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Gastric cancer (GC) is usually diagnosed in an advanced stage at the first visit due to the atypical clinical symptoms. The low
surgical resection rate and chemotherapy sensitivity result in dismal survival. Therefore, it is urgent to develop novel biomarkers
with high sensitivity and specificity to accurately assess the prognosis of GC patients. In the present study, 3385 differentially
expressed genes (DEGs) were obtained from the single-cell RNA sequencing data of GC specimens. Using the unsupervised
dimensionality reduction, we further found 3 subsets of cells including gastric cells, plasmacytoid dendritic cells, and memory
T cells. Based on the cell clustering, we explored the key regulatory genes for GC progression by pseudo-time analysis and
functional enrichment analysis. According to the results, the significant differentially expressed fatty acid-binding protein 1
(FABP1) verified by pseudo-time analysis was identified as the hub gene of GC progression. FABP1 was shown to be closely related
to the long-term survival and the age at diagnosis of patients with GC in analysis based on the TCGA (The Cancer Genome Atlas)
database. To further verify the role of FABP1 in GC, we performed immunohistochemical (IHC) analysis using the GC tissue
microarray and found that the expression level of FABP1 was higher in GC tissues than in the adjacent tissues. Moreover, GC
patients with higher expression of FABP1 had a worse clinical outcome. In summary, our study revealed that FABP1 is a potential
effective biomarker for the prognosis of GC, and high expression of FABP1 predicts unsatisfactory survival.

1. Introduction

Gastric cancer (GC) is one of the most common gastroin-
testinal cancers in the world, with the second-highest mortality
rate [1]. Global GC incidence varies widely, with the highest
incidence in East Asia [1]. The current treatment strategies for
GC are mainly surgery, chemotherapy, radio-chemotherapy,
and targeted therapy. However, chemotherapy resistance and
high postoperative cancer recurrence rate usually lead to
cancer-related death [2, 3]. Therefore, it is critical to study the
molecular mechanisms of gastric cancer progress and to
identify novel biomarkers for early gastric cancer.

Recently, single-cell RNA sequencing (scRNA-seq)
technology has made significant progress and is widely used
in the study of various cancers [4]. This approach is crucial
for the discovery, identification, and validation of new
biomarkers. Individualized clinical treatment will also be the
goal of scRNA-seq technology [5].

Fatty acid-binding proteins (FABPs) are a group of
highly conserved cytoplasmic proteins with a low molecular
weight [6]. As lipid chaperones, FABPs mainly solubilize
fatty acids, which are involved in intracellular metabolism
and other signaling processes [7]. At present, more than nine
kinds of FABPs have been identified. The human FABP1
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gene was first found in the liver, located on chromosome 2,
encoding a protein of 127 amino acids (aa). FABP1 protein
has a classical 8 structural fold and two short alpha-helices
[8-10]. FABP1 has multiple functions, such as a protective
agent against oxidative stress, and is involved in the regu-
lation of adipogenesis and lipid metabolism [11]. In addi-
tion, FABP1 is associated with various diseases such as liver
fibrosis, nonalcoholic steatohepatitis, acute kidney injury,
renal ischemia/reperfusion injury, type I diabetes, and type
II diabetes [12]. Studies have shown that the expression level
of FABPI is closely related to the occurrence and pro-
gression of various tumors. FABP1 is found highly expressed
in Barrett’s esophagus [13]. The expression of FABP1 is also
positively correlated with the incidence of pancreatic cancer,
especially the diabetes-related pancreatic cancer [14]. FABP1
has also been found to be downregulated in cancers. Low
expression of FABP1 was found in the early-stage colorectal
cancer and 93% of microsatellite unstable colorectal cancers
[15, 16].

In this study, we analyzed the single-cell sequencing data
of gastric cancer and found that FABP1 was one of the most
significant differentially expressed genes (DEGs) in GC
tissues. FABP1 was identified as the hub gene in GC pro-
gression. The TCGA analysis also showed that FABP1 was
closely related to the prognosis of GC patients. The IHC
analysis based on GC tissue microarray further verified that
FABP1 was highly expressed in GC tissues, confirming that
GC patients with higher expression of FABP1 have a lower
long-term survival rate. Therefore, we proposed that FABP1
is a promising biomarker for GC.

2. Methods

2.1. Data Acquisition and Preprocessing. After searching
through the Gene Expression Omnibus (GEO, http://ncbi.
nlm.nih.gov/geo/) database [17], we downloaded the reads
per kilo base per million mapped reads (RPKM) scRNA-seq
data from the GSE134520 [18]. The data were constructed by
thirteen gastric antral mucosa biopsies with the pathologic
diagnosis including nonatrophic gastritis (NAG), chronic
atrophic gastritis (CAG), intestinal metaplasia [17], or early
gastric cancer (EGC). These data also match the platform
annotation of GPL20795 HiSeq X Ten (Homo sapiens) [18].
The study flow chart is shown in Figure 1.

During data preprocessing, we read the original ex-
pression values by the Seurat function, and the number of
genes and the Unique Molecular Identifiers (UMIs), rep-
resenting the non-normalized expressional values within a
cell, were automatically calculated [19, 20]. The sum of the
percentages for mitochondrial was calculated with the cri-
terion of filtration of 5%. Here, cells with expressed genes
<100 and genes expressed in <3 cells were removed from the
dataset. The LogNormalize algorithm was used to normalize
the original data, and the FindVariableGenes algorithm was
used to find the variable features [19, 20].

In addition, based on the orthogonal transformation
algorithm, the principal component analysis (PCA) analysis
was applied to the dimension reduction process of scRNA-
seq data to highlight data features in lower dimensions [21].
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FiGURE 1: The study flow chart.

After selecting the key components, the important dedicator
contributing to data differentiation, the tSNE method was
selected to detect the cell subtypes with the data resolution of
1.0(3, 4). For the patterns of the gene expression matrix of a
cell corresponding to different cell subtypes, we selected the
SingleR and scCATCH methods to identify the cell subtypes
[19, 20, 22].

2.2. Differential Gene Analysis. The FindAllMarkers func-
tion is a frequently used method to detect the differentially
expressed genes (DEGs), based on the Wilcox analysis, with
the criterion of log |fold changes (FC)| over 0.25 and P < 0.05
after FDR correction [19].

2.3. Analysis of Biological Functions of Differential Genes.
Using the clusterProfiler package and MetaScape database
(http://metascape.org/gp/index.html#/main/stepl), we fur-
ther analyzed the Gene Ontology (GO) [23] and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment, respectively [24]. The MetaScape database is an
international authoritative functional database of gene an-
notation, visualization, and integrated exploration, facili-
tating the integration of genetic pathways and functional
enrichment. A P-value <0.05 was considered statistically
significant in our GO function and KEGG pathway analysis.

2.4. Pseudo-Time Analysis and Pseudo-Time DEG Analysis.
Many of the cellular states of the various cell fate processes
are not perfectly synchronized, some cells are at the be-
ginning of a particular process, while others are already at
the completion of that process, which is also known as


http://ncbi.nlm.nih.gov/geo/
http://ncbi.nlm.nih.gov/geo/
http://metascape.org/gp/index.html#/main/step1

Journal of Oncology

“asynchronous.” Based on the Monocle reverse embedding
graph algorithm, we quantified the transformation under
different cell states and the transcription state of the cor-
responding gene set and form a trajectory by sorting these
cells according to this transcriptional process, thus tracking
the process change function that accompanies the trajectory,
called pseudo-time analysis. Pseudo-time is an abstract unit
of differentiation, which is only a distance from the cell to the
start of the trajectory, measured along the shortest path. By
estimating SizeFactors algorithm, we evaluated the gene
expression range of each cell and used it for subsequent
normalization and calculation of gene variance. Differential
GeneTest algorithm is used to calculate the differential core
regulatory genes in pseudo-time analysis, and B-H correc-
tion P value <0.01 is considered to be pseudo-time DEGs.

2.5. Analysis of Protein Interaction Networks Based on DEGs.
After deriving the DEGs of the hub pathway, we performed
the core expression analysis in a volcano map based on the
average Log |FC| and Negative Logl0 (adjusted P value).
Subsequently, the hub tagged target proteins were calculated
based on the COMPPI database (http://comppi.linkgroup.
hu/) [25]. The COMMPI platform was used to integrate the
subcellular localizations, protein-protein interactions, and
scores of localizations and interactions, with the locations of
cytosol, mitochondrion, nucleus, extracellular secretory
pathway, and membrane.

2.6. Functional Enrichment and Prognosis Analysis of Hub
Genes. We used the ToppGene database (https://toppgene.
cchmc.org/) to annotate and visualize the hub marker’s
functional enrichment based on Gene Ontology [23] and
pathways [26]. The terms with P <0.05 were significantly
enriched. To gain further insight into the hub gene ex-
pression and its association with prognosis, we applied a
friendly online web tool Wanderer (http://maplab.imppc.
org/wanderer/) to identify the important clinical features
correlated with transcriptional expression. Additionally, the
SurvExpress (http://bioinformatica.mty.itesm.mx:8080/
Biomatec/SurvivaX.jsp) online database was applied to
validate the prognostic relationship among the FABP1 ex-
pressions [23]. Besides, the statistical difference was con-
sidered with the P value <0.05.

2.7. Immunohistochemical Analysis and Statistical Analysis.
Gastric cancer tissue microarray (TMA, HStmA180Sul9)
was obtained from Shanghai Outdo Biotech, including 94
cases of gastric cancer tissues and 86 cases of adjacent tissues;
with complete case data and follow-up information, more
detailed sample information and clinical features of colo-
rectal cancer are shown in Table 1. The IHC assays and THC
scores were performed with a previously described protocol
[27], and the antibodies against FABP1 were purchased from
Abcam (MA, US, ab171739). The statistical analysis was
conducted by the GraphPad Prism software 8.0 (GraphPad
Software, Inc., San Diego, CA, USA). Data are represented as
means + standard deviations. The expression level of FABP1

in gastric cancer tissues and adjacent tissues was analyzed by
Student’s ¢-test, the Chi-square test was used for the analysis
of clinicopathological features, and the Kaplan-Meier
method and the log-rank test were used for survival analysis.
P <0.05 was considered statistically significant.

3. Results

3.1. Differential Gene Expression Analysis. Using the ana-
lytical methods described in Methods, we filtered out cells
with unique feature counts over 4000 or less than 200. The
sum of 3385 variable features expressed in 4110 early gastric
cancer (EGC) cells was subjected to scRNA-seq background
correction, normalization, and differentially expressed (DE)
analysis (Figures 2(a) and 2(b)). A total of 15 PCs were found
to simultaneously meet the selection criteria of the contri-
bution degree model and PCA analysis (Figures 2(c) and
2(d)).

3.2. tSNE Cell Subtype Detection. After annotation and
identification, we detected the gastric cells, plasmacytoid
dendritic cells, and memory T cells. The corresponding top
DEGs expression profile is presented in Figure 3(b). The
expression levels of the top 8 hub genes in the corresponding
cell clusters are shown in Figure 3(c).

3.3. Biological Function Analysis of Differential Genes.
After selecting the appropriate cellular principal compo-
nents (Figure 4(a)), we performed a pseudo-time analysis
based on the monocle algorithm with the data reduction by
the DDtree method (Figures 4(b) and 4(c)). In addition, we
further analyzed the most significant GO functions and
KEGG pathways of DEGs by the pseudo-time analysis. The
significant GO functions mainly involved three main as-
pects: biological processes (BP), cellular components (CC),
and molecular functions (MF). In terms of BP-related
functions, the DEGs were mainly associated with protein
targeting (enriched genes =68, P value = 3.85E-36), the es-
tablishment of protein localization to the membrane
(enriched genes=62, P value=2.78E-26), and neutrophil
degranulation (enriched genes = 58, P value = 4.01E-22). For
CC functions, the DEGs are closely related to an adherent
junction (enriched genes=48, P value=1.05E-10), cell-
substrate junction (enriched genes = 43, P value = 1.85E-10),
and focal adhesion (enriched genes=38, P value=2.23E-
10). In terms of MF, DEGs are mainly associated with cell
adhesion molecule binding (enriched genes=51, P val-
ue = 5.12E-06), structural constituent of ribosome (enriched
genes =42, P value=4.87E-06), and enzyme inhibitor ac-
tivity (enriched genes=28, P value =2.91E-05). Visualiza-
tion of the GO functions occupied by DEGs is shown in
Figure 4(d). In terms of their KEGG pathways, the DEGs
were significantly correlated with oxidative phosphorylation
(enriched genes = 45, P value = 3.21E-12), protein processing
in the endoplasmic reticulum (enriched genes=38, P val-
ue =2.75E-10), and TNF signaling pathway (enriched gen-
es =31, P value = 1.85E-09). The KEGG pathway enrichment
results are shown in Figure 4(e).
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TaBLE 1: Correlation of the expression of FABP1 in gastric cancer with clinicopathologic features.
FABP1
Characteristics No. of patients . . . P value
Low expression, n (%) High expression, n (%)

Overall 94 35 (37.2) 59 (62.8)

Age 0.110
<60 years, n (%) 25 (26.6) 19 (76.0) 6 (24.0)
>60 years, n (%) 69 (73.4) 40 (58.0) 29 (42.0)

