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A B S T R A C T

COVID-19 convalescent plasma (CCP) is widely used as a treatment. Although there are sufficient safety
data, high-level evidence of efficacy is still lacking. We summarize here the results from randomized
controlled trials (RCTs) published to date and analyze their flaws and biases. We then provide suggestions
for the next round of CCP RCTs, discussing specification of CCP, therapeutic dose, timing, control arm,
disease stage, and outcome measures.
© 2020 Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Large observational studies, expanded access programs (EAP),
and emergency use authorizations (FDA, 2020a, b) involving more
than 100,000 recipients to date have conferred a high level of
confidence in the safety of COVID-19 convalescent plasma (CCP)
(Joyner et al., 2020a, b). The efficacy of CCP is currently based on
three main lines of evidence:

1 A 1979 randomized control trial (RCT) demonstrating efficacy of
CCP in 188 patients with Argentine hemorrhagic fever, where a
case fatality rate of 16.5% was observed in patients treated with
normal plasma versus 1.1% in those treated with immune plasma
(Maiztegui et al., 1979);

2 Efficacy data from animal models (Imai et al., 2020; Sun et al.,
2020); and

3 Results of case series, the largest of which is, without doubt, the
US EAP: among patients younger than 80 who were treated
within 72 h of diagnosis, there was reduced 7-day mortality
correlated with higher neutralizing antibody (nAb) titers (Joyner
et al., 2020a, b).

Nevertheless, to date there is no definitive proof of efficacy for
any passive (polyclonal or monoclonal) antibody treatment against
any respiratory pathogen (Mair-Jenkins et al., 2015; Subbarao et al.,
2020). The yardstick for the assessment of therapeutic efficacy is
the RCT, and in the setting of COVID-19 the five RCTs of CCP
reported to date have produced inconclusive or negative results
(Table 1), potentially due to lack of nAb titer assessment in donated

units and/or late treatment. More encouraging findings have been
reported from retrospective (Liu et al., 2020) or prospective
(Salazar et al., 2020a, b) propensity-score-matched studies run in
the US (again relying on CCP units not assessed for nAb titer), but
the strength of evidence from this type of studies is lower than that
from RCTs.

This body of data, however, has provided some useful pointers
that are now used in the second round of RCTs, e.g., C3PO
(NCT04355767), CONTAIN COVID-19 (NCT04364737), and PassI-
tOnII (NCT04362176) in USA, TSUNAMI in Italy (NCT04393727),
and RECOVERY in UK (NCT04381936).

We propose here a focus on the following parameters to further
improve the design of the next round of RCTs, potentially leading to
a more rigorous assessment of efficacy:

1 Specification of the CCP. Since a nAb dose–response relationship
has been proven for CCP (Joyner et al., 2020a), the amount of the
putative active entity (the nAb) requires quantification and
should be available at a level that, as informed by data from the
previous observations and RCTs, is thought sufficient for a
therapeutic effect. In SARS, 5 mL/kg of plasma at a titer �1:160
was utilized (Cheng et al., 2005). Such titer needs to be specified
through the viral neutralization assay (VNT), thus obviating any
bias from the use of diverse surrogate tests having poor
correlation with the VNT (Focosi et al., 2020a, b, c). Additionally,
given the fast-declining kinetics of nAb titers, the VNT should be
assessed on each donated unit in the case of repeated donations,
rather than assuming the same value across multiple donations.
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independently of nAb titer or recipient body weight. Specifying
the CCP with nAb titer should lead to the amount of nAb being
adjusted for body viral load. Because the latter is difficult to
estimate on the basis of viral loads in nasopharyngeal swabs, and
viremia mostly occurs in severe patients only, body weight is the
usual surrogate for body viral load. Based on largely arbitrary
assumptions, Bloch et al. (2020) estimated that 250 ml of CCP
with a titer �1:160 could be successful at neutralizing a viral
infection for an average 80-kg adult. More precise mathematical
models (as formerly developed for HCV (Neumann et al., 1998))
to estimate viral replication and nAb bioavailability in tissues
where virus and host interact are necessary, eventually moving
from stoichiometry between nAb titer and viral load in the in
vitro setting of the VNT.

 Timing. Whenever multiple doses are needed, most protocols
suggest transfusion of 200–300-ml units 12–24 h apart.
Whatever the actual therapeutic dose will be, the rationale
for this timing is largely unknown given the small cumulative
volume and hence the low risk for transfusion-associated
circulatory overload (Joyner et al., 2020a, b). In addition to
posing logistical hurdles for thawed plasma in terms of storage
and regulatory approval, differences in timing are likely to affect
the pharmacokinetics of nAb.

