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peptides prediction using a pre-trained
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Identifying anti-inflammatory peptides (AIPs) and antimicrobial peptides (AMPs) is crucial for the
discovery of innovative and effective peptide-based therapies targeting inflammation and microbial
infections. However, accurate identification of AIPs and AMPs remains a computational challenge
mainly due to limited utilization of peptide sequence information. Here, we propose PepNet, an
interpretable neural network for predicting both AIPs and AMPs by applying a pre-trained protein
language model to fully utilize the peptide sequence information. It first captures the information of
residue arrangements and physicochemical properties using a residual dilated convolution block, and
then seizes the function-related diverse information by introducing a residual Transformer block to
characterize the residue representations generated by a pre-trained protein language model. After
training and testing, PepNet demonstrates great superiority over other leading AIP and AMP
predictors and shows strong interpretability of its learned peptide representations. A user-friendly web
server for PepNet is freely available at http://liulab.top/PepNet/server.

Bacterial infections and inflammation play a crucial role in human health
and safety. Bacterial infections, including skin infections, urinary tract
infections', and gastrointestinal infections, can cause serious pathological
consequences. Inflammation is a basic physiological body response to
injury or infection, intended to protect tissues and promote repair.
However, when inflammation persists for a long time without control, it
may develop into chronic inflammation™, which is strongly associated
with a variety of diseases, including neurodegenerative diseases, cardio-
vascular diseases, cancers, and autoimmune diseases. For bacterial
infections, antibiotics are commonly used as a treatment, effectively
killing or inhibiting the growth and reproduction of bacteria’. However,
the overuse of antibiotics has led to the emergence of bacterial resistance,
posing major global health problems due to the spread of infections
caused by drug-resistant pathogens'. For chronic inflammation, non-
steroidal anti-inflammatory drugs (NSAIDs)*®, corticosteroids, and
immunosuppressants, which inhibit the immune system and reduce
inflammation levels, are currently the main treatment methods’. How-
ever, similar to antibiotics, overuse of them often results in many adverse
reactions and can induce drug resistance. Therefore, there is an urgent
need to discover and rationally design effective antimicrobial and anti-
inflammatory drugs.

Antimicrobial peptides (AMPs) and anti-inflammatory peptides
(AIPs) have been demonstrated to be less drug-resistant and offer broader
applications and advantages in the treatment of bacterial infections and
inflammation®’. AMPs can penetrate bacterial cell membranes, disrupt their
membrane structures, or interact directly with biomolecules inside bacteria,
leading to bacterial death'’. On the other hand, AIPs can inhibit the pro-
duction and release of inflammatory mediators and reduce tissue inflam-
matory response’’. Therefore, it is crucial to effectively identify antibacterial
and anti-inflammatory peptides with biological activity for the development
of drug candidates. Traditional experimental methods for identifying
antibacterial and anti-inflammatory peptides are time-consuming, expen-
sive, and labor-intensive"'>"”. Hence, computational methods, especially
traditional machine learning-based methods, and the currently popular
deep learning-based methods have received widespread attention for their
ability to identify antibacterial and anti-inflammatory peptides rapidly and
efficiently with high throughput.