Gender 0.385
Female 59 (62.8) 39 (66.1) 20 (33.9)
Male 35 (37.2) 20 (57.1) 15 (42.9)

Tumor size 0.565
<5.0cm 33 (35.1) 22 (66.7) 11 (33.3)
>5.0cm 61 (64.9) 37 (60.7) 24 (39.3)

Primary tumor location 0.770
Gastric cardial + body 60 (63.8) 37 (61.7) 23 (38.3)
Gastric antral 34 (36.2) 22 (64.7) 12 (35.3)

Pathological type 0.534
Adenocarcinoma 78 (83.0) 50 (64.1) 28 (35.9)
Mucinous + signet-ring cell carcinoma 16 (17.0) 9 (56.3) 7 (43.7)

Lymph node metastasis 0.684
Negative 72 (76.6) 46 (63.9) 26 (36)
Positive 22 (23.4) 13 (59.1) 9 (40.9)

TNM stage 0.370
I+11 35 (37.2) 24 (68.6) 11 (31.4)
I+ 1V 59 (62.8) 35 (59.3) 24 (40.7)

HER2 0.668
Positive 6 (6.4) 5 (83.3) 1 (16.7)
Negative 88 (93.6) 54 (61.4) 34 (38.6)

3.4. Hub Marker Detection and COMPPI Network Analysis.
The volcano map in Figure 4(f) shows the average fold
changes in the expression of the marker and adjusted P value
(the fold change value is mainly based on ComPPI to analyze
the interaction regulation of target proteins at the subcellular
level to explore the possible regulation or interaction pro-
teins at the levels of the nucleus, cytoplasm, mitochondria,
and cell membrane). Using the COMPPI database and
Cytoscape software, network diagrams were generated and
FABPI1 targeted genes in the network were screened based
on the differential cellular locations of correlated connec-
tivity. In this part, we targeted the FABP1, and thus, 7
correlated proteins, located in the cytosol, mitochondrion,
nucleus, extracellular secretory pathway, and membrane,
were intercepted to construct the PPI network in Figure 4(g).

In Figure 5(a), results indicated that the biological
functions of FABP1 were significantly correlated with
hormone-sensitive lipase (HSL)-mediated triacylglycerol
hydrolysis (P value = 0.0032), fat digestion and absorption (P
value=0.0047), and mechanism of gene regulation by
peroxisome proliferators via PPAR-alpha (P value = 0.0051).

3.5. Survival Analysis. Figure 5(b) shows that the expression
of FABPI had a significant influence on the overall survival
(OS) of STAD patients (P value = 0.046) in the SurvExpress
database. Besides, the expression level of FABP1 was also
correlated with age at initial pathologic diagnosis (P <0.05
and R=0.31) and OS (P<0.05 and R=0.44) in the Wan-
derer database (Figure 5(c)).

3.6. Upregulation of FABPI in GC and Its Correlation with
Poor Prognosis. To further investigate the expression of
FABP1 in GC tissues and its relationship with the prognosis
of GC patients, we analyzed the expression of FABP1 in GC
tissue microarray by IHC. The results showed that the ex-
pression level of FABP1 in GC tissues was higher than that in
the noncancer tissues (Figures 6(a) and 6(b)), and the high
expression rate of FABP1 in gastric cancer tissues was higher
than that in noncancer tissues (Figure 6(c)). However, the
expression of FABP1 was not significantly correlated with
clinical-pathological features such as age, gender, tumor size,
histopathological type, lymph node positive, TNM stage, and
HER?2 positive (Figure 6(d) and Table 1). More importantly,
Kaplan-Meier analysis indicated that upregulation of
FABP1 was consistently correlated with a worse prognosis
(Figure 6(d)), suggesting a tumor promotion role and
prognostic value of FABP1 in GC.