 Control arm. This is currently largely based on no addition to
standard of care or addition of normal saline (which cannot be
double-blinded). We currently assume that the therapeutic
benefit of CCP stems solely from the content of nAb to SARS-
CoV-2. Although this may be a reasonable posture for purified
hyperimmune immunoglobulin (IgG), unfractionated CCP
contains many additional ingredients that together provide
antiviral natural (e.g., isohemagglutinins (Focosi, 2020) or
cross-reacting antibodies from previous respiratory betacor-
onavirus infections (Díez et al., 2020)) or anti-thrombotic
activity (e.g., antithrombin-III (Gazzaruso et al., 2020)).
Conversely, other components may provide pathologic effects
(e.g., coagulation factors may exacerbate COVID-19-associated
coagulopathy (Iba et al., 2020)). Hence the control should
ideally consist of similarly processed plasma for transfusion
from COVID-19-nonconvalescent donors, in similar volumes
and with equivalent levels of possible biologically active
proteins. This option would exclude using pharmaceutical-
grade plasma as a control, which, although more standardized,

authors suggesting an optimal window as short as 44 h post-
hospitalization for transfusing CCP (Salazar et al., 2020a, b). It is
a well-known phenomenon that nAb titer correlates with the
severity of symptoms in COVID-19 patients (Focosi et al., 2020a,
b, c) and preliminary reports suggested that CCP was only
effective in early stage disease (Focosi et al., 2020a, b, c), thus
trials targeting late treatment in severe patients are unlikely to
produce useful insights. Limiting RCTs to early stage disease,
despite the limitations imposed on the modality, should allow a
higher probability of success.

6 Outcome. The primary endpoint for any RCT should be the WHO
ordinal scale for clinical improvement (WHO, 2020), supple-
mented by secondary end points such as virological clearance of
nasopharyngeal or respiratory samples, blood, urine, or stool;
admission to critical care unit; need for supplemental oxygen,
mechanical ventilation/oxygenation, or ECLS; need for intrave-
nous vasoactive medications; need for renal replacement
therapy; death in critical care unit, death in hospital, and vital
status (death) at 28 days; hospital-free days; ICU-free; and
biological and immunological markers of illness. Sample power
estimation should consider comorbidities as relevant stratifiers
to be accounted for.

Other variables may be investigated, including antibody
isotyping and IgG subclasses (Focosi et al., 2020a, b, c), but the
abovementioned six points deserve major attention. Pathogen
reduction technologies cause a decline of nAb titers which varies
according to the platform used (Kostin et al., 2020) and can be
missed if using surrogate tests (Tonn et al., 2020). In contrast, type
of collection (apheresis vs recovered plasma) or storage tempera-
ture (Stadlbauer et al., 2020) do not affect nAb content.

Finalizing the intended recruitment of a given RCT is also a
concern for a pandemic progressing with unpredictable trajectory.
An alternative to localized recruitment is prospective, real-time
pooling of worldwide data from individual RCTs of CCP in COVID-19
under a shared regulatory and statistical framework, which has
been recently set up (http://nyulmc.org/compile) (Petkova et al.,
2020). A similar initiative could stem from continental registries
such as the European Union CCP Platform (https://www.euccp.
dataplatform.tech.ec.europa.eu/).

Therapists may need to recognize the limitations posed by
possible resistance from treaters and patients to the implications

able 1
andomized controlled trials (RCTs) of COVID-19 convalescent plasma (CCP) reported to date. DOS, duration of symptoms; nAb, neutralizing antibodies.

RCT identifier Country Recruitment (out of
expected)

Median DOS
(days)

Median nAb in CCP units
(in recipients)

Outcome Ref

ChiCTR2000029757 China 103 (out of 200) 30 Not assessed Benefit at day 28 only in noncritical
patients

Li et al. (2020)

NCT04342182
(ConCOVID)

Netherlands 86 (out of 426) 30 1:160 (same as in
recipients)

No benefit at day 15 Gharbharan et al.
(2020)

CTRI/2020/04/024775
(PLACID)

India 464 6 1:40 (1:90 in recipients) No benefit at day 28 Agarwal et al.
(2020)

NCT04345523 (ConPlas-
19)

Spain 81 (out of 278) 8 1:292 Reduction in mechanical ventilation and
mortality at day 30

Avendano-Sola
et al. (2020)

NCT04375098 Chile 58 <7 �1:160 No benefit at day 30 Balcells et al.
(2020)

IRCT20200325046860N1 Iran 189 <7 Not assessed Shorter hospitalization, less need for
mechanical ventilation

Abolghasemi et al.
(2020)
differs from fresh frozen apheresis plasma in terms of clotting
factor levels.

 Disease stage at the time of treatment. This should be assessed
using the WHO ordinal scale. The data available suggest that late
stage disease (ICU admission/ventilator support) is unlikely to
respond to CCP therapy (Agarwal et al., 2020), with several
24
of randomization (Ledford, 2020) and accordingly tailor their
expectations and designs. We must accept that the aim of
treatment, particularly in the current phase of limited therapeutic
options for COVID-19 disease, should be amelioration of patients’
condition. If this can be achieved within the full framework of
evidence-based medicine, this is preferable.
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