

Rlx48 2 1025 953 MLE 953 DipepEpe 951 43.3 72
Rlx50 6 572 555 MLE 555 DipepEpe 516 23.5 17

OSBS 4 0.2
NSAR2-eng 1 133 129 MLE 129 NSAR2e 128 93.4 4
MLEanti-eng 1 58 56 MLE 56 MLEantie 47 90.4 2

OSBS 4 0.2
TuLIP

groups
not
mapped
to SFLD

Sct10 3 96 93 MR 93 N/A 0 N/A 3
Sct14 5 56 55 MR 55 N/A 0 N/A 1
Sct15 4 195 173 MR 169 N/A 0 N/A 22
Sct16 3 34 34 MR 7 N/A 0 N/A 0
Sct25 5 139 139 MR 69 N/A 0 N/A 0
Rlx36 2 9 9 MR 9 N/A 0 N/A 0
Rlx44 3 27 27 MR 27 N/A 0 N/A 0
Rlx42 7 78 61 MLE 58 OSBS 4 0.2 17

DipepEp 2 0.1
Total 140 15737 15144 593

a Known structures is the count of nonredundant structures in the 2014 SFLD, based on 95% full sequence identity.
b All search results for each group, given the trusted DASP score (�1e-12).
c Hits are defined as the number of proteins identified by DASP2 that are in the SFLD enolase superfamily as of 2/18/14.
d Percent of all SFLD-identified proteins that are identified by DASP2 search using TuLIP-identified clusters.
e Identifies an SFLD family mapped to TuLIP group.
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superfamily is inconclusive, though, so the 4% repre-

sents a maximum false positive rate.

The extent to which each DASP2 search covered

individual SFLD subgroups and families was also

evaluated (Supporting Information File 1, Fig. S3).

At a score threshold of 1e-12, the DASP2 searches

identified 100% of the GalD subgroup, the MR fami-

ly, the NSAR family, and the DTartD family. Over

65% of the SFLD sequences were identified in most

remaining subgroups and families (Supporting Infor-

mation File 1, Fig. S3). Coverage of the RhamD and

LFucD families (MR subgroup) is less complete—

60.0% and 27.5% of these SFLD families, respective-

ly, were identified. Family coverage in the MLE sub-

group ranges from 37% of the OSBS family to 100%

of the NSAR family, with coverage in six of seven

families over 65%. Median percent coverage of all

families was 94.52% and 88.03% at threshold scores

of �1e-8 and �1e-12, respectively.

TuLIP groups were mapped to SFLD subgroups

and families (Table II) in detail by identifying the

percent agreement between SFLD annotations for

each protein and each TuLIP group (heat map visu-

alization, Fig. 6). In the results section of Supporting

Information File 1, we describe in detail the qualita-

tive comparison between the TuLIP-identified

groups and the SFLD subgroups and families.

These comparisons of DASP2-identified enolases

in GenBank to SFLD-identified members of the eno-

lase superfamily demonstrate that the ASP-based

automatable and SFLD knowledge-based approaches

to functionally relevant clustering track well with

each other. One limitation of the ASP-based

approach is that if a family or subfamily is not rep-

resented among known structures, it will not be rep-

resented in the TuLIP clusters.

TuLIP groups are distinct, with little overlap at a
DASP score threshold of 1e-13

DASP2 GenBank searches increased coverage of

sequences in the enolase superfamily almost 50-fold

from the limited representation in the structure

database. The search quality depends on whether or

not a single molecular function is identified for most

groups (unless there is biological justification, such

as a sequence with more than one molecular func-

tional site). Network-based plots that allow visuali-

zation of cross-hits between the groups (Supporting

Information File 1, Fig. S4, black edges) show, as

expected, more cross-hits are observed at a DASP2

score threshold of 1e-8 than at the more significant

score, 1e-12; cross-hits are mostly between MR and

MLE families (Supporting Information File 1, Fig.

S4, blue and red nodes). Unsurprisingly, some of

these same subgroups were also challenging for

expert SFLD curators.31–33

We have previously shown that a DASP score

threshold of 1e-10 is sufficient to distinguish the six

subgroups in the Prx superfamily25 and, thus, was

deemed a “trusted” DASP score threshold for that

superfamily. In this work using DASP2, the trusted

score threshold was more significant, 1e-12. At this

threshold, only three cross-hits were observed

among 26 functionally relevant clusters containing

over 15,000 enolase superfamily sequences (0.02%)

[Fig. 7(A); Supporting Information File 1, Fig.

S4(B)]. All three cross-hits were identified by

DASP2 searches Rlx48 and Rlx50, two of the three

TuLIP groups mapping to the SFLD-annotated Dipe-

pEp family [Supporting Information File 1, Fig.

S4(B), blue nodes]. At a DASP2 score of 1e-13, no

cross-hits are observed between groups, while at the

less stringent threshold of 1e-11, 17 cross-hits are

observed [Fig. 7(A)]. Overall, these results indicate

that DASP2 can differentiate molecular functional

groups based on functional site features.

Quantitative analysis demonstrates good
performance of DASP2 GenBank searches

compared to SFLD annotations

To quantitatively compare the ASP-based identifica-

tion of sequences to SFLD annotations, 18 TuLIP

groups were mapped to SFLD subgroups and fami-

lies using 16 mappings (Table II; Supporting Infor-

mation File 1, Fig. S5) such that true and false

positive and negative counts could be calculated (see

Methods and Supporting Information File 5). True

and false positive rates, precision-recall, and perfor-

mance (combined measure of purity, edit distance,

and VI distance, defined in Methods and Supporting

Information File 5) were calculated for the combined

results for the 16 mappings. The F-measure (an

integrated measure of precision and recall) was also

calculated individually for each of the 16 mappings.

A standard ROC curve for the mapped groups

displays extremely high true positive rates and

extremely low false positive rates [Supporting Infor-

mation File 1, Fig. S5(A)], consistent with what was

previously observed for the Prx superfamily (Sup-

porting Information File 1, Fig. S125). A blow-up

[Supporting Information File 1, Fig. S5(A), inset]

shows the more typical ROC curve for the MLEsyn/

ChlMLE, DipepEP, NSAR, OSBS, and LFucD/LTal-

GalD families—these are the groups discussed previ-

ously for being combined or subdivided by the TuLIP

process. In addition, precision-recall curves demon-

strate the high sensitivity and specificity of the

searches, with the exception of Sct22 [Supporting

Information File 1, Fig. S5(B)]. Sct22 contains the

nine (100%) NSAR proteins, as well as 161 (7.1%)

OSBS proteins. This TuLIP group was mapped to

the NSAR family; thus, all OSBS proteins identified

are considered false positives for these calculations.

Consequently, low specificity is observed for Sct22 in

the precision-recall curves. Previous work shows

some NSARs may catalyze OSBS activity as
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Figure 6. Comparison of DASP2-identified to SFLD-identified enolases in GenBank demonstrates a high correspon-

dence between the automatable and knowledge-based approaches to functionally relevant clustering. In this heat map,

columns represent the SFLD subgroup and family assignments for these proteins and rows represent the TuLIP group to which

each individual protein sequence was assigned at a trusted DASP2 score threshold of 1e-12: Sct indicates groups identified in

the first TuLIP stage (strict criteria) and Rlx indicates groups identified in the second stage (relaxed criteria). Grid color repre-

sents the percent of proteins of a specific subgroup or family identified by each TuLIP group search, according to the legend.

Gray-highlighted column labels and dotted lines indicate sequences labeled uncharacterized by SFLD. Pink boxes indicate

TuLIP groups that map one-to-one to SFLD subgroups or families, the green box indicates all families in the MR subgroup, and

the blue box indicates all families in the MLE subgroup. Black, purple, and orange arrows identify SFLD families that are either

combined or subdivided by TuLIP, as discussed in text.
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bifunctional enzymes36; thus, this result may not be

a false positive, but may be biologically relevant.

To further evaluate the utility of the search

results, purity, edit distance, and VI distance were

calculated and combined into a performance mea-

sure based on the mapping of TuLIP groups to

SFLD families. Optimal performance is observed at

a DASP2 score of 1e-13 [Fig. 7(B), black arrow],

which is more significant than the optimal perfor-

mance score of 1e-10 previously identified for Prx

subgroups.25 1e-13 is also the first DASP2 score

threshold in which no cross-hits are observed [Fig.

7(A)].

If the search results correlated perfectly to

SFLD, the performance score would be 100. The per-

formance score of 70.5 calculated at 1e-13 represents

a high level of correlation to known functions with

room for improvement. As a comparison, SCI-PHY19

and GeMMA20 score 91.70 and 90.59, respectively,

for the enolase superfamily; however, reported by

these researchers, these performances are very

dependent on the specific superfamily. Because both

SCI-PHY and GeMMA start with the entire enolase

superfamily of sequences and subdivide the super-

family, one would expect a high performance score.

Both methods subdivide the superfamily well beyond

SFLD subgroups and families; this finer subdivision

is only weakly penalized in the performance score,

as it was calculated. In contrast, DASP is agglomer-

ative: it starts with a simple representation of each

family (based on structures represented in the

PDB), and then attempts to identify all other

Figure 7. Quantitative analyses demonstrate the quality of DASP2 assignment of proteins to TuLIP-identified groups

and support the optimal DASP2 score threshold. (A) Cross-hits (protein sequences identified by more than one DASP2

search of GenBank at the given DASP2 score threshold) were plotted against total hits for the 23 TuLIP groups and three engi-

neered groups used to search GenBank. Only three cross-hits of 15,737 identified sequences (0.02%) were identified at a

trusted DASP2 score threshold of 1e-12, and no cross-hits at 1e-13. (B) Performance, edit distance, purity and VI distance

were calculated for the 16 TuLIP groups which could be mapped to SFLD subgroups or families. The performance curve, a

composite of edit, purity, and VI distance, shows peak performance at a DASP2 score threshold of 1e-13 (black arrow). (C) The

F-measure, a composite of precision and recall (see Methods) was plotted for each of the 16 TuLIP groups mapped to SFLD

subgroups or families. Rainbow colored bars represent DASP2 score thresholds, according to the legend. Solid and dashed

lines indicate the mean and two standard deviations of the 11 groups which F-measure is above 0.75 at 1e-13. The red arrow

indicates Sct22, as discussed in the text.
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members of the family from GenBank. The DASP

agglomerative approach of family member identifica-

tion from GenBank is more difficult, akin to how

SFLD curators identify subgroups and families

using sequence analysis, HMMs, and a high level of

expert curation.17,18 Nonidentification of some super-

family members by DASP is more heavily penalized

in the performance calculation than the over-

division demonstrated by GeMMA and SCI-PHY.

Results suggest that further iterative searches using

ASPs from the DASP-identified sequences in each

group identify more proteins belonging to these

functionally relevant groups,28 which would, thus,

increase the performance score.

Utility of TuLIP clusters in identifying sequen-

ces from GenBank was also evaluated using the F-

measure, a composite of precision and recall that

identifies sensitivity and specificity at each score

threshold. An F-measure value of 1 indicates perfect

precision and perfect recall. At the DASP score

threshold of 1e-13, the F-measure is greater than

0.9 for seven TuLIP groups (GalD-eng, Sct27, Rlx45,

Sct6, NSAR2-eng, Sct5, and MLEanti-eng), between

0.75 and 0.9 for four TuLIP groups (Sct30, Sct3,

Sct7, and the Sct31/Rlx48/Rlx50 DipepEp mapping),

and below 0.75 in only five cases: Sct23, Sct20,

Sct22, Sct13, and Rlx39, [Fig. 7(C)].

It is worthwhile exploring the reasons underly-

ing the very different F-measures for the different

functional groups, especially those that score more

poorly. Sct23 is the TuLIP group that combined

99.3% of LTalGalD proteins and 27.5% of LFucD

proteins. It is mapped to LTalGalD and LFucD

(Table II); consequently, the large number of uniden-

tified LFucD proteins count as false negatives. Sct20

is mapped to OSBS, as it is composed only of OSBS.

As discussed above, the OSBS group is subdivided

into three TuLIP groups and Sct20 only contains

30.2% of them, thus decreasing the F-measure

because of many false negatives. Sct13 maps solely

to RhamD, but identifies only 60.0% of these pro-

teins in this single DASP2 search (Table II). Rlx39

contains 52 DGalnD proteins, which accounts for

only 6.8% of the family annotated in SFLD. Notably,

DGalnD contains no structurally characterized pro-

teins, so it is unsurprising most of the family is not

identified. These four TuLIP groups, which all exhib-

it an F-measure below 0.75, are comprised of fami-

lies which were combined or subdivided by TuLIP.

Again, an iterative GenBank search process is an

essential process to identify additional sequences

and, ideally, subdivide clusters in functionally rele-

vant ways.

Notably, the F-measure mapped across DASP2

score thresholds demonstrates a different behavior

for Sct22 [Fig. 7(C), red arrow]. The largest F-mea-

sure is observed at a DASP2 score of 1e-17 and

decreases as the DASP score threshold either

increases or decreases. As mentioned above, this

group is mapped to the NSARs. At 1e-17, the recall

is perfect—all NSARs are identified. As the DASP2

score threshold becomes less significant, more OSBS

proteins are identified and these proteins count as

false positives. On the other hand, at DASP2 scores

more significant than 1e-17, NSAR proteins begin to

be lost, thus resulting in false negatives and nega-

tively impacting the F-measure. The DASP2 score

1e-17, at which both OSBS and NSAR proteins are

identified, is more stringent than any trusted score

threshold we have yet observed, which suggests that

DASP2 is identifying the functional features

described by the experimental work in which the

NSAR protein from G. kaustrophilus was shown to

efficiently catalyze the OSBS reaction.37,38

Overall these quantitative analyses demon-

strate the functionally relevant clusters identified

by TuLIP correlate with a detailed level of molecu-

lar function at the SFLD subgroup or family level.

High quality identification of GenBank enolase

superfamily sequences is observed in most groups,

despite the fact that these TuLIP groups were con-

structed from the limited coverage found in the

structure database. The over-division demonstrated

by GEMMA and SCI-PHY is avoided. These

results establish the utility of using TuLIP to clus-

ter proteins of known structure into groups that

are both functionally relevant and discrete, fol-

lowed by using DASP2 to identify members of

these functionally relevant groups from large

sequence databases.

Enhancing detailed molecular annotations in

GenBank

Annotation at the level of molecular functional detail

without sufficient evidence is a source of mis-

annotation (or over-annotation) in large sequence

databases.6 The ASP-based approach presented here

clusters proteins based on molecular functional

detail, and therefore can add new, accurate sequence

annotations. Thus, we compared GenBank annota-

tions with the detailed molecular annotations pro-

vided by the current process (Table III).

Between 0% (NSAR2) and 90-95% (MLEsyn,

Chl-MLE, and OSBS)) of the GenBank annotations

are accurate to the level of detail provided by these

DASP2 searches. Between 0% (MLEanti and

DGalnD) and 20% (GalD) of the sequences have no

annotation in GenBank. The place where this pro-

cess makes the largest contribution is in adding

detail to the more vague GenBank annotations,

where contributions range from 0% (MAL and GalD)

to 89% (DTartD) of the sequences, and correcting

incorrect or over-annotated sequences, which

account for between 0% (MAL) and 70% (NSAR2

and GalD).
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The enolase family is very well-studied, so the

amount of detailed, molecular functional information

that would be added to GenBank is somewhat less

than what was observed for the Prxs.25 Results from

both the enolase and Prx superfamilies demonstrate

that significant new and more detailed molecular

functional information would be added to GenBank,

providing an enabling solution to the under-

annotation and over-annotation problems.

Mechanistically important details can be

elucidated from residue conservation in

functionally relevant groups

Given the quality of the described approach, it is

important to ask whether conserved residues identi-

fied in these clusters provide insight into important

functionally relevant or mechanistically determinant

residues. The ASP approach simplifies extraction of

such well-conserved residues in the protein’s active

sites. Do these conserved residues identify the

molecular functional determinants in each group?

Mechanistically important residues for families

in several superfamilies were previously hypothe-

sized using this approach.16,25 In the Prx superfami-

ly, the roles of identified residues were substantiated

by molecular dynamics and electrostatics calcula-

tions,29 then validated by experimental work (Nel-

son and Poole, unpublished results). Network-based

clustering of ASPs allowed identification of mecha-

nistically important residues in the ManD family16

that had previously been identified by experimental

work.39 Others have also suggested a similar

approach on the carbohydrate kinases.40 We here

follow this approach to hypothesize mechanistic

determinants for the OSBS and DipepEp isofunc-

tional groups.

TuLIP divides the SFLD OSBS family into two

main groups: Sct20 and Sct22 (Table II; Fig. 6,

orange arrow). Sct20 is composed of 670 OSBS pro-

teins and two MLE-uncharacterized proteins. Sct22

is composed of 161 OSBS proteins, all nine NSAR

proteins (Table II), and 419 uncharacterized MLE

subgroup proteins. Sct20 and Sct22 contain distin-

guishing features at their active sites that can be

compared to the features in the SFLD-identified

OSBS and NSAR families (Fig. 8). Six particular fea-

tures distinguish Sct20 and Sct22 (Fig. 8, peach

shading). Most obvious is signature position 26 (resi-

due 177 in 2QVH and 237 in 1SJA), which is an Ala

in Sct20 [Fig. 8(A)] and a Cys in Sct22 [Fig. 8(C)].

The analogous position in the NSAR family is invari-

ant as a Cys [Fig. 8(D)], while both Cys and Ala are

found in the OSBS proteins [Fig. 8(B)]. The second

most obvious distinguishing feature is the invariant

Val and Asn in signature position 36 of Sct20 and

Sct22, respectively (residue 201 in 2QVH and 261 in

1SJA). Asn is invariant in the NSAR proteins [Fig.

8(D)], while both residue types are observed at this

position in the OSBS proteins [Fig. 8(B)]. Signature

position 4 (residue 100 in 2QVH and 164 in 1SJA)

also distinguishes Sct20 (Val) and Sct22 (Ile). Distin-

guishing features are also found at signature posi-

tions 7, 12, and 13 (Fig. 8). These features are

oriented towards the substrate binding site [Fig.

8(E)], allowing us to hypothesize functional rele-

vance. Similar NSAR and OSBS clustering was

reported using full sequence-, full structure-, and

active site-based analyses.16 The current results,

Table III. GenBank Annotations of Proteins Identified by Searching with TuLIP-Identified Groups

TuLIP
groupa

SFLD
family

mapping

GenBank annotations
that match

SFLD family (%)

GenBank annotation
is correct but

vagueb (%)

GenBank
incorrect

annotationc (%)

No annotation
in GenBank

(%)

Sct3 ManD 2.9 68.4 24.3 4.4
Sct5 Enolase 80.3 15.9 0.1 3.7
Sct6 GlucD 82.3 4.0 10.0 3.7
GalD-eng GalD 10.0 0.0 70.0 20.0
Sct7 MAL 83.3 0.0 0.0 16.7
Sct13 RhamD 51.1 20.5 16.8 11.6
Sct27 MR 65.8 23.7 0.0 10.5
Rlx39 DGalnD 84.2 10.5 5.3 0.0
Rlx45 DTartD 0.4 88.9 3.0 7.7
Sct20 OSBS 93.5 4.1 0.6 1.9
Sct22 NSAR 21.1 8.7 63.0 7.2
Sct30 MLEsyn, Chl-MLE 93.1 1.2 3.1 2.5
Sct31, Rlx48, Rlx50 DipepEp 39.8 25.7 26.2 8.3
MLEanti-eng MLEanti 37.9 3.4 58.6 0.0
NSAR2-eng NSAR2 0.0 26.3 69.9 3.8

a Sct23 maps to both LFucD and LTalGalD and is not included in this evaluation, as the relationship between these two
families is not understood; Sct30 maps to both MLE-syn and Chl-MLE and both carry out the same reaction (on different
substrates), thus, both included as a “match” for this evaluation.
b Correct superfamily or subgroup, but not specified to family level or noncommittal modifiers to the family specification,
such as ‘hypothetical . . .’; and ‘. . . like’;.
c Wrong subgroup/family designation or nonenolase superfamily name.
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combined with those results, suggest that a subset

of the SFLD-identified OSBS proteins share more

functional site similarities with the NSAR proteins

than the other OSBS proteins.

The SFLD DipepEp family is divided by TuLIP

into three main groups (Table II; Fig. 6, orange

arrow): Sct31, containing 57 DipepEp proteins, one

OSBS protein, and two MLE-uncharacterized pro-

teins; Rlx48, containing 951 DipepEp proteins; and

Rlx50, containing 516 Dipep proteins, four OSBS

protein, and 35 MLE-uncharacterized proteins

(Table II). As with Sct20 and Sct22, these TuLIP-

identified DipepEp groups can be distinguished by

features at their active sites (Fig. 9, peach shading).

The three most distinguishing positions are signa-

ture positions 4, 26, and 32 (V162, A239 and

R245 in 2ZAD; L152, C223, and H229 in 1JPD;

V163, M242, and F248 in 1TKK). At position 4, Val

is found in Sct31 and Rlx50 [Fig. 9(B,D)], while Leu

is found in Rlx48 [Fig. 9(C)]. At position 26, Ala,

Cys, and either Met or Leu are found in Sct31,

Rlx48, and Rlx50, respectively. Finally, Arg, His, and

Phe are almost invariant at signature position 32 in

Sct31, Rlx48, and Rlx50, respectively. Distinguishing

features are also found at signature positions 7, 12,

31, and 34 [Fig. 9(B–D]; these features are oriented

towards the substrate binding site as well [Fig.

9(E)]. The residue conservation analysis between the

TuLIP-identified DipepEp groups suggests three

distinct groups can be identified in this family, each

with distinct functional site features.

TuLIP process applied to the glutathione

transferase superfamily
TuLIP was also applied to the cytosolic glutathione

transferase (GST) protein superfamily, another large

superfamily in which members play multiple and

important roles in metabolism and detoxification in

eukaryotic organisms.41–43 Like the enolases, the

GSTs are ubiquitous and diverse. The GST proteins

are members of the thioredoxin fold family.44 Their

functions have traditionally been organized by

Greek letters that were assigned as new superfamily

members were identified; however, more recently

the Enzyme Function Initiative has focused compu-

tational and experimental work on GST functional

analysis.15 Comprehensive sequence and structure

analysis has allowed mapping of these traditional

functional groups onto the superfamily,45 and dock-

ing has identified potential substrates across this

superfamily.46 Here we compare the TuLIP classifi-

cation of GSTs of known structure to both SFLD and

to the traditional classifications as reported in

Swiss-Prot.

Using TuLIP, 155 nonredundant GST structures

identified from SFLD were clustered into 24 groups

and 24 singlets; these groups were compared to the

level 2 subgroup classifications in SFLD. The

Figure 8. Conserved residues in the active sites of Sct20, Sct22, OSBS, and NSAR illustrate the functional site features

that distinguish Sct20 and Sct22 from the SFLD families. Weblogos 55 were generated for TuLIP groups Sct20 (A) and Sct22

(C) and for the structurally analogous positions in SFLD-identified OSBS (B) and NSAR (D) families. Gray highlights indicate met-

al ligand binding residues conserved across these proteins used for active site profile construction. Purple highlights are lysine

residues that SFLD designates as residues important for proton abstraction. Peach highlights illustrate significant differences

between Sct22 and Sct20 that are discussed in the text. Representative structures are overlaid (E) for 1SJA (Sct22), an OSBS

family member co-crystallized with N-acetyl-methionine, and 2QVH, an OSBS with o-succinyl benzoate (both substrates dis-

played as teal; metal ion is green sphere). Key residue side chains are black, while conserved lysines are displayed as purple.

Residues conserved in the ASPs are displayed as orange (Sct20) and red (Sct22) side chains.
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numbers of structures are insufficient for quantita-

tive analysis; however, qualitative analysis is infor-

mative. For the GST superfamily, SFLD identifies

two levels of subgroups, which we identify here as

level 1 and level 2. In their representative networks

of the GST superfamily, level 2 subgroups are

defined by Mashiyama and coworkers as distinct

clusters in a sequence similarity network where the

edge threshold is more significant than a BLAST E-

value of 1e-25.45

The overall correspondence between TuLIP

group and SFLD level 2 subgroup is striking [Fig.

10(A)]. There is a one-to-one correlation between

TuLIP groups and SFLD subgroups for eight TuLIP

groups [Sct3, Sct8, Sct9, Sct13, Sct14, Sct17, Rlx42,

and Rlx43; Fig. 10(A), fuchsia box]. Some SFLD lev-

el 2 subgroups are combined by TuLIP [Fig. 10(A),

purple arrows]: Sct4 (Xi and Main.27); Sct6 (Main.4

and Main.22); Rlx40 (Main.6 and Main.7; includes

one protein from Main.1); and Sct12 (Main.19,

Main.9, and ProstE). Combination of some sub-

groups is likely because of the limited structural

representation of the superfamily, preventing a finer

level of functional distinction. Subsequent GenBank

searches to identify proteins that share active site

similarity with each group will increase group

membership significantly, thus, allowing for poten-

tial subdivision based on functional characteristics.

Three SFLD level 2 subgroups are subdivided

by TuLIP [Fig. 10(A), orange arrows]: Main.1 (Sct16,

Sct7, Rlx40); Main.3 (Sct15, Rlx41); and Main.2

(Sct12, Rlx59). Notably, the three Main groups sub-

divided by TuLIP are the three largest level 2 repre-

sentative networks presented by Mashiyama and

coworkers.45 All three show two distinct subnet-

works which contain a structural representative.

Given that TuLIP clusters proteins of known struc-

ture, TuLIP is potentially identifying clusters simi-

lar to those previously published, though further

investigation is required to determine the functional

relevance of these subdivisions.

The AMPS subgroup is also subdivided by

TuLIP into multiple clusters [Sct19, Sct21, Sct22,

Rlx50, Rlx51, Rlx54, Rlx55; Fig. 10(A), orange brack-

et]. The AMPS subgroup contains the traditionally

defined alpha, mu, pi, and sigma classes. Mammali-

an cytosolic GSTs were originally classified into

alpha, mu, and pi classes47,48; sigma was later iden-

tified to be a glutathione-dependent prostaglandin

D2 synthase.48 In Swiss-Prot, proteins in these four

traditional classes are identified and we compare

these traditional classes to the TuLIP-identified

Figure 9. Conserved residues in the active sites of Sct31, Rlx48, Rlx50, and DipepEp illustrate the functional site fea-

tures that distinguish TuLIP-identified subfamilies from the SFLD-identified DipepEp family. WebLogos 55 were created

from the ASPs for Sct31 (B), Rlx48 (C), and Rlx50 (D) and for the structurally analogous residues in the SFLD-identified DipepEp

(A) family. Gray highlights indicate metal ligand binding residues that were used for active site profile construction. Purple high-

lights are lysine residues that SFLD designates as residues important for proton abstraction. Peach highlights illustrate signifi-

cant differences between Sct31, Rlx48, and Rlx50 that are discussed in the text. Representative structures are overlaid (E) for

3DER (Sct31), a DipepEp family member co-crystalized with alanine-lysine, and 4GFI (Rlx48) and 3R1Z (Rlx50), both DipepEp

with alanine-glutamate. Substrates are displayed as teal; metal ion as a green sphere. Key residue side chains are black, while

conserved Lys are displayed as purple. Residues conserved in the ASPs are displayed as orange (Sct31), orange-red (Rlx48)

and red (Rlx50) side chains.

692 PROTEINSCIENCE.ORG Functionally Relevant Clustering of Protein Superfamilies



clusters [Fig. 10(B)]. The correspondence between

the seven TuLIP AMPS groups and the four Swiss-

Prot AMPS classes is significant: TuLIP does not

combine any of the four classes but does subdivide

the mu, pi, and sigma classes [Fig. 10(B), orange

arrows]. These results demonstrate that TuLIP can

identify these traditional functionally distinct clas-

ses. Whether the subdivisions of the mu, pi, and sig-

ma classes is biologically relevant remains to be

determined.

These results show some correspondence to the

protein similarity networks that used sequence simi-

larity as the edge metric. These representative net-

works identified at least six subnetworks that might

be distinguished in the AMPS level 2 network.45

These researchers mapped solved structures to

their level 2 networks and showed that both alpha

and mu structures mapped to two different subnet-

works. TuLIP is possibly recognizing these

subnetworks.

Importantly, TuLIP replicates what was previ-

ously shown with similarity-based networks using

pairwise active site signature scores as the edge

metric. These similarity networks divided the AMPS

subgroup into four clusters: one cluster corresponded

to alpha, one cluster to mu, and one cluster com-

bined pi and sigma (the last cluster was too small

for meaningful analysis).16 Thus, the TuLIP process

can replicate what was observed by manually curat-

ed similarity networks.

These GST results demonstrate the generaliz-

ability of TuLIP. Remarkably, no superfamily-specific

thresholds are required to complete TuLIP cluster-

ing—all parameters used for TuLIP clustering of the

GSTs were the same used for clustering of the eno-

lases. The only expert work required is the identifi-

cation of key functional residues from known

structural representatives. This generalizability lays

the foundation for clustering of superfamilies for

which little data are previously known.

Conclusions

The main contributions of this work are the develop-

ment of an automatable approach to divide the

Figure 10. TuLIP clusters the GST superfamily in a functionally relevant manner. Heat maps show the comparison of the

TuLIP-identified groups with the SFLD-identified subgroups in the GST superfamily (A) and the traditional alpha, mu, pi, and sig-

ma classifications, as annotated in Swiss-Prot (B). Columns represent the SFLD (A) or SwissProt (B) annotations and rows rep-

resent the TuLIP group to which each protein structure was clustered. Sct and Rlx (y-axis) indicate groups identified in the first

(strict criteria) and second (relaxed criteria) stages. Grid color represents the percent of proteins of a specific subgroup or family

identified in each TuLIP group, according to the legend. Gray-highlighted column labels and dotted lines indicate sequences

labeled as uncharacterized by SFLD. Pink boxes indicate TuLIP groups that map one-to-one to SFLD subgroups or Swiss-Prot

annotations. Purple and orange arrows identify SFLD subgroups or Swiss-Prot annotations either combined or subdivided,

respectively, by TuLIP. The orange bracket indicates the AMPS subgroup that is subdivided by TuLIP.
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proteins of known structure within a superfamily

into functionally relevant clusters that correlate

with known functional families. In addition, we

show that these clusters can be used to search Gen-

Bank to identify other members of the functional

family, an agglomerative approach to identifying iso-

functional clusters. In contrast to most other meth-

ods of functional classification which require a priori

knowledge of all superfamily members and then

divisively cluster them, this approach is agglomera-

tive and does not require a priori knowledge of all

superfamily members. Thus, newly deposited family

members can easily be identified. The method pin-

points mechanistic determinants that distinguish

each functional family, which provides insight into

distinguishing mechanistic details.

Methods

Protein superfamilies

Validation was performed by comparing the TuLIP-

identified clusters to subgroups and families in the

SFLD (http://sfld.rbvi.ucsf.edu), a manually curated,

hierarchical scheme for classification of molecular

function.17 The top level of the SFLD hierarchy is

the superfamily, a group of proteins which are evolu-

tionarily related and share at least a partial step in

enzyme mechanism. Superfamilies are split into dis-

crete subgroups (level 1, and more specifically, level

2) which are further divided into one or more fami-

lies. A family is composed of enzymes which share a

complete mechanism and, thus, represents fine

detail of molecular function classification.17 Because

of this detailed molecular function-specific hierarchy,

the SFLD annotations have been used as a “gold

standard” by other functional clustering and annota-

tion methods.6,20

One SFLD superfamily in particular, the eno-

lase superfamily, was used to develop and initially

validate the clustering method presented here. A

summary of enolase superfamily subgroups and fam-

ilies is provided in Table I. To assess generalizability,

the glutathione transferase (GST) superfamily was

also utilized. Structures comprising the subgroups

and families within each superfamily are provided

in Supporting Information File 2.

Structurally characterized members of each

superfamily were downloaded from SFLD. To avoid

bias introduced by over-representation, redundancy

within each superfamily was reduced by clustering

proteins with either 99% (initial validation) or 95%

(TuLIP) or greater sequence identity and selecting

one representative from each cluster (C11 script

written in-house). Representatives used in this

work are provided in Supporting Information

File 2.

Active site profiling: a method to identify

feature similarity at protein functional sites

Active site profiling, originally described by Cammer

and coworkers22 and represented in Figure 1, is a

method to capture the features of a functional site.

Briefly, key residues (listed in Supporting Informa-

tion File 2 for the superfamilies discussed herein),

which are involved in catalytic function and are

structurally analogous across the superfamily, are

identified by analysis of literature, database annota-

tions such as Catalytic Site Atlas49 and SFLD,17,18

and structure conservation. This key residue selec-

tion is the only step of the process that requires

manual intervention and is prior to the beginning of

the TuLIP process. All residues whose center of

geometry lies within 10 Å of the center of geometry

of any key residue are identified [colored ribbons,

Fig. 1(A)]. DASP creates an active site signature for

the functional site by extracting and aligning (in N-

to C-terminal order) the sequence fragments (length

at least three residues) composed of the residues

within the 10 Å sphere [Fig. 1(B)]. Previous work

has shown that these signatures contain all or most

of the functionally relevant features from the active

site.22

For multiple proteins containing related func-

tional sites, the signatures are aligned to create an

ASP [Fig. 1(B); enolase superfamily TuLIP profiles

are provided in Supporting Information File 3]. An

ASP score is then calculated,22 which takes into

account sequence identity and similarity and

includes a negative contribution for gaps. ASP scores

can range from 1.0, for a profile in which all signa-

tures are identical, to 0 and negative numbers for

profiles composed of signatures that are highly dis-

similar or poorly aligned.

DASP and DASP2: tools which utilize ASPs for

searching sequences

ASPs can be used to search sequence databases for

proteins containing sites with features similar to

those in the ASP using DASP (Deacon Active Site

Profiler), first described by Huff et al.24,30 and

described in more detail in the Supporting Informa-

tion of Nelson et al.25 The process is outlined in Fig-

ure 2. Briefly, a profile is broken into each of its

component fragments, the fragments are aligned

into motifs, and a position-specific scoring matrix

(PSSM) is calculated for each motif by iterating over

the columns of the alignment and tallying the

observed counts (the number of occurrences of each

residue) and the pseudocounts (based on the overall

frequency of the amino acid in the background data-

base) in each column. Each motif-specific PSSM is

applied in a sliding window procedure across each

sequence in the database. At each position, a p-value

is calculated for the alignment of the PSSM to that
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protein fragment, which represents the probability

of finding a match as good as the observed match in

a random position of a random sequence. The pro-

tein fragment which exhibits the most significant

p-value is the “best match” to the PSSM. Individual

p-values for the best match of each motif PSSM to a

given protein sequence are combined using

QFAST.50 This combined p-value, the DASP score,

represents the statistical probability of the sequence

containing fragments that exhibit features similar to

those found in the input profile.

DASP scores are calculated for all sequences in

the database (in the work described here, either

sequences of proteins of known structure from the

PDB or all sequences in GenBankNR). Previous

work25 and unpublished data on searches of sequen-

ces in the PDB suggest a trusted DASP score thresh-

old of 1e-10, where searches identify only those

sequences used to construct the profile. A generous

DASP score threshold of 1e-8 includes more family

members related to the profile used for searching,

but also can include a small number of false posi-

tives (<1.3% in previous work). In this work, a

trusted cutoff of 1e-10 was used for PDB searches

and 1e-12 for GenBank searches, in which the num-

ber of false positives is< 0.02%.

The DASP tool is publicly available.26 For much

of the current work we used a modified version,

DASP2, which runs on the Resource for Biocomput-

ing, Visualization, and Informatics’; (RBVI) Linux

cluster at UCSF. This version implements more effi-

cient searching and, thus, a decreased search time.35

Additionally, the PDB and GenBank databases are

updated weekly on the RBVI cluster, so searches are

consistently run on the most up-to-date databases.

Finally, modified amino acids (e.g. selenomethionine)

are labeled as their more common counterpart rath-

er than Xs in the signatures, an important modifica-

tion for some superfamilies (such as the Prxs).

These differences between DASP and DASP2 do not

significantly affect search results, but allow us to

complete multiple searches more efficiently.35

TuLIP: an objective and automatable approach
to functionally relevant clustering

TuLIP is an iterative, divisive clustering process

(Fig. 5) that utilizes active site profiling to separate

the structurally characterized members of a super-

family into clusters based on functional site fea-

tures. Active site profiling identifies features at

protein functional sites (Fig. 1), thus TuLIP-

identified clusters are hypothesized as functionally

relevant clusters.

Key residue identification and active site signa-

ture calculation (using DASP) are input into TuLIP.

In the first step in TuLIP, a pairwise ASP score is

calculated for each pair of functional site signatures

in the group; this complete set of pairwise scores

comprises an all-by-all network in which nodes and

edges represent proteins and pairwise ASP scores,

respectively [Fig. 5(A)]. Starting with an ASP score

of 0.0, the ASP score threshold is iteratively

increased by 0.05, removing edges lower than the

threshold. At each threshold, discrete subnetworks

are identified by clustering using the MCL meth-

od.34 These candidate subnetworks contain proteins

in which the features of their respective functional

sites are more similar within the subnetwork than

to proteins outside of the subnetwork [Fig. 5(A)].

Each candidate subnetwork is evaluated as a vali-

dated cluster using strict or relaxed criteria, as

described subsequently. Following this evaluation,

remaining subnetworks are subject to further clus-

tering by increasing the pairwise ASP score. Subnet-

works are evaluated at each stage, until all proteins

are assigned to a valid cluster or until all remaining

subnetworks consist of only one protein.

This process of stepwise increase in the score

threshold in MCL clustering is completed twice:

strict and relaxed. Subnetworks are evaluated by a

defined set of strict criteria in the first stage [dark

gray background, Fig. 5(B)] and by a set of relaxed

criteria in the second stage [light gray background,

Fig. 5(B)]. At each score threshold, subnetworks are

evaluated for self-identification in a DASP2 search,

as follows. An ASP is created for all proteins within

the subnetwork (Fig. 1). This profile is used to

search the sequences in the PDB using DASP2 (Fig.

2). The distribution of output DASP2 scores is evalu-

ated to determine if it meets the following strict cri-

teria (Fig. 5, dark gray background): (1) all input

proteins are identified at a DASP score more signifi-

cant than 1e-10; (2) no noninput protein is identified

at a DASP score more significant than 1e-10; (3) two

orders of magnitude separate input proteins from

noninput proteins; and (4) minimum cluster size is

three proteins. (Note: all strict criteria are objective

and none require human interpretation.) If the

DASP2 search results using the subnetwork profile

meet these strict criteria, the subnetwork is consid-

ered validated and, thus, functionally relevant [Fig.

5(B), purple parallelogram]; its proteins are removed

from any subsequent iterative clustering. Subnet-

works of only one or two proteins (singlets and dou-

blets) are reserved for the relaxed stage of the

process.

Proteins from subnetworks that do not pass

strict criteria continue to the next iteration. If new,

non-SFLD proteins are identified at a DASP2 search

score more significant than 1e-10 (with all other

strict criteria met) those proteins are added to the

input set (given they are less than 95% identical to

other inputs). In the next iteration, the score thresh-

old is increased by 0.05. If any resulting subnet-

works pass strict criteria, the subnetwork, including

the new proteins, is considered functionally relevant;
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if any resulting subnetworks do not pass strict crite-

ria, the subnetwork remains in the full network and

the new proteins are included in the next clustering

iteration.

When all validated clusters have been identified

by the strict criteria, the remaining proteins not

assigned to a validated or functionally relevant clus-

ter progress through a second stage of iterative clus-

tering. In this second stage, functionally relevant

groups are identified by relaxed criteria [Fig. 5(B),

light gray background]. As in the strict stage, all

pairwise ASP scores between these proteins are cal-

culated to form a complete network and the pairwise

ASP score threshold is iteratively increased by 0.05

and proteins clustered using MCL clustering.34

At each iteration, subnetworks are identified

and their ASPs are created and used in a DASP2

search of PDB sequences. The ASP score distribu-

tions are analyzed for meeting the following relaxed

criteria for self-identification: (1) all input proteins

are identified at a DASP score more significant than

1e-8; (2) no noninput proteins identified at a DASP

score more significant than 1e-12; (3) two orders of

magnitude separate input proteins from noninput

proteins; and (4) minimum subnetwork size is two

proteins. (Note, again, all criteria are objective; none

require human interpretation.) Subnetworks meet-

ing these criteria are considered validated as func-

tionally relevant clusters and are removed from

subsequent iterative clustering [Fig. 5(B), purple

parallelogram].

When the network contains only singlet proteins

[Fig. 5(C), white background], the TuLIP process is

complete [Fig. 5(B), red circle “Done”]. An ASP is

created for each functionally relevant cluster identi-

fied in both strict and relaxed stages and each pro-

file is used to search GenBank.

Profile engineering to produce profiles for the

singlet clusters

Singlets, which cannot be used to create a profile for

a DASP2 GenBank search, are retained for a “profile

engineering” process. In this work, we engineered

profiles for three enolase superfamily families that

contained just one nonredundant structure each:

MLE-anti, NSAR2, and GalD. A modification of the

profile engineering process previously described25

was used. A small number of sequentially similar

proteins are identified for each structure by perform-

ing a BLASTP51 search of GenBank using each sin-

glet protein structure as the query sequence (3DG3,

2P88, and 3FYY, respectively). A procedure was

developed to identify five sequences with high

sequence identity to each query sequence, but

enough diversity to create ASPs useful in a Gen-

Bank search. An initial list of similar sequences is

created from the BLASTP search results in default

order. Proteins with 100% sequence identity are not

used. To create a representative set of related pro-

teins, the first protein listed at each percent identity

down to 80% is added to the set. Sequences with

less than 80% identity are added with no restrictions

until the set contains twenty proteins. To ensure the

profile is not too diverse, no sequences below 60%

identity are included. From this initial set, five

sequences are selected (for the work here, those pro-

teins are 4th, 8th, 12th, 16th, and 20th in list order) to

form the final set of sequences used in the engi-

neered profile. Ideally, this set will contain proteins

with similar functional sites to the query protein but

enough diversity to identify all proteins in the fami-

ly with a GenBank search.

To create the engineered ASP from these pro-

teins, the six sequences (one PDB query sequence

and five sequences selected from the BLASTP

search) were aligned using ClustalW2.52 The active

site signature motifs (at least four residues in

length) were identified from the original PDB struc-

ture [Fig. 1(A,B)]; these motifs were used to extract

the analogous motifs from each sequence in the mul-

tiple sequence alignment. The resulting “engineered

profile” was used to search GenBank.

Evaluation of results of DASP2 search of the
GenBank sequence database

ASPs of 23 TuLIP-identified enolase superfamily

groups, as well as the three engineered profiles,

were utilized to search the GenBank database using

DASP2 (Fig. 2), as described above and previous-

ly.24,25 Search results were evaluated for true posi-

tives by comparison to SFLD, for distinctiveness by

identifying cross-hits (where one sequence is identi-

fied in more than one search), as well as for preci-

sion, recall, F-measure,53 purity, edit distance, VI

distance,54 and performance measures used by

others in evaluation of protein function map-

ping.19,20 Details of each calculation are described in

Supporting Information File 5.

To calculate these measures, we must first

define the “positive” and “negative” sets of known

sequences. The “universe” of sequences were those

sequences in the SFLD-defined enolase superfamily

as of February 18th, 2014, the same day the Gen-

Bank searches were completed. The goal is to dem-

onstrate that the approach can identify molecular

functional details; thus, we rigorously evaluated its

ability to distinguish between members of an indi-

vidual SFLD subgroup or family and all other mem-

bers of the SFLD superfamily. Accordingly, the

“positive” set included those proteins in a given

SFLD subgroup or family, and the “negative” set

was composed of all other sequences in the SFLD-

defined enolase superfamily not part of the subgroup

or family being considered. (Nonsuperfamily sequen-

ces were never identified at DASP score thresholds

evaluated in this study.)
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The evaluation of true positives and false posi-

tives depends explicitly on how TuLIP groups are

mapped to SFLD subgroups and families. TuLIP

produced 23 functionally relevant groups and three

engineered groups. Eight of those identified one

SFLD subgroup or family exclusively and were thus

mapped to that subgroup or family (Table II, peach

cells). Two TuLIP groups mapped uniquely to two

SFLD subgroups or families each (Table II, blue

cells). In these instances, both SFLD groups were

mapped to each TuLIP group; therefore, proteins

from either SFLD groups would count as true posi-

tives. One TuLIP group (Sct20) contained only

OSBS; another (Sct22) included many OSBS and

100% of the NSAR proteins (Table II, yellow cells);

thus, Sct20 was mapped to OSBS and Sct22 was

mapped to NSAR. The SFLD DipepEp family was

mapped to three individual TuLIP groups: Sct31,

Rlx48, and Rlx50 (Table II, purple cells) and Dipe-

pEp was counted as true positive for each of them.

The three engineered groups each mapped uniquely

to the family they represented (Table II, green cells).

Overall, 16 mappings were created using 18 TuLIP

groups; the remaining eight TuLIP groups contained

mostly uncharacterized proteins and were not

mapped to any SFLD subgroups or families.

GenBank sequences identified with a DASP2

search score equal to or more significant than the

threshold were tested. For each sequence, a true

positive was a sequence found both in the SFLD

group and the corresponding TuLIP group. A

sequence in the SFLD subgroup or family, but not

identified by the corresponding TuLIP group (given

the score threshold being considered), was defined

as a false negative. Sequences identified by a TuLIP

group and not in the mapped SFLD subgroup or

family were false positives. Sequences present in the

enolase superfamily, but not in the SFLD group and

not in the corresponding TuLIP group were true

negatives.
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