4. Discussion

Studies have shown that about 70% of GC patients have
already developed liver and peritoneal metastasis at their
first visit [28]. As a result, improving the early diagnosis rate
of GC is critical to promoting the survival rate of GC pa-
tients. Most GC patients are failed to accept medical ex-
aminations in time due to the atypical symptoms. The
popularization and promotion of GC screening methods are
particularly important. Currently, the diagnostic methods of
GC are mainly endoscopy, imaging examination, and serum
markers. However, many patients cannot accept the
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F1GURE 2: The single-cell transcriptome (scRNA) analysis of early gastric cancer (EGC). (a) The principal component analysis (PCA) results
suggested that cells of EGC have consistency in subsequent analysis. (b) The variable feature plot showed the variable regulators in EGC
development. (c, d) The Jack-Straw and Elbow plots were applied to select the best cell components in scRNA analysis.

endoscopy because it is an invasive examination. In addition,
the lack of skills and experience of endoscopists and pa-
thologists lead to the early missed diagnosis. It is also dif-
ficult to detect small lesions by imaging examination, and the
disease may be already in an advanced stage when positive
symptoms are detected. Nowadays, the serum markers used
for the diagnosis of GC are mainly CEA, CA 19-9, and
CA72-4. However, these serum markers are not or less
expressed in some GC, leading to false negatives and early
misdiagnosis of GC. Therefore, it is important to explore and
develop new biomarkers with high sensitivity and specificity
for the early diagnosis of GC.

Recently, as an emerging sequencing technology, single-
cell RNA sequencing can further explore the heterogeneity
of malignant tumors, tumor evolution, clinical diagnosis,
and treatment at different omics levels of single cells [29].
The key regulatory factors of various tumor cells have been
identified using single-cell RNA sequencing technology,
including factors in the immune microenvironment, drug
resistance, and metastasis. Some researchers conducted
single-cell RNA sequencing analysis of human liver cancer
T cells and found that there are many dysfunctional CD8"
T cells and regulatory T cells in tumor tissue. By analyzing
the DEGs of the two types of cells, they found that the gene
Layilin can inhibit the killing function of CD8" T cells and
may become a potential target for liver cancer immuno-
therapy [30]. In esophageal cancer cell lines resistant to
paclitaxel, single-cell RNA sequencing results showed that
proteasome genes and HIF-1 signaling genes were associated
with acquired paclitaxel resistance in esophageal cancer cells
[31]. In a colorectal cancer study, single-cell RNA se-
quencing analysis was performed, respectively, on the pri-
mary, metastatic, and circulating tumor cells of the
metastatic colorectal cancer. Results showed that circulating
tumor cells have not only the same mutated driver genes
(such as APC, KRAS, or PIK3CA) with the primary and
metastatic lesions but also new variant genes [32].

In this study, we analyzed the single-cell RNA se-
quencing data of GC. Firstly, we analyzed 3385 variable cell
features expressed by 4110 EGC cells. After annotation and
identification, we detected gastric cells, plasmacytoid

dendritic cells, and memory T cells. Expression levels of the
top 8 (OLFM4, TFF3, TTR, CHGA, SRGN, CCL5, KRT?7,
and FABP1) hub genes of the corresponding cell clusters
were also identified. In addition, using the pseudo-time
analysis, we further analyzed the most significant GO
functions and KEGG pathways of DEGs, revealing the
regulatory effects of DEGs on the biological function of GC
according to biological processes, cellular components, and
molecular functions, as well as the closed relationship be-
tween the DEGs and oxidative phosphorylation, endoplas-
mic reticulum protein processing, and TNF signaling
pathways. Moreover, we identified the significant DEG-
FABP1 and found that FABP1 may regulate the PPAR
signaling pathway, hormone-sensitive lipase (HSL)-medi-
ated triacylglycerol hydrolysis, fat digestion, and absorption
in gastric cancer progression. Survival analysis showed that
higher FABP1 expression predicts a lower survival rate in
GC patients. The expression of FABP1 is also correlated with
the age of patients at initial pathological diagnosis. Single-
cell RNA sequencing can obtain genomic and transcriptome
information of cancer center cells, pericancerous cells, and
distant metastasis cancer cells, so as to find effective ther-
apeutic targets for cancer. For our analysis, we found the
abnormal expression of FABP1 in early gastric cancer tissues
by analyzing the data of single-cell RNA sequencing, which
plays a very important role in the treatment of gastric cancer.
In recent years, a number of studies have reported the use of
single-cell RNA sequencing to find treatment for gastric
cancer. Immune cells and stromal cells were found to exhibit
cellular heterogeneity in tissues with distant metastases from
gastric cancer, and genes regulating CD8+ cell depletion
were screened [33]. Both inflammatory cancer-associated
fibroblasts and extracellular matrix cancer-associated fi-
broblasts can mobilize surrounding immune cells to build a
microenvironment conducive to the growth of gastric cancer
cells [34]. These results obtained by single-cell RNA se-
quencing undoubtedly can provide new ideas for the
treatment of gastric cancer.

FABP1 is a low-molecular-weight protein composed of
127 amino acids. As a lipid chaperone, each FABP1 molecule
can bind to two long-chain fatty acid molecules. FABP1 can
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FIGURE 3: The cell annotation and differentially expressed genes (DEGs) identification. (a) The cell annotation results were presented by
tSNE map based on the scCATCH algorithm. (b) The DEGs among the different cell clusters are shown in the heatmap. (c) The expression

levels of primarily DEGs in different cell clusters.

also bind to other hydrophobic ligands to regulate various
biological processes such as cell growth, differentiation, and
apoptosis [35]. Studies have shown that FABP1 is detected in
about 38% of GC patients, mainly in gastric papillary ad-
enocarcinoma, female cases, and patients with age less than
50. FABP1 is highly expressed in gastric intestinal metaplasia
and gastric adenocarcinoma tissues, but not or less expressed
in gastric tissues [36]. We performed IHC by GC tissue
microarray and found that the expression level of FABP1
was significantly higher in the GC tissues than in the ad-
jacent tissues. Furthermore, GC patients with higher ex-
pression of FABP1 had a worse prognosis. Previously,
researchers had reported that FABP1 is expressed in early-
stage GC, with a specificity of 95% and a sensitivity of 67%
for the diagnosis of early recurrence, and patients with
multiple positive results of this gene have a worse prognosis
[37].

Interestingly, the expression of FABP1 has no significant
correlation with clinicopathological features such as age, sex,
tumor size, histopathological type, lymph node positivity,
TNM stage, and HER2 positivity. However, some

researchers reported that FABP1 expression was detected in
the peritoneal lavage fluid of GC patients, and the prognosis
of FABP1-positive patients was worse than that of CEA. At
least half of them had a peritoneal recurrence, and the re-
currence rate was 67% [38]. The results reported are in-
consistent with ours, which may be caused by the diversity
of clinical samples. In our future study, we will expand the
sample size to clarify these issues, and the content of
FABP1 can be detected in serum and feces of patients with
a confirmed diagnosis of GC, to prove that FABP1 can be
used as a marker for the diagnosis of gastric cancer. In
addition, we need to conduct further research in other
aspects, such as observing the biological effect of FABP1
on the GC cells after downregulating and upregulating the
expression of FABP1 in vitro and in vivo and elucidating
the molecular mechanism of FABP1 promoting cancer
from different perspectives in terms of fat metabolism.
In conclusion, we found that FABPI is a key regulatory
gene of GC and is associated with poor prognosis based on
the single-cell RNA sequencing data. Tissue microarray
analysis also showed that FABPI is highly expressed in GC
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tissues, and the survival rate of patients with high FABP1
expression is lower. FABP1 is expected to become a
promising marker for early diagnosis and targeted therapy of
GC.

Abbreviations

FABP1: Fatty acid-binding protein 1
OLFM4: Olfactomedin 4

TFF3:  Trefoil factor3

TTR: Transthyretin

CHGA: Chromogranin A
SRGN:  Proteoglycan serglycin
CCL5:  C-C chemokine ligand 5
KRT7: Keratin 7.

Data Availability

The data used to support the findings of this study are
available from the corresponding authors upon request.

Conflicts of Interest

All the authors declare no conflicts of interest.

Authors’ Contributions

Ling Huang and Fan Yang participated in the research
design. Fan Yang, Lianfang Gan, Junhua Pan, Yaying Chen,
Hong Zhang, and Ling Huang conducted experiments. Fan
Yang and Lianfang Gan performed data analysis. Fan Yang,



Journal of Oncology

Lianfang Gan, Junhua Pan, Yaying Chen, Hong Zhang, and
Ling Huang wrote or contributed to the writing of the
manuscript. Fan Yang and Lianfang Gan contributed equally
to this work.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China (grant numbers 82060678 and
81760674).

References

[1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers
in 185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394-424, 2018.

[2] S. E. Oh, J. Y. An, M. G. Choi, J. H. Lee, T. S. Sohn, and
J. M. Bae, “Comparisons of remnant primary, residual, and
recurrent gastric cancer and applicability of the 8th AJCC
TNM classification for remnant gastric cancer staging,” Eu-
ropean Journal of Surgical Oncology, vol. 46, no. 12,
pp. 2236-2242, 2020.

[3] A. Japanese Gastric Cancer, “Japanese gastric cancer treat-
ment guidelines 2018,” Gastric Cancer, vol. 241, pp. 1-21, 2021.

[4] Z. Zeng, W. Li, D. Zhang et al., “Development of a chemo-
resistant risk scoring model for prechemotherapy osteosar-
coma using single-cell sequencing,” Frontiers in Oncology,
vol. 12, Article ID 893282, 2022.

[5] L. Li, F. Xiong, Y. Wang et al., “What are the applications of
single-cell RNA sequencing in cancer research: a systematic
review,” Journal of Experimental & Clinical Cancer Research,
vol. 40, no. 1, 2021.

[6] M. Furuhashi and G. S. Hotamisligil, “Fatty acid-binding
proteins: role in metabolic diseases and potential as drug
targets,” Nature Reviews Drug Discovery, vol. 7, no. 6,
pp. 489-503, 2008.

[7] H. Xu, A. Diolintzi, and J. Storch, “Fatty acid-binding pro-
teins: functional understanding and diagnostic implications,”
Current Opinion in Clinical Nutrition and Metabolic Care,
vol. 22, no. 6, pp. 407-412, 2019.

[8] A.Chmurzynska, “The multigene family of fatty acid-binding
proteins (FABPs): function, structure and polymorphism,”
Journal of Applied Genetics, vol. 47, no. 1, pp. 39-48, 2006.

[9] H. Huang, A. L. McIntosh, G. G. Martin et al.,, “FABP1: a
novel hepatic endocannabinoid and cannabinoid binding
protein,” Biochemistry, vol. 55, no. 37, pp. 5243-5255, 2016.

[10] F. Schroeder, A. L. McIntosh, G. G. Martin et al., “Fatty acid
binding protein-1 (FABP1) and the human FABP1 T9%4A
variant: roles in the endocannabinoid system and dyslipide-
mias,” Lipids, vol. 51, no. 6, pp. 655-676, 2016.

[11] G. Wang, H. L. Bonkovsky, A. de Lemos, and F. J. Burczynski,
“Recent insights into the biological functions of liver fatty acid
binding protein 1,” Journal of Lipid Research, vol. 56, no. 12,
pp. 2238-2247, 2015.

[12] R. L. Smathers and D. R. Petersen, “The human fatty acid-
binding protein family: evolutionary divergences and func-
tions,” Human Genomics, vol. 5, no. 3, p. 170, 2011.

[13] S. Srivastava, F. Kern, N. Sharma et al., “FABP1 and Hepar
expression levels in Barrett’s esophagus and associated neo-
plasia in an Asian population,” Digestive and Liver Disease,
vol. 49, no. 10, pp. 1104-1109, 2017.

15

[14] R. N. Sharaf, A. J. Butte, K. D. Montgomery, R. Pai,
J. T. Dudley, and P. J. Pasricha, “Computational prediction
and experimental validation associating FABP-1 and pan-
creatic adenocarcinoma with diabetes,” BMC Gastroenterol-
ogy, vol. 11, no. 1, 2011.

[15] G. L. Zhang, L. L. Pan, T. Huang, and J. H. Wang, “The
transcriptome difference between colorectal tumor and
normal tissues revealed by single-cell sequencing,” Journal of
Cancer, vol. 10, no. 23, pp. 5883-5890, 2019.

[16] S.M.Wood, A.J. Gill, A. S. Brodsky et al., “Fatty acid-binding

protein 1 is preferentially lost in microsatellite instable co-

lorectal carcinomas and is immune modulated via the in-
terferon y pathway,” Modern Pathology: An Official Journal of

the United States and Canadian Academy of Pathology, vol. 30,

no. 1, pp. 123-133, 2017.

T. Barrett, S. E. Wilhite, P. Ledoux et al., “NCBI GEO: archive

for functional genomics data sets--update,” Nucleic Acids

Research, vol. 41, no. D1, pp. 991-995, 2012.

[18] P. Zhang, M. Yang, Y. Zhang et al., “Dissecting the single-cell
transcriptome network underlying gastric premalignant le-
sions and early gastric cancer,” Cell Reports, vol. 27, no. 6,
pp- 1934-1947.e5, 2019.

[19] S. Mangiola, M. A. Doyle, and A. T. Papenfuss, “Interfacing
Seurat with the R tidy universe,” Bioinformatics, vol. 37,
no. 22, 2021.

[20] R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, and A. Regev,
“Spatial reconstruction of single-cell gene expression data,”
Nature Biotechnology, vol. 33, no. 5, pp. 495-502, 2015.

[21] C.C.David and D.]. Jacobs, “Principal component analysis: a
method for determining the essential dynamics of proteins,”
Methods in Molecular Biology, vol. 1084, pp. 193-226, 2014.

[22] X. Shao, J. Liao, X. Lu, R. Xue, N. Ai, and X. Fan, “scCATCH:
automatic annotation on cell types of clusters from single-cell
RNA sequencing data,” iScience, vol. 23, no. 3, Article ID
100882, 2020.

[23] Y. Zhou, B. Zhou, L. Pache et al, “Metascape provides a
biologist-oriented resource for the analysis of systems-level
datasets,” Nature Communications, vol. 10, no. 1, p. 1523,
2019.

[24] D. V. Veres, D. M. Gyurkd, B. Thaler et al., “ComPPIL: a
cellular compartment-specific database for protein-protein
interaction network analysis,” Nucleic Acids Research, vol. 43,
no. D1, pp. D485-D493, 2015.

[25] J. Chen, E. E. Bardes, B. J. Aronow, and A. G. Jegga, “Top-
pGene Suite for gene list enrichment analysis and candidate
gene prioritization,” Nucleic Acids Research, vol. 37,
pp. W305-W311, 2009.

[26] R. Aguirre-Gamboa, H. Gomez-Rueda, E. Martinez-Ledesma
et al., “SurvExpress: an online biomarker validation tool and
database for cancer gene expression data using survival
analysis,” PLoS One, vol. 8, no. 9, Article ID E74250, 2013.

[27] H. M. Deng, L. Huang, Z. K. Liao, M. Liu, Q. Li, and R. Xu,
“Itraconazole inhibits the Hedgehog signaling pathway
thereby inducing autophagy-mediated apoptosis of colon
cancer cells,” Cell Death ¢ Disease, vol. 11, no. 7, 2020.

[28] M. Riihimaki, A. Hemminki, K. Sundquist, J. Sundquist, and
K. Hemminki, “Metastatic spread in patients with gastric
cancer,” Oncotarget, vol. 7, no. 32, pp. 52307-52316, 2016.

[29] M. L. Suva and I. Tirosh, “Single- cell RNA sequencing in
cancer: lessons learned and emerging challenges,” Molecular
Cell, vol. 75, no. 1, pp. 7-12, 2019.

[30] C.Zheng, L. Zheng, J. K. Yoo et al., “Landscape of infiltrating
T cells in liver cancer revealed by single-cell sequencing,” Cell,
vol. 169, no. 7, 2017.

(17



16

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

H. Wu, S. Chen, J. Yu et al., “Single-cell transcriptome an-
alyses reveal molecular signals to intrinsic and acquired
paclitaxel resistance in esophageal squamous cancer cells,”
Cancer Letters, vol. 420, pp. 156-167, 2018.

E. Heitzer, M. Auer, C. Gasch et al., “Complex tumor genomes
inferred from single circulating tumor cells by array-CGH and
next-generation sequencing,” Cancer Research, vol. 73, no. 10,
pp. 2965-2975, 2013.

H. Jiang, D. Yu, P. Yang et al., “Revealing the transcriptional
heterogeneity of organ-specific metastasis in human gastric
cancer using single-cell RNA Sequencing,” Clinical and
Translational Medicine, vol. 12, no. 2, p. €730, 2022.

X. Li, Z. Sun, G. Peng et al., “Single-cell RNA sequencing
reveals a pro-invasive cancer-associated fibroblast subgroup
associated with poor clinical outcomes in patients with gastric
cancer,” Theranostics, vol. 12, no. 2, pp. 620-638, 2022.

A. Prinetti and N. Mitro, “FABP1 in wonderland,” Journal of
Neurochemistry, vol. 138, no. 3, pp. 371-373, 2016.

T. Hashimoto, T. Kusakabe, K. Watanabe et al., “Liver-type
fatty acid-binding protein is highly expressed in intestinal
metaplasia and in a subset of carcinomas of the stomach
without association with the fatty acid synthase status in the
carcinoma,” Pathobiology, vol. 71, no. 3, pp. 115-122, 2004.

Z. Jiang, H. Shen, B. Tang et al., “Identification of diagnostic
markers involved in the pathogenesis of gastric cancer
through iTRAQ-based quantitative proteomics,” Data in
Brief, vol. 11, pp. 122-126, 2017.

Y. Kodera, H. Nakanishi, S. Ito et al., “Quantitative detection
of disseminated free cancer cells in peritoneal washes with
real-time reverse transcriptase-polymerase chain reaction: a
sensitive predictor of outcome for patients with gastric car-
cinoma,” Annals of Surgery, vol. 235, no. 4, pp. 499-506, 2002.

Journal of Oncology