The machine learning methods, AMP Scanner Vr.1', AIPStack", and
PPTPP' can efficiently identify the AMPs or AIPs via random forests"”.
However, the performance of traditional ML-based methods, such as SVM
(supporting vector machine)”® and RF (random forests)", is seriously
influenced by the handcraft features. In recent years, deep learning-based
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methods have demonstrated superior performance in identifying AMPs
and AIPs, owing to their unique network architectures and strong learning
abilities". Prominent deep learning models, including convolutional neural
networks (CNN)", recurrent neural networks (RNN)*, and transformer*'
have shown success in this domain. CNNs are able to extract local features
from peptide sequences, while RNNs are specialized in recurrently encoding
sequential information in a peptide sequence. Long short-term memory
(LSTM)*, bidirectional long short-term memory (Bi-LSTM)”, and gated
recurrent unit (GRU)™, are three variants of RNN proposed to solve the
problem of gradient disappearance and to capture the long-term depen-
dence of the peptide sequences. Transformer enables capturing relation-
ships between different residues in various high-dimensional feature sub-
spaces. For instance, AMPIify*® employs Bi-LSTM* and multi-head scale
dot-product attention in transformer (MHSDPA)”, AMP Scanner Vr.2"
leverages CNN and LSTM, TriNet™ employs CNN, Bi-LSTM, and the
encoder in Transformer for AMP recognition, and AMP-BERT is a deep
learning model that fine-tunes the bidirectional encoder representations
from transformers (BERT) architecture. AIP_MDL*, another method,
employs GRU, CNN, and attention mechanism for AIP recognition.
While existing deep learning methods have achieved much success in
predicting AMPs and AIPs, they still exhibit many drawbacks, including
feature extraction and network architecture. In terms of feature extraction,
current deep learning-based methods typically employ hand-designed
features, such as amino acid composition (AAC)", adaptive skip-gram of

dipeptide composition (ASDC)”, and physicochemical properties. How-
ever, these handcrafted features often fail to fully capture the intricate pat-
terns and relationships hidden in peptide sequences, potentially overlooking
crucial information pertinent to antimicrobial or anti-inflammatory activ-
ities. In terms of network architecture, CNN:s fail to extract global or long-
range dependencies in peptide sequences, and RNN are prone to gradient
vanishing or explosion”. LSTM and GRU models are designed to handle
long-dependency problems and have many parameters, which may lead to
overfitting and inefficient training for short peptide sequences™. By contrast,
simpler architectures might be more effective and computationally efficient
for short peptide sequences. Therefore, fully extracting function-related
peptide features by combining a reasonable and interpretable deep learning
model is crucial for predicting AMPs and AIPs.

In this study, we introduce PepNet, an interpretable deep learning
framework for predicting peptides with antimicrobial or anti-inflammatory
activities via a pretrained protein large language model to extract function-
related high-dimensional peptide sequence features (see Fig. 1 for the
workflow of PepNet). For a given peptide, PepNet first extracts original
features, including amino acid types and physicochemical properties, as well
as high-dimensional features that contain more informative and generalized
sequence information from a pretrained protein large language model. The
original features are encoded by a specially designed residual dilated con-
volution block to capture the spaced neighboring information, and the pre-
trained features, along with the encoded original features, are fed into a
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Fig. 1 | The framework of PepNet. A The overall flowchart of the PepNet model.
B The residual dilated convolution block. The residue type and physicochemical
property features are passed through three residual dilated convolution layers, where
the dilation rate of each layer increases sequentially (e.g., d = 1, 2, 4). Finally, the
feature vectors, after the residual connections, are passed through a fully connected
layer to derive the output of the residual dilated convolution block. C The residual

transformer block. Firstly, the features extracted from the pre-trained protein lan-
guage model are embedded via a fully connected layer and are then combined with
the outputs of the residual dilated convolution block. Subsequently, the combined
features are fed into the residual Transformer block to attend to all-positional
information across the entire peptide sequence.
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specially developed residual Transformer block to capture the global
sequence information by combining all the positional information from the
peptide sequence. Finally, an average pool operation is applied to obtain the
peptide representation for the classification of peptide activities.

PepNet was trained and tested on anti-inflammatory and antimicrobial
peptide datasets and demonstrated superior performance over other leading
predictors in identifying both AMPs and AIPs. For instance, its F1-score and
MCC values are 4.2% and 8.4% higher than those of the second-best model
on AMP test set and 14.0% and 33.2% higher than those of the second-best
model on AIP test set, respectively. Furthermore, by visualizing the learned
representations of the residual dilated convolution block and the residual
Transformer block, PepNet shows strong interpretability, particularly on
the AMP test set. For the convenience of users, we have developed a user-
friendly web server for PepNet to facilitate online predictions.

Results

Overview of the PepNet framework

PepNet predicts peptides with anti-inflammatory or antibacterial activity by
taking the peptide sequence as input and calculating the probability of anti-
inflammatory or antibacterial activity. Its main framework comprises the
following four parts (see Fig. 1): (1) extracting diverse peptide features, (2)
bi-channel feature encoding via the residual dilated convolution block, (3)
residue representation learning by the residual Transformer block, and (4)
peptide-wise binary prediction generation.

Table 1 | Performance of the models on the AMP test set

For a given peptide sequence, PepNet extracts the one-hot encoding of
the amino acid types, physicochemical properties, and high-dimensional
embedding features derived from the pre-trained protein language model™,
resulting in a feature matrix X of shape L x D, where L represents the fixed
length of the peptide sequence and D denotes the dimension of the extracted
features. In cases where the length of the peptide sequence is less than L,
zero-padding is employed; conversely, if the length exceeds L, truncation is
applied. The physicochemical properties contain eight amino acid indices
and six specific amino acid properties. The original features, including the
one-hot encoding and the physicochemical properties, are encoded via the
residual dilated convolution block to capture the information of multi-order
neighbors for each amino acid in the sequence based on the residual dilated
convolution block layers. Inspired by the TCN™ block, we construct three
dilated convolution layers that progressively expand the receptive field and
capture information from the increasingly spaced sequence neighbors.
Subsequently, the encoded original features, along with the features derived
from the pre-trained protein language models are fed into a residual
transformer block for capturing the global sequence information. The
transformer encoder and decoder modules can extract information from all
positions in the peptide sequence and calculate the dependencies between
different positions within the peptide sequence. Finally, the learned
sequence features pass through an average pooling, and the representation
of the peptide sequence is generated, which is then fed into a multilayer
perceptron (MLP) for the classification of peptide activities.

Comparison with other leading predictors
In this section, we compare the performance of PepNet with other state-of-
the-art AMP or AIP predictors. The AMP prediction models participating in
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Fig. 2 | Performance comparison on identifying AMPs. This figure displays the performance of PepNet and other compared methods on the AMP test set, where the

performance of PepNet is shown in red on the far right.
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Based on the comparison results, we find that PepNet exhibits the best per-
formance on the AMP test set, outperforming all other compared methods.
The values of accuracy, recall, precision, F1-score, and MCC for PepNet are
0.950, 0.954, 0.947, 0951, and 0.901, respectively. Furthermore, the
improvement rates achieved by PepNet relative to the other methods are:
3.3-22.3%, 4.4-21.2%, 1.6-29.7%, 3.5-21.3%, and 7.3-60.3% in terms of
accuracy, recall, precision, F1-score, and MCC. Specifically, the recall, F1-
score, MCC value of PepNet are largely improved and achieve 4.4%, 3.5%,
and 7.3% higher than the second-best model. Moreover, PepNet is the only
model with all five evaluation metrics above 0.9, indicating its strong ability to
accurately identify AMPs.

Performance comparison on AIP prediction. The performance of the
compared methods on the AIP test set is presented in Table 2 and Fig. 3,
which show that the performance of PepNet on the AIP test set is again
the best among all the methods that are evaluated. In detail, the values of
accuracy, recall, precision, F1-score, and MCC of PepNet are 0.819, 0.940,
0.705, 0.806, and 0.666, respectively. In addition, relative to other com-
pared methods, the improvement rates of PepNet for accuracy, recall, F1-
score and MCC are 8.2-30.6%, 28.6-889.5%, 14.0-374.1%, and
33.2-276.3%, respectively. The recall, F1-score, and MCC of PepNet are
greatly improved and are respectively 28.6%, 14%, and 33.2% higher than
the second-best model, respectively. Although the precision of PepNet is
slightly lower than that of PPTPP (Fusion feature) and AIP_MDL, its
other metrics are considerably higher, resulting in PepNet achieving the
best overall performance. Furthermore, given that recall and precision are
two trade-off metrics, PepNet achieves notably higher recall than other

Table 2 | Comparation performance on the AIP test set

algorithms, even with a relatively small decrease in precision, indicating
that PepNet is more sensitive in identifying true positives.

In summary, PepNet demonstrates significantly better performance
compared to state-of-the-art methods on both AMP and AIP identification.
The high values observed in the F1-score and MCC indicate that PepNet
achieves a high standard of accuracy and consistency in peptide function
prediction.

Robustness and generalization ability of PepNet. In addition to the
two AMP and AIP datasets, we added five AMP datasets with different
activities (antibacterial, antifungal, antiviral, anticancer, and anti-
mammalian cells) collected from iAMPCN™ and three AIP datasets
(aip_datal, aip_data2, and aip_data3) collected from AIPStack",
BertAIP”, and IF-AIP* to compare the performance of PepNet with
other predictors (see Supplementary Tables 1-8) and demonstrate its
robustness and generalization ability. As most of these datasets are
unbalanced, the ACC metric is unable to measure the performance of a
method and therefore, we removed it in performance comparison. As
shown in Supplementary Tables 1-8, PepNet consistently demonstrates
the best overall performance on all the added datasets compared to other
methods. Additionally, as the proportion of positive and negative sam-
ples varies across different datasets, we found that PepNet exhibits better
performance in datasets with more balanced positive and negative
samples. In particular, for the unbalanced antifungal and anti-
mammalian-cells datasets, AMP-BERT? is unable to learn the attri-
butes of positive samples and all the peptides are predicted as non-AMPs.

Considering that many antimicrobial or anti-inflammatory peptides
can be toxic, we added a function of predicting toxicity by training the model
on a toxic peptide dataset collected from ATSE” and compared it with
ClanTox", ToxinPred-RF*, ToxinPred-SVM*, ATSE”, and ATSE’s var-
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Fig. 3 | Performance comparison on identifying AIPs. This figure displays the performance of PepNet and other compared methods on the AIP test set, where the

performance of PepNet is shown in red on the far right.
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processing. Through a series of ablation experiments, we systematically
investigate the impact of altering individual model components or hyper-
parameters, adhering to a methodology where only one component or
hyperparameter is modified at a time. According to the architecture of the
PepNet framework, the ablation experiments examine the impact of feature
selection, the contribution of the residual dilated convolution block, the
contribution of the residual Transformer block, and the approach of pooling
amino acid features into a peptide feature.

Impact of feature selection on PepNet. To investigate the contribution
of features to PepNet, we trained and tested PepNet by removing one-hot
features, physicochemical property features, and pre-trained features,
respectively. As illustrated in Fig. 4 (see detailed results in Supplementary
Tables 10, 11), the exclusion of each of the three distinct features clearly
influences the performance of PepNet, leading to a reduction of 1.9-4.5%
and 3.7-8.7% in F1-score and MCC on the AMP test set, and 7.7-10.2%
and 17.7-21.5% in F1-score and MCC on the AIP test set. Specifically, the
pre-trained features, which are typically obtained by a protein language
model trained on large-scale protein datasets, show the highest con-
tribution to PepNet on both the AMP and AIP test sets and the removal of
this feature results in large decreases of 4.5% and 10.2% in F1-score, and
8.7% and 21.5% in MCC, respectively on AMP and AIP test sets, com-
pared to using all features. Notably, the physicochemical properties also
contribute significantly to PepNet on the AIP test set, resulting in a
decrease of 9.9% in F1-score and 21.2% in MCC after removing it.

Contribution of the residual dilated convolution block to PepNet.
The residual dilated convolution block is responsible for capturing
spaced neighbors information in peptide sequences and is a key com-
ponent for dynamically understanding the distribution of amino acids in
a sequence. To explore the impact of the residual dilated convolution
block on PepNet, we conducted experiments by altering its architecture
as follows: (1) removing the residual dilated convolution block entirely,
(2) removing the residual connection operation within the block, and (3)
substituting the dilated convolution layer with Bi-LSTM, LSTM, or GRU,
respectively. As illustrated in Fig. 4 (see detailed results in Supplementary
Tables 10-11), the exclusion of the residual dilated convolution block has
agreatimpact on PepNet, leading to a performance reduction 0f4.9% and
9.2% in F1-score and MCC on the AMP test set, and 10.5% and 24.2% on
the AIP test set. However, the removal of residual connection leads to a
decrease of 1.7% and 3.0% in F1-score and MCC on the AMP test set, and
6.3% and 14.4% on the AIP test set. Specifically, when replacing the
dilated convolution with Bi-LSTM, LSTM, or GRU, the performance
decreases by 3.9-4.0% and 7.1-8.1% in F1-score and MCC on the AMP
test set, and 7.0-8.8% and 16.4-19.8% on the AIP test set, indicating that
the dilated convolution layers effectively capture global spaced-neighbor
information, which is important for identifying AMPs and AIPs.

Contribution of the residual Transformer block to PepNet. The resi-
dual Transformer block is tasked with attending to key positional amino
acid information while also capturing comprehensive positional details
throughout the whole peptide sequence. In order to investigate the
influence of the residual Transformer block on PepNet, we also con-
ducted experiments by excluding the residual Transformer block,
removing the residual connection operation within the block, and
changing the hyperparameter for the number of Transformer layers in
the block. As shown in Fig. 4 (see detailed results in Supplementary
Tables 10, 11), removing the residual Transformer block results in a
notable degradation of PepNet’s performance, particularly observed in
the AIP test set, where both F1-score and MCC demonstrate substantial
declines of up to 21.7% and 54.8%, respectively. It is noteworthy that
during the experiments involving variations in the hyperparameters of
Transformer layers, we found that the performance of PepNet declines as
the number of layers increases. This phenomenon may be attributed to
the increased model complexity caused by the increased number of

layers, potentially leading to overfitting or inadequate training to effec-
tively support deeper network architectures. Although this effect is less
pronounced on the larger AMP training set, in contrast to that of AIP, it
remains present. These findings indicate that when designing
Transformer-based models, the choice of the number of layers must be
carefully calibrated to the specific task and data characteristics to avoid
unnecessary complexity and performance loss.

Pooling operations of amino acid features. The pooling operation is
employed to downscale and extract crucial features, which represents a
pivotal step in the generation of the final sequence representation.
Maximum pooling tends to concentrate more on capturing the most
salient signals, while average pooling offers a more comprehensive vector
of sequence features. To evaluate the impact of different pooling strate-
gies on PepNet, we replaced average pooling with maximum pooling. As
shown in Fig. 4 (see detailed results in Supplementary Tables 10, 11),
maximum pooling results in a 2.6% decrease in Fl-score and a 5.5%
decrease in MCC on the AMP test set, along with an 11.2% decrease in F1-
score and a 24.5% decrease in MCC on the AIP test set for PepNet. This
indicates that solely focusing on the maximum features of all amino acids
fails to adequately characterize the entire peptide sequence, leading to
large information loss.

Interpretability of the PepNet model

To deeply understand the learning mechanism of PepNet in the detection
of antibacterial and anti-inflammatory activities, we explore what it
learns in different ways. For instance, what are the contributions of the
pre-trained features to the classification? What does the residual dilated
convolution block learn? What does the residual Transformer block
learn? In this study, we apply the t-SNE, a machine learning algorithm
commonly used for dimensionality reduction and visualization of high-
dimensional data in a lower-dimensional space, to perform a detailed
visualization of the high-dimensional feature representations learned by
PepNet. By projecting the learned peptide representation learned
by PepNet into a reduced-dimensional space, it is easy to find the
similarity between positive or negative samples and the degree of their
distinguishability. Moreover, we illustrate the interpretability of the
PepNet model by exploring whether it is perceiving cationic and
amphiphilic properties in AMPs. The visualization results are presented
in Fig. 5 and Supplementary Fig. 2.

The original and the pre-trained features influence the learning
process in different manners. The original features, containing the one-
hot encoding of the amino acid type and the physicochemical properties,
are strongly related to the activities of a peptide, while the pre-trained
features derived from a large protein language model are much richer,
more informative, and more generalized. According to the 2D t-SNE
projections of the original features and pre-trained features on the AMP
test set (Fig. 5A, B), the separation of AMPs (red) and non-AMPs (blue) is
clearer under the pre-trained features compared to the original features,
indicating the important role of the pre-trained features in identify-
ing AMPs.

The residual dilated convolution block is learning the spaced
neighboring information. The residual dilated convolution block starts
learning with the original features as input and outputs the spaced
neighboring information in peptide sequences. By comparing the t-SNE
scatter plots of the input and output features of the residual dilated
convolution block (Fig. 5A, C), it is clearly observed that the boundaries
between positive and negative samples are blurred in the unprocessed
original features, whereas the clustering of the samples improves after the
residual dilated convolution block. However, the boundary between the
two categories is still not very clear. Visualization of the data before and
after the residual dilated convolution block demonstrates a reduction in
category overlap, indicating that the residual dilated convolution block is
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Fig. 4 | Results of the ablation experiments. This A
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able to capture the key characteristics from the original features by
aggregating the spaced-neighboring information, which is effective for
AMP detection.

The residual Transformer block is learning the global information in
the peptide. The residual Transformer block takes the output of the

residual convolution block and the embedding of the pre-trained features
as input, and produces global information in the peptide sequence as
output. By comparing the t-SNE scatter plots of the input and output
features of the residual Transformer block (Fig. 5D, E), a clear cluster
segmentation of positive and negative samples within the AMP test set is
evident. The clear distinction between the two categories of samples
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Fig. 5| Visualization of each learning state of PepNet on the AMP test set. This figure displays the visualization of the 2D t-SNE projections of the original features (A), pre-
trained features (B), processed features by the residual dilated convolution block (C), the input (D) and the output (E) features of the residual Transformer block.

suggests that the representations learned by the residual Transformer
block exhibit different characteristics among positive and negative
samples and that the residual Transformer block significantly improves
the recognition of AMPs by capturing comprehensive positional infor-
mation across the peptide sequence.

The feature visualization analysis of each state of PepNet on the AIP
test set also reveals a similar phenomenon (Supplementary Fig. 2). The
t-SNE visualization results on the two test sets collectively substantiate the
significance and influence of the various components in PepNet. This multi-
stage feature visualization analysis not only deepens our understanding of
the working mechanism of the PepNet model but also points the way to
further model optimization and application practice.

PepNet perceives cationic and amphiphilic properties in AMPs.
Cationic amphiphilic sequences often adopt an a-helical structure in
hydrophobic environments such as cell membranes. These sequences are
crucial components in many biologically active peptides due to their
ability to interact with and disrupt biological membranes, making them
valuable in antimicrobial therapies. In this study, we use the charge at pH
7.0 and the grand average of hydropathy (GRAVY) to measure the
cationic and amphiphilic properties of peptides. The charge and GRAVY
distributions in the AMP and AIP training sets are shown in Fig. 6A.
Since PepNet is a data-driven deep learning model, it learns the dis-
tributions of training sets to predict the distributions of test sets.
Therefore, whether these characteristics are perceived by the model
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Fig. 6 | Boxplot of charge and GRAVY distributions in AMP and AIP data. A The
true distributions of positive and negative samples in AMP and AIP training sets.
B The true distribution of positive and negative samples in AMP and AIP test sets.

C The predicted distributions of positive and negative samples by PepNet in AMP
and AIP test sets. D The illustration of the final representation learned by PepNet,
with points colored by positive and negative scores of charge and GRAVY.

depends on the distributions of the two characteristics on the training
sets. Based on the AMP and AIP datasets used in this study, we illustrate
the true distributions of cationic and amphiphilic properties in the AMP
and AIP test sets (see Fig. 6B) and their distributions as predicted by
PepNet (see Fig. 6C). It can be observed that antimicrobial peptides
contain more cationic amphiphilic sequences than non-antimicrobial
peptides, especially the cationic sequences, which is not applicable to the
AIP dataset. Additionally, we find that PepNet accurately perceives the
distributions of positive and negative samples for both the charge and
GRAVY. Moreover, we visualize the final representation learned by
PepNet using the t-SNE tool, colored with charge and GRAVY scores (see
Fig. 6D), which clearly shows that PepNet perceives the cationic prop-
erties of peptides in the AMP dataset. Due to the slight difference in
GRAVY distributions between AMPs and non-AMPs, it is hard to
directly discriminate whether PepNet perceives the amphiphilic prop-
erties from the t-SNE visualization, which again coincides with the
visualization result. Moreover, we can observe from Fig. 6D that the
differences in both the charge and GRAVY distributions between AMPs
and non-AMPs are much larger than those between AIPs and non-AIPs,
which indicates that both the cationic and amphiphilic properties con-
tribute more to antimicrobial than to anti-inflammatory properties.

Utilization of PepNet via an online web server

For the convenience of users in using our PepNet tool, we develop a user-
friendly web server for online prediction of peptide sequences as anti-
microbial peptides (AMPs) or anti-inflammatory peptides (AIPs). Based on
different user requirements, we introduce two running modes: a Fast and a
Standard version of the interface (Fig. 7A). The performance of these modes
can be seen in Tables 1 and 2. The Fast version utilizes a trained model that
does not rely on pre-trained features, facilitating quick predictions. Users
can simply upload a FASTA file containing multiple peptide sequences,
select the desired model type (AMP or AIP), and obtain predictions
promptly. Conversely, due to our limited equipment, the Standard version

requires users to submit a FASTA file alongside the corresponding pre-
trained feature storage file, generated in H5PY format by ProtT5-XL-U50.
Upon submission, the application generates a prediction result page
(Fig. 7B) where users can view the prediction outcome for each submitted
peptide sequence, including the peptide sequence, the predicted score, and
the classification result. Additionally, users have the option to download the
result file for further analysis. This web server provides a convenient and
efficient platform for researchers to predict the antimicrobial or anti-
inflammatory activity of peptide sequences. In addition, we provide an
online web server for toxicity prediction.

Discussion

Existing methods for the identification of AMPs and AIPs are often limited
by a strong reliance on their handcraft features and their model
architectures”**. With the advent of deep learning, some studies have begun
to employ convolutional neural networks (CNNs), recurrent neural net-
works (RNNs), and other sequence-based learning models, which are
capable of capturing local patterns and long-distance dependencies of
sequences'“*’. However, they still face the challenge of insufficient under-
standing of complex sequence relationships and fail to capture the function-
related sequence patterns.

PepNet is a sequence-based deep learning model for predicting AIPs
and AMPs. It generates representative sequence representations to classify
peptide sequences by combining the type and physicochemical properties of
amino acids, and pre-trained features from a large protein language model.
The residual dilated convolution block employs the variant dilated coeffi-
cients in the convolution to capture the spaced-neighboring information in
peptide sequences. The residual Transformer block employs an all-
positional attention mechanism to capture global information of all posi-
tions in a peptide sequence. These two modules empower PepNet to capture
the intrinsic sub-sequences and complex biological relationships among
amino acids, thereby facilitating a deeper understanding of the biological
functions inherent in peptides.
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Note: 1 and 0 in the last column indicate that the peptide is predicted by PepNet as AMPs/AIPs or not, respectively, and we color those peptides in red.

Download the results file.

Index Sequence

Probability Binary

0 QLPICGETCVLGGCYTPNCRCQYPICVR 1.000 1
1 MSGRGKGGKGLGKGGAKRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKVFLENVIRDAVTYTEHAKRKTVTAMDVVYALKRQ  1.000 1
GRTLYGFGG
2 GLWSTIKNVGKEAAIAAGKAVLGSL 1.000 1
3 APFCIGYLSPKLKDMEPKPRG 0.942 1
4 SLRGCWTKSFPPQPCLGKR 0.974 1
5 DALVAKAQEVS 0.037 0
6 TVTGRCEALYEVDHL 0.024 0
7 GGSAVANIDMLRLSE 0.005 0
8 QLAETKKKSEEAKQK 0.055 0
9 GPKGQTGKPGIAGFKGEQGPK 0.974 1

Fig. