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Cardiovascular disease is one of the leading causes of morbidity andmortality worldwide,

with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle

modification through dietary changes to influence various risk factors such as obesity,

hypertension and diabetes. The effects of diet on cardiovascular health are complex.

Some dietary components and metabolites directly affect the composition and structure

of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective

properties. HDLs are composed of distinct subpopulations of particles of varying size

and composition that have several dynamic and context-dependent functions. The

identification of potential dietary components that improve HDL functionality is currently

an important research goal. One of the best-studied diets for cardiovascular health

is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains,

legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The

Mediterranean diet, especially when supplemented with extra virgin olive oil rich in

phenolic compounds, has been shown to markedly improve metrics of HDL functionality

and reduce the burden, or even prevent the development of cardiovascular disease.

Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant

positive effects on HDL function. Moreover, supplementation of anthocyanins as well

as antioxidants such as lycopene or the omega−3 fatty acid eicosapentaenoic acid

improve parameters of HDL function. In this review, we aim to highlight recent discoveries

on beneficial dietary patterns as well as nutritional components and their effects on

cardiovascular health, focusing on HDL function.

Keywords: Mediterranean diet, polyphenols, HDL composition, paraoxonase1, cholesterol efflux capacity

INTRODUCTION

Cardiovascular disease (CVD) is one of the leading causes of death worldwide and the numbers are
on the rise. Data obtained in 2018 indicate that CVD is responsible for more deaths than cancer
and chronic lung disease combined (1). Risk factors for CVD comprise age, sex, hypertension,
dyslipidemia, and diabetes. However, the likelihood of developing CVD is also increased by
various health behaviors such as smoking and tobacco use, physical inactivity, obesity, and most
importantly, nutrition. An unhealthy diet, which contributes to disease probability is characterized
by increased consumption of processed foods, unhealthy fats, sodium, and added sugars (2–4).
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In contrast, results of dietary intervention studies suggest
that various foods and healthy dietary patterns, such as the
Mediterranean diet, are associated with a markedly lower risk of
CVD (5).

Atherosclerosis is an inflammatory disease that underlies
a major part of the incidence and mortality of CVD. The
inflammatory state promotes the accumulation of extracellular
lipids or macrophage foam cells in the vessel wall, leading to
atherosclerotic lesions. A poor diet and physical inactivity are
risk factors for the disease, but lifestyle changes can prevent
the development of atherosclerosis, due to several factors, such
as reducing oxidative stress and decreasing the release of pro-
inflammatory cytokines (6, 7).

Based on the close relationship between HDL-cholesterol
(HDL-C) levels and CVD, efforts have long been made to
reduce the risk of the disease by increasing plasma HDL-C
levels (8). However, to this point therapeutics to increase HDL-
C levels have failed, indicating that simply raising the quantity
of HDL-C does not protect from CVD (9, 10). The negative
result of HDL-C raising strategies may be partly explained
by the recently demonstrated U-shaped association between
HDL-C and CVD, with both extreme high- and low HDL-C
concentrations associated with increased mortality, indicating
that plasma levels of HDL-C do not accurately reflect the
atheroprotective potential of HDL (11, 12).

It has to be noted that there is no clear explanation
for the “paradoxical” association of very high HDL-C and
increased mortality. One hypothesis is that in individuals with
extremely high HDL-C, the functional properties of HDL are
altered such that HDL no longer functions normally. Given
the heterogeneity of HDL particles in terms of structure, size,
lipidomic/proteomic composition, and metabolism, steady-state
HDL-C levels suffer from the limitations imposed by their mass-
based and static measurement. As a snapshot of the steady-
state plasma cholesterol levels, HDL-C levels do not provide
direct information on the rate of cholesterol efflux from vascular
macrophages to the liver, which is influenced by many factors
beyond the mass of HDL-C alone. Therefore, circulating HDL-
C concentrations do not provide information about the structure
and composition of HDL and anti-inflammatory, antioxidant,
antithrombotic, and endothelial function-promoting activities
of HDL (13–15), although there is increasing evidence of
the clinical importance of these pleiotropic functions (16).
Therefore, current research strategies focus on improving the
atheroprotective functions of HDL.

Recent studies have shown that several dietary strategies and
various nutritional components can affect levels of HDL-C and
improve/affect some of the atheroprotective functions of HDL.
In this review, we summarize established and novel approaches
found in literature on the effects of several dietary approaches to

Abbreviations: ABCA1, ATP-binding cassette A1; ABCG1, ATP-binding cassette
G1; Apo, apolipoprotein; CETP, cholesteryl-ester transfer protein; CHD, coronary
heart disease; CVD, cardiovascular disease; DHA, docosahexaenoic acid; EPA,
eicosapentaenoic acid; EVOO, extra virgin olive oil; HL, hepatic lipase; LCAT,
lecithin-cholesterol acyltransferase; LPS, lipopolysaccharide; NO, nitric oxide;
PON1, paraoxonase1; SAA, serum amyloid A; S1P, sphingosine-1-phosphate.

influence HDL composition and function, with a particular focus
on nutritional phenolic compounds and the Mediterranean diet.

HDL METABOLISM

The first step in the formation of HDL is the production
and secretion of the major HDL apolipoprotein, apoA-I,
predominantly from the liver and the intestine (Figure 1) (17).
After secretion, lipid-poor apoA-I interacts with ATP-binding
cassette A1 (ABCA1) to acquire cholesterol and phospholipids
from cellular lipid pools, which leads to the formation of nascent
HDL particles. Cholesterol efflux from peripheral cells results
in HDL particles becoming progressively larger and enriched
in cholesterol. The acquired cholesterol on the surface of HDL
is subsequently converted by the enzyme lecithin-cholesterol
acyltransferase (LCAT) into cholesteryl-esters, which form the
core of HDL particles (18). ABCA1 preferentially stimulates
cholesterol efflux to pre-β HDL and small HDL3 particles, while
ATP binding cassette G1 (ABCG1) interacts with large HDL2
particles (19, 20). Further uptake of lipids by HDL occurs via
transfer of surface components of triglyceride-rich lipoproteins,
during lipolysis by lipoprotein lipase (21).

Clearance of HDL cholesteryl-esters can occur via two
different routes. First, the cholesterol content of HDL can be
taken up selectively by scavenger receptor B1 (SR-BI) from
the liver or steroidogenic tissues. Alternatively, cholesteryl-
ester clearance can be mediated by cholesteryl-ester transfer
protein (CETP), which transfers cholesteryl-ester from HDL to
triglyceride-rich lipoproteins, in exchange for triglycerides. The
triglyceride-enriched HDL particles are then more susceptible to
lipolysis and rapidly catabolized by hepatic or endothelial lipase.
Clearance of apoA-I then occurs in the kidney and liver (22). The
interplay of the various apolipoproteins, lipid transfer proteins,
enzymes, and surface receptors result in HDL particles of distinct
sizes and functionality.

HDL STRUCTURE, COMPOSITION, AND
FUNCTION

Of particular interest, certain diets and dietary components affect
HDL composition, especially lipid components, but also the
protein content of HDL can be affected.

HDL particles are very heterogeneous and differ in their
size depending on their site of origin, proteomic and lipidomic
composition and maturation stage. Approximately 70% of
the total protein content of HDL accounts for apoA-I. This
apolipoprotein acts as an activator of LCAT, interacts with
cellular receptors and exerts several antiatherogenic activities
(23). The second major apolipoprotein of HDL is apoA-II with
15–20% of the total protein amount. Othermajor HDL associated
proteins are apoC-II, which serves as an activator of lipoprotein
lipase, whereas apoC-III is an inhibitor. ApoE is a key functional
apolipoprotein as well (24). Most circulating apoE is associated
with triglyceride-rich lipoproteins, where it serves as a ligand for
apoE/apoB receptors and facilitates binding of lipoproteins to cell
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FIGURE 1 | Schematic representation of HDL biosynthesis and maturation. HDL biosynthesis starts with the production and secretion of apolipoprotein A-I (apoA-I)

by the liver and intestine. Lipid-poor apoA-I interacts with ATP-binding cassette A1 (ABCA1) to acquire lipids, resulting in pre-β HDL formation. Through

lecithin-cholesterol-acyl transferase (LCAT), the ingested free cholesterol on the surface of HDL is esterified to cholesteryl-ester forming larger particles. ABCA1

preferentially interacts with pre-β HDL or small HDL3 particles, while ATP binding cassette G1 (ABCG1) stimulates cholesterol transfer to larger HDL2 particles.

Cholesterol is delivered to the liver via scavenger receptor BI (SR-BI) or transferred to very low-density lipoproteins (VLDL) by cholesteryl-ester transfer protein (CETP).

HDL-associated triglycerides and phospholipids are mainly hydrolyzed by endothelial lipase (EL) and hepatic lipase (HL).

surfaces. Other minor apolipoprotein components of HDL are
apoM, apoA-IV, apoF, apoD, apoJ and apoH, apoO, and apoL-I.

Pre-β particles are the structurally simplest form of HDL.
These particles are lipid-poor, monomeric or dimeric apoA-I
molecules and account for about 5% of the apoA-I content in the
circulation (25). Pre-β particles are discoidal in shape and have
a molecular weight of ∼70 kDa. Through their rapid uptake of
cholesterol and phospholipids, pre-β particles are transformed
into larger HDL subgroups. The small HDL3 particles have a
density of 1.125–1.21 g/ml, are rich in proteins and have a
molecular weight of∼175 kDa. The larger size of HDL2 particles
is reflected by their increased lipid content. This subclass has
a density range of 1.063–1.125 g/ml and a molecular weight of
about 350 kDa. In terms of HDL functionality, HDL3 particles
have been proposed as the more anti-atherogenic HDL subclass
in the general population. The smaller and denser particles
display potent cholesterol efflux capacity and possess high
antioxidative and anti-inflammatory activities (15, 26). These
differences in HDL functionality between the subclasses can be
partially explained by their differential proteomic and lipidomic
composition. Several proteins are preferentially present on
HDL3 particles, such as PON1, apoA-II, and apoM (27). ApoM
provides a hydrophobic binding pocket that allows sphingosine-
1-phosphate (S1P) to bind (28), which also has shown higher

abundance on the HDL3 subclass (29). The apoM/S1P complex
exerts several anti-inflammatory and endothelium-protective
activities, which seem to account for at least some of the
antiatherogenic activities of HDL (30). Recent research further
demonstrated that HDL3 produced by the intestine efficiently
sequesters lipopolysaccharide (LPS) and thereby protects against
liver inflammation (31). Enterically derived HDL3 is enriched in
LPS-binding protein and masks LPS from detection by Toll-like
receptor 4 (31).

Due to its influence on oxidative stress and inflammation,
the activity of the HDL-associated enzyme paraoxonase 1
(PON1) has been investigated in several pathological conditions,
including vascular diseases (32, 33), renal disease (34, 35),
diabetes (36–39), and cancer (40). Importantly, it has been
reported that PON1 activity can be modulated by implementing
certain lifestyle habits and dietary patterns, which will be
discussed in more detail.

PON1 has a wide range of substrates that can be hydrolyzed.
PON1 is mainly expressed and secreted into circulation from the
liver, but also to some extent in kidneys and colon (41). Due to
its antioxidative capacity, it has been suggested as an important
player in atheroprotection (42). PON1 is very unstable, therefore
its association with HDL is important to ensure stabilization and
to maintain serum enzyme activity (43, 44). PON1 was originally
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described to hydrolyze organophosphates such as paraoxon, a
metabolite of the pesticide parathion (45). However, more recent
studies have demonstrated that PON1 is further able to hydrolyze
homocysteine thiolactone, which is a known risk factor for CVD
and predictor for CVD mortality (46, 47). Therefore, PON1
is considered to be a protective factor against coronary artery
disease (48). Additionally, purified PON1 protects both HDL
and LDL from oxidative modifications caused by oxidized lipids
(49–51). This ability of PON1, to inactivate the oxidized lipids
was attributed to a specific cysteine residue at position 283.
PON1-knockout mice show a higher susceptibility to endothelial
dysfunction and atherosclerosis (52).

The HDL lipidome is largely composed of phospholipids
(40–60%) and cholesteryl-esters (30–40%), while triglycerides
(5–12%), and free cholesterol (5–10%) account for smaller
proportions. Lipidomic analyses have identified over 200
different lipid species, which, together with the different protein
components, are responsible for the high heterogeneity of HDL
particles (29).The association of HDL subfractions with HDL
function and cardiovascular risk is complex and incompletely
understood. In the general population, smaller HDL particles
have been shown to be more protective, whereas diameter,
cholesterol- and triglyceride- content of very large HDL particles
is associated with CAD risk (53). However, several chronic
diseases are associated with profound alterations in HDL
metabolism and function, caused by increased systemic oxidative
stress and inflammation (12, 54). These conditions include
obesity (55–57), chronic kidney disease (58, 59), liver disease
(60, 61), diabetes (62–64), CVD (65, 66), but also allergic rhinitis
(67) and skin diseases (68, 69). Compositional modifications
and concomitant changes in parameters of HDL function may
lead to development of pro-atherogenic characteristics and
enhancement of the inflammatory state. HDL cholesterol efflux
capacity is significantly influenced by both the concentration and
the functionality of specific HDL particles participating in cell-
cholesterol efflux. CAD patients have higher than normal preβ-
1 concentrations with decreased functionality, and lower than
normal large HDL particle concentrations (70). Concentrations
of small HDL particles are sometimes even inversely correlated
with cholesterol efflux capacity (71). This suggests a block in
maturation of small HDL particles in inflammatory disease
states and a complex interrelationship between the lipid-binding
capacity of apoA-I and the functionality of HDL particles in
disease (72).

HDL-Functionality and Cardiovascular
Health
HDL particles display several biological activities, which are
involved in atheroprotection (Figure 2). The best studied activity
of HDL is the ability to remove excess cholesterol from arterial
wall cells and subsequent delivery to liver and steroidogenic
organs. The first step of reverse cholesterol transport is
commonly referred to as the cholesterol efflux capacity of
HDL. Indeed, it was shown that this function has a strong
inverse association with coronary artery disease, independent
of HDL-C levels (73). Another important antiatherogenic

function of HDL is endothelial protection. Vascular injury or
pro-inflammatory cytokines induce the expression of several
adhesionmolecules on the endothelium, which attract leukocytes
and allow transmigration into the intima. HDL reduces cytokine-
triggered expression of adhesion molecules on endothelium,
thereby inhibiting adhesion of monocytes to endothelial cells and
having a protective effect on endothelium (74–76). This anti-
inflammatory capacity, which can be measured in a cell based
assay, is inversely associated with incidence of cardiovascular
events in the general population (77). Furthermore, HDL is
capable to reduce the expression of chemokines and chemokine
receptors via nuclear factor B and peroxisome proliferator–
activated receptor γ modulation (78). Moreover, HDL has been
identified as an important mediator of endothelial progenitor
cell mediated cell repair (79, 80). Specifically, HDL pre-incubated
endothelial progenitor cells showed improved adhesion to
human coronary artery endothelial cells and up-regulated β2-
integrins, which play a unique role in endothelial progenitor cell
adhesion (80). Moreover, after injection of recombinant HDL
into a mouse model with inflammatory de-endothelialization,
endothelial progenitor cell—mediated repair of the endothelium
was enhanced (81). Furthermore, in patients with coronary artery
disease, a correlation between HDL and circulating endothelial
progenitor cells was observed (80). The vasodilatory activity of
HDL is generally reflected by its ability to induce endothelial
nitric oxide (NO) release, but also prostacyclin production (11,
82–85). HDL mediated activation of endothelial NO synthase is
dependent on AMPK activation, which is in turn dependent on
S1P-receptors and SR-BI (11).

In addition, HDL is thought to act atheroprotective by
reducing oxidative stress. HDL protects other lipoproteins from
oxidative damage by removing oxidized lipids caused by free
radicals. Components of HDL, such as apoA-I or HDL-associated
PON1 are involved in the reduction or hydrolyzation of oxidized
lipids (86–91). Additional protective activities of HDL include
its antithrombotic effects based on several mechanisms, such as
reduced susceptibility of platelets to aggregation and reduced
activation of the coagulation cascade (92). Platelet activation is
prevented by HDL-induced upregulation of endothelial NO and
prostacyclin synthesis (93) and downregulation of thromboxane
A2 synthesis and platelet activating factor release (85).

DIETARY STRATEGIES AND HDL
FUNCTION

Mediterranean Diet
The nutritional strategy known as the Mediterranean diet
is becoming increasingly popular. The Mediterranean diet is
characterized by high intake of extra virgin olive oil (EVOO),
vegetables, nuts, legumes, whole grain products and fish,
moderate consumption of alcohol, typically red wine, and low
intake of red and processed meat, poultry and dairy products
(94). Interest in the diet began in the 1950’s when it was
noted that heart disease was not as common in Mediterranean
countries. Since then, numerous studies have confirmed that
the Mediterranean diet helps to prevent heart disease and
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FIGURE 2 | HDL composition and HDL-mediated protective mechanisms in cardiovascular disease. Apo, apolipoprotein; PON1, paraoxonase1.

stroke (95). Notably, the Mediterranean diet is the only
dietary pattern, which was shown to markedly improve HDL-
functional parameters (Figure 3). The PREDIMED trial was
one of the largest randomized controlled trials to explore the
effects of the Mediterranean diet on cardiovascular disease
prevention (5). In this study, 7,447 high-cardiovascular-risk
patients were enrolled and assigned to one of three different
diets: (1) Mediterranean diet supplemented with nuts, (2)
Mediterranean diet supplemented with EVOO, (3) and a control
diet with reduced fat intake. Lower incidence of cardiovascular
events was observed in both of the groups supplemented
with EVOO and nuts (5). In a random subsample of 296
participants of the PREDIMED trial, Hernáez et al. analyzed
the effect of this diet on HDL functionality (96). After 1-year
intervention, cholesterol efflux capacity of HDL was increased
in both Mediterranean diet groups, compared to baseline levels
(96). The authors suggested that the improvement in efflux
capacity may be explained by increased HDL-related gene
expression, changes in HDL-associated lipids and enhanced
antioxidative capacity of HDL. Further analyses revealed that in
the intervention group supplemented with EVOO, the ability
of HDL to esterify cholesterol significantly increased, while
activity of CETP decreased relative to baseline levels. LCAT
is highly sensitive to oxidative modifications, therefore dietary
consumption of antioxidative compounds may protect against
oxidative inactivation (97). The arylesterase activity of PON1
did not change after the intervention; however, compared to
the low-fat control diet, the activity was increased in the
EVOO supplemented group. In addition, the ability of HDL to
counteract LDL oxidation increased after EVOO intervention
compared to baseline. Concerning compositional parameters of
HDL, the authors found a reduced content of triglycerides after
both Mediterranean diet interventions, compared to the low-fat
control group. Further, the content of HDL surface phospholipids
increased in the EVOO group, when compared to baseline and

the control group. In this study, the dietary intervention had
no effect on apoA-I, apoA-II, and apoC-II content of HDL
(96). Further analyses of HDL functional parameters with the
consumption of several food groups revealed that the decline in
CETP activity was associated with legume and fish consumption
(98). Moreover, EVOO intake and whole grain consumption
was associated with increased cholesterol efflux capacity, while
legume and fish intake was linked to increments of PON1 activity
(98). The effect of EVOO on PON1 activity has been confirmed
in other studies as well (99, 100). In patients with metabolic
syndrome, a 12-week intervention with a Mediterranean diet and
additional exercise markedly improved HDL cholesterol efflux
capacity (101).

A 3 week intervention with polyphenol-rich olive oil
improved cholesterol efflux capacity and increased HDL particle
size compared to the control group receiving polyphenol-poor
olive oil (102). Olive oil polyphenols increased HDL cholesterol
efflux capacity and enhanced the anti-oxidative capacity of
HDL through an increase in the olive oil phenolic compounds,
such as hydroxytyrosol, glucoronate, and homovanillic acid
sulfate. HDL-enrichment with these antioxidative metabolites is
expected to provide protection against oxidative modifications
(103). Olive oil polyphenols further increased HDL size and
promoted a greater HDL stability, reflected by a triglyceride-poor
core related to a more stable conformation of apoA-I and PON1
(99, 102–104).

More recently, the effect of EVOO intake on cholesterol
efflux capacity of HDL in young and elderly study subjects was
investigated. Of particular interest, cholesterol efflux capacity was
lower in the elderly group, but returned to normal levels after
12-week of EVOO intervention (105). In addition, HDL subclass
analyses showed lower levels of large HDL in the elderly group,
which increased again after the intervention. Linear regression
analyses showed a strong correlation of large HDL particles with
cholesterol efflux. The age-related decrease in cholesterol efflux
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FIGURE 3 | Effects of the Mediterranean diet on composition and metrics of HDL function.

capacity was partly explained by the alteration in the distribution
of HDL subclasses, which was modulated after the 12-week
EVOO intervention (105).

Tomatoes are readily consumed as part of a Mediterranean
diet, and a study of 39,000 women found that ingestion of
seven or more servings of tomato-based products per week was
associated with a 30% reduction in relative risk of CVD (106).
The potential cardiovascular benefits of a tomato-rich dietmay be
attributed to their high lycopene content, especially as tomatoes
account for up to 80% of dietary lycopene intake (107). In
one study, HDL functionality was assessed following lycopene
supplementation (70 lycopene/week) by monitoring the activities
of PON1, CETP, LCAT, and serum amyloid A (SAA) content of
HDL (108). After supplementation, lycopene content increased
in HDL, and in parallel, PON1 and LCAT activities increased,
whereas the content of pro-inflammatory HDL-associated SAA
and CETP activity decreased. These results suggest that increased
lycopene intake leads to beneficial changes in HDL metabolism,
structure and function.

Fish or fish oils, rich in omega-3 fatty acids, are consumed
as part of a Mediterranean diet and have been linked to a lower
risk of CVD (109). Eicosapentaenoic acid (EPA) is an omega-3
fatty acid that has been shown to reduce levels of pro-atherogenic
small dense LDL, remnant lipoprotein particles, and C-reactive
protein in metabolic syndrome, presumably due to suppression
of hepatic triglyceride production and degradation of CETP
after supplementation (110). In patients with dyslipidemia,
treatment with EPA (1,800 mg/day) has been shown to improve
HDL function, enhancing HDL cholesterol efflux capacity

and antioxidant and anti-inflammatory activities (111). EPA-
enrichedHDL inhibited cytokine-stimulated endothelial VCAM-
1 expression and increased production of the anti-inflammatory
EPA-derived metabolite resolvin E3 (112). Furthermore, in vitro
studies revealed that EPA inhibits oxidation of HDL in a dose-
dependent manner, which may contribute to the preservation
of the antiatherogenic properties of HDL (113). In contrast,
the omega-3 fatty acid docosahexaenoic acid (DHA −22:6; n-3)
showed an initial antioxidative effect, but this was lost over time.
However, comparison studies of EPA and DHA demonstrated
that these fatty acids have distinct effects on plasma lipids, with
DHA administration being more efficient in raising HDL-C,
particularly the HDL2 subfraction and increasing LDL particle
size (114–116). A recent study analyzed the effects of 8-week EPA
and DHA supplementation on lipoprotein subfractions and HDL
proteome in healthy and normolipidemic participants (117).
The authors revealed that both fatty acids led to a reduction
of VLDL-particle size and VLDL-particle number, suggesting a
reduced hepatic VLDL production (118). Both EPA and DHA
administration led to a reduction in medium sized HDL-particles
and increased large HDL subfraction number. Of particular
interest, proteomic analyses showed that supplementation with
EPA-rich fish oil increased HDL apoM levels and decreased
proteins involved in inflammation (117).

Similar to olive oil, nuts are enriched with mostly
monounsaturated and polyunsaturated fatty acids and contain
many vitamins and phytosterols (119). Especially walnuts are
a rich source of α-linolenic acid and α-linoleic acids and have
been shown to improve plasma lipid levels (120). Moreover,
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acute consumption of walnuts improves HDL cholesterol efflux
capacity, while walnut oil demonstrated beneficial effects on
endothelial function (121). In a randomized controlled trial
of high-risk CVD patients, the effects of three isocaloric diets
were investigated to examine whether the beneficial effects
of walnuts on lipid/lipoprotein levels are attributable to their
fatty acid content (122). Replacement of saturated fatty acids
with unsaturated fats from walnuts or vegetable oils improved
lipid/lipoprotein classes, including LDL-cholesterol, non-HDL
cholesterol, and total cholesterol but did not affect HDL
cholesterol efflux capacity (122).

Another characteristic of the Mediterranean diet is moderate
alcohol consumption, usually at mealtimes and in the form
of red wine. Consumption of alcoholic beverages is associated
with increased plasma levels of HDL-C, phospholipids and
apoA-I and a reduction in CETP activity (123–125). Moreover,
alcohol is a consistent dietary factor that has shown a positive
effect on cholesterol efflux capacity. Moderate intake of alcohol
is associated with increased cholesterol efflux (126, 127), but
also heavy alcohol intake was shown to enhance cholesterol
efflux to HDL2 particles, concomitant with an increase of larger
particles (125). The increased cholesterol efflux capacity might be
due to the increase of HDL-phospholipids observed in alcohol
consumers (128). Interestingly, a study compared the effects
of beer, red wine, and spirituous (Dutch gin) consumption
on cholesterol efflux and plasma cholesterol esterification-
rate. All alcoholic beverages significantly increased cholesterol
efflux, without any differences between groups, while plasma
esterification rate showed a significant increase after beer and
spirituous consumption (126). Of particular interest, 3-week
consumption of these beverages also increased PON1 activity,
which was strongly correlated to increased HDL-C and apoA-
I (129).

Like nuts and olive oil, avocados are a nutrient-rich source of
polyphenols and monounsaturated fatty acids (130). In a study
comparing different cholesterol-lowering diets, supplementation
with 136 g avocado per day for 5 weeks resulted in a reduction
of LDL-C and non-HDL-C compared to baseline (131). In
addition, the avocado diet reduced LDL particle number, small
and dense LDL-C and improved the LDL/HDL ratio (131).
The beneficial effect on LDL-C was greater in the avocado
diet group than in a diet containing moderate fats and oleic
acid oils. These results suggest additional beneficial effects of
avocado consumption.

In conclusion, the Mediterranean effectively prevents
cardiovascular disease, and the improvement of atheroprotective
functions of HDL likely contributes to this. Especially EVOO
consumption has been shown to be a potential therapeutic
option to promote the cholesterol efflux capacity of HDL. In
addition, the antioxidant compounds in EVOO, lycopene, but
also fish-derived omega-3 fatty acids may protect HDL from
oxidative changes, resulting in more stable and functional
particles (103). Moreover, moderate alcohol consumption has a
positive effect on HDL cholesterol efflux capacity and appears to
increase PON-1 activity.

Caloric Restriction and Intermittent Fasting
Reducing calorie intake, without malnutrition, are commonly
implemented lifestyle interventions to lose weight or to improve
general health. Of particular interest, caloric restriction, together
with intermittent fasting, appear to be an effective dietary
intervention to robustly enhance health and reduce age-
associated parameters in several organisms (132). Human studies
on caloric restriction in non-obese participants reported lower
levels of oxidative stress, reduced fasting insulin levels as well
as lower circulating levels of tumor necrosis factor alpha (133–
135). Furthermore, caloric restriction caused a reduction in body
weight as well as an improvement of cardiometabolic health
parameters. Effects of caloric restriction on HDL composition
and function have been investigated in a few small studies. In a
study including 27 diabetic and obese patients, 16-weeks of a low-
calorie diet (450 kcal/day) resulted in increased plasma apoA-I
levels and markedly decreased plasma CETP concentration, but
did not alter cholesterol efflux capacity of HDL (136). Another
study evaluated the long-term effects of caloric restriction on
risk factors of atherosclerosis (137). Eighteen participants who
had been on caloric restriction for an average of 6 years were
compared with 18 age-matched individuals who followed a
typical American diet. In the caloric restriction group, several
risk factors for atherosclerosis were lower, including total
cholesterol, LDL-C, triglycerides and blood pressure, whereas
HDL-C levels were higher (137). Therefore, long-term caloric
restriction appears to be a possible strategy for atherosclerosis
prevention. Of particular interest, another study observed that
caloric restriction (1,200 kcal/day) for 3 months, combined with
physical activity in obese patients with metabolic syndrome
led to a surprising decrease of PON1 protein concentration,
but increased PON1 activity after weight loss (138). However,
in healthy Japanese women, a 2-months intervention of low
calorie diet (1,200 kcal/day) was associated with a decrease
of PON1 activity (139). It has been hypothesized that this
reduction in enzyme activity is an adaptation to reduced LDL-
C and HDL-C levels because of a reduced need for antioxidant
protection of lipoproteins, but this seems a somewhat far-fetched
hypothesis (139). Montefusco et al. studied the effect of a 6-
month hypocaloric diet in patients with metabolic syndrome.
They demonstrated a reduction in pro-inflammatory cytokine
levels and changes in lipoprotein composition, with an increase
in triglycerides and apolipoproteins in HDL (140). Interestingly,
a positive correlation was observed between CETP levels and
cytokine levels, demonstrating a link between lipids and pro-
inflammatory cytokines.

Fasting has been practiced for millennia, but only recently
studies have shed light on its role in adaptive cellular responses
that appear to reduce oxidative damage and inflammation and
optimize energy metabolism (141). Intermittent fasting is defined
as a period of time, usually from 12 h to 3 weeks, with little or no
food intake and abstention from caloric beverages (141).

In a trial of an alternate day fasting regime, with 25% energy
intake on fasting days, the intervention reduced body weight,
decreased triglyceride levels, and increased LDL particle size,
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but did not alter LDL-C and HDL-C levels (142). A short-
term intervention of the same fasting regime in obese subjects,
showed similar results, with decreases in body weight, systolic
blood pressure, triglycerides and LDL-C, while HDL-C remained
unchanged (143). A comparison of alternate day fasting with a
low-fat diet vs. alternate day fasting with high-fat diet in obese
subjects showed a decrease of small LDL particles in both groups,
while levels of HDL-C and HDL particle distribution remained
unchanged (144). In a study of healthy and non-obese subjects,
alternate day fasting for more than 6 months showed improved
cholesterol, LDL-C, and VLDL levels but had no effect on HDL-C
levels (145). Summarized, intermittent fasting appears to have no
direct effect on HDL-C levels, but the possible influences of this
diet on HDL functionality remain to be investigated.

IMPACT OF DIETARY INTAKE OF
POLYPHENOLS ON HDL FUNCTION

Polyphenols are a large heterogenous family of naturally
occurring molecules, which are characterized by the presence
of one or more aromatic rings and attached hydroxyl groups
(146). More than 8,000 phenolic structures have been reported
and most of which are present in plant-based food (146).
Dependent on their chemical structure, polyphenols are classified
into flavonoids and non-flavonoids (147). Flavonoids are the
most numerous of the phenols and are abundant in the
entire plant kingdom (148). In recent years, many studies have
focused on elucidating the biological activity of polyphenols
and polyphenol-enriched foods. While many rodents and
in vitro studies have been conducted, the available evidence
in humans is scarcer. It has been reported that polyphenols
exert effects on modulation or prevention of hypertension (149,
150), cardiovascular disease (151, 152), endothelial dysfunction
(153), and metabolic syndrome (154). Moreover, recent research
has shown that polyphenol intake may also affect HDL
composition and functional parameters, such as PON1 activity
and cholesterol efflux capacity (155). Therefore, it may be worth
considering polyphenols as a dietary supplement to improve
HDL functionality. However, further studies are needed to draw
firm conclusions.

Anthocyanin
One group of polyphenols belonging to the flavonoid family are
anthocyanins, common water-soluble pigments found in flowers
and fruits. Structurally, anthocyanins consist of an anthocyanidin
(aglycone) and glycosidically bound sugars (156). Studies have
reported that these flavonoids possess antioxidative (157) and
anti-microbial activities and also improve the lipid profile of
healthy adults (158). Several studies have also demonstrated a
preventive effect on diseases, such as CVD and diabetes (156).

In recent years, research has also focused on the bioactivity of
this flavonoid subclass in the context of HDL composition and
function. In a study cohort of dyslipidemic subjects, anthocyanin
supplementation (320mg anthocyanin capsules/day) for 12
weeks led to an increase of HDL-C by 13.7% with a
concomitant elevation of cholesterol efflux capacity to serum

(159). Furthermore, anthocyanin supplementation resulted in
a decrease of plasma CETP mass and activity, which explains
the rise in HDL-C (159). Xu et al. showed that anthocyanin
supplementation (80–320 mg/day) improved HDL cholesterol
efflux capacity and HDL-C levels (160). The increase of HDL-
C upon anthocyanin supplementation in hypercholesterolemic
patients has been confirmed in other studies, which also reported
improved endothelium-dependent vasodilatation (161) and
reduced inflammatory response (162). A 24-week consumption
period of anthocyanin increased PON1 activity by 17.4% while
enhancing antioxidative capacity and reducing HDL-associated
lipid hydroperoxides (163). The study further reported an
increase of HDL cholesterol efflux capacity (163). Furthermore,
anthocyanin supplementation in a cohort of diabetic patients
improved dyslipidemia associated with increased HDL-C and
antioxidative capacity of plasma (164). Intake of anthocyanine-
rich blueberries over a 6-month period resulted in increased
HDL-C, as well as HDL particle number and improved vascular
function in overweight and obese subjects (165).

Taken together, the results of these studies appear to provide
an explanation for the association between anthocyanin intake,
increased HDL functionality, and cardioprotection.

Quercetin and Green-Tea Polyphenols
The most frequently occurring compound in the family of
flavonols is quercetin, occuring in sources including onions,
apples, broccoli, bilberries, grapes and green and black tea
(166). Mechanistic in vitro studies on this flavonoid mostly
focused on PON1 and reported an increase of its activity after
treatment of hepatocytes (167). Other in vitro studies showed
that quercetin increased the expression level of SR-BI in HepG2
cells in a concentration- and time-dependent manner (168) and
raises ABCA1 mRNA levels and HDL- and apoA-I-mediated
cholesterol efflux (169). In rodents, the induction of PON1
expression induced by quercetin was confirmed (170, 171).
Feeding quercetin for 4 weeks increased hepatic expression and
serum activity of PON1. In line, the ability of HDL to protect
against oxidation of LDL was increased (170). However, studies
on healthy adults receiving different doses (six capsules with a
total of 50–150 mg/day) of supplementary quercetin for 2 weeks
did not show any change in PON1 activity, which was argued
to be caused by differences in quercetin metabolism between
rodents and humans. The quercetin dosages were selected based
on the 5-, 10, and 15-fold estimated daily intake of quercetin in
Germany (50, 100, and 150mg) (172).

The subclass of flavanols is mainly composed of the
compounds catechin and epicatechin, which are predominantly
found in cocoa, grapes, wine and green tea (173). Administration
of green tea through drinking water over a period of 6
weeks in diabetic rodents improved HDL functionality by
increasing serum PON1 activity and reducing oxidation of apoB-
containing lipoproteins (174). In another study, ApoE-deficient
mice received extra virgin olive oil (EVOO) enriched with green
tea polyphenols for 2 months. A significantly improved PON1
activity and an increase in HDL cholesterol efflux capacity
was observed (175). In patients with end-stage renal disease
supplementation with green tea extract improved PON1 activity
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and reduced expression of pro-inflammatory cytokines after
hemodialysis (176). In a randomized controlled trial with obese
subjects comparing the effects of consuming yerba mate, apple
tea, or green tea, a significant increase in PON1 activity was
found only in the yerba mate group (177). A recent study
in hypercholesterolemic rodents demonstrated that long-term
administration of matcha green tea (dosage equivalent to 7.5
cups of tea for human individual) led to lower HDL-C, decreased
cholesterol efflux capacity as well as reduced cholesteryl-ester
transfer to triglyceride-rich particles. Treatment was associated
with increased vascular stiffness and greater susceptibility to
the development of atherosclerotic lesions (178). Given these
controversial results and the lack of literature on human studies,
further research is needed to draw firm conclusions.

Resveratrol
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) belongs to
polyphenols’ stilbenoids group, possessing two phenol rings
linked to each other by an ethylene bridge. This natural
polyphenol has been detected in more than 70 plant species,
especially in grapes’ skin and seeds, and was found in discrete
amounts in red wines and various human foods. Resveratrol is
known for its antioxidant and anti-inflammatory properties and
for its ability to upregulate endothelial NO synthase (179–181),
but resveratrol also affects the lipid metabolism. Specifically,
resveratrol induced a statin-like inhibition of HMG-CoA
reductase in a hyperlipidemic rodent model, and lowered
cholesterol, triglyceride, apoB, and CETP concentrations,
accompanied by an increase in plasma apoA-I levels (182, 183).
Resveratrol supplementation in apoE-deficient mice revealed
similar results, showing increased levels of HDL-C but also
elevated plasma PON1 activity (184). In addition, treated
animals showed fewer atherosclerotic lesions and less presence
of adhesion molecules in atherosclerotic vessels (184). The
upregulation of PON1 expression upon resveratrol treatment
was further confirmed in vitro (185) and in vivo (186). Oxidized
LDL is present in atherosclerotic lesions, and disease progression
is thought to be decelerated by inhibiting oxidation (187, 188). Of
particular interest, resveratrol prevented LDL from peroxidation
induced by copper- and γ-radiolysis in a dose dependent
manner (189). Resveratrol was suggested to interact with
radicals to form stable or non-radical compounds (190). The
effect of resveratrol on cholesterol homeostasis has also been
demonstrated through its effect on apoA-I-mediated cholesterol
efflux by upregulating ABCA1 (189). Interestingly, cholesterol
uptake by macrophages or endothelial cells was diminished
in the presence of resveratrol. Further experiments showed
that resveratrol protected Cu-induced oxidation of human
HDL3, which was isolated from healthy volunteers, in a dose-
dependent manner and preserved its cholesterol efflux capacity
(189). Interestingly, in a recent study in patients with type 2
diabetes, 8 weeks of resveratrol supplementation (1,000 mg/day)
resulted in increased PON1 activity and decreased serum levels
of asymmetric-dimethylarginine, an inhibitor of endothelial
NO synthase (191). There are several randomized controlled
trials investigating the lipid-lowering effects of resveratrol in
humans, but the results are inconsistent. Some studies reported

a positive effect of resveratrol on lipid levels (192–196), while
others showed no significant impact (197–201). Due to its poor
solubility and bioavailability, application of resveratrol is still
a major challenge for pharmaceutical industry. Further studies
are needed to definitively determine the effect of resveratrol on
metrics of HDL-function.

Curcumin
The polyphenol curcumin, is a well-known and commonly
used spice in Middle Eastern and South African cuisine, whose
bioactive anti-inflammatory, antioxidant and hepato-protective
effects have been investigated in several studies (202–207). Of
particular interest is the effect of curcumin on lipid metabolism
and the resulting protective effect against atherosclerosis
(203, 208). Due to its beneficial properties, curcumin has
been suggested as a potential therapeutic to augment HDL
functionality (209). In vitro experiments examining the effect of
curcumin treatment on macrophages revealed a dose-dependent
increase in cholesterol efflux through increased expression
of ABCA1 and SR-BI mediated by heme oxygenase-1 (210).
Interestingly, in a study of hypercholesterolemic rabbits, 6 weeks
of curcumin treatment resulted in an increase in HDL-C levels,
a decrease in plasma CETP levels, and an increase in antioxidant
activity (211).

In a study investigating the potential effect of curcuma
on the prevention of atherogenesis in healthy subjects, daily
administration of ∼20mg curcumin for a period of 30 days
improved plasma lipid profile (212). Specifically, LDL-C and
apoB levels decreased, while levels of HDL-C and apoA-
I increased. However, in another study of healthy middle-
aged subjects receiving a daily dose of 80mg curcumin,
supplementation had no effect on plasma cholesterol levels but
reduced plasma triglyceride levels (213). Interestingly, this study
revealed an increase in plasma nitric oxide levels, while levels of
the soluble intercellular adhesion molecule were decreased after
the intervention. In contrast to numerous animal studies that
showed a decrease in myeloperoxidase activity after curcumin
administration (214–216), an unexpected increase was observed
in the human study (213). A recently published systematic
review on the effect of nano-curcumin supplementation revealed
an overall increase in HDL-C levels (217). Encapsulation of
curcumin in nanoformulations has been shown to prolong
circulation time and increase its bioavailability and solubility in
several in vitro studies (218–221) and already has been used
in some clinical trials (222–225). However, in summary the
published studies on the potential effects of curcumin on HDL
functionality are still inconsistent and further studies are needed
to draw firm conclusions.

CONCLUSION

We now understand that the protective effects of HDL are
not reflected by the cholesterol content of the particles, so the
quality (composition and functionality) of HDL particles must
be evaluated. These properties include HDLmediated cholesterol
efflux capacity, antioxidant and anti-inflammatory functions, but
also immunmodulating and vasoprotective activities.
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The benefit of HDL-C elevation is unclear given the
conflicting evidence from pharmacological studies on HDL-C
elevation, but an examination of the functional properties
of HDL deserves attention. Dietary strategies and certain
dietary components have been shown to improve HDL
functionality. The strongest evidence for modifying parameters
of HDL function is available for the Mediterranean diet.
This dietary pattern, especially when enriched with EVOO,
has been shown to improve HDL cholesterol efflux capacity,
to increase PON1 activity, and to augment antioxidant
capacity of HDL. Particularly, the phenolic compounds
of EVOO seem to exert these effects on HDL function.
Supplementation of other polyphenols, such as anthocyanins,
but also antioxidants like lycopene and eicosapentaenoic acid

appear to improve HDL functionality, highlighting the need for
additional research.
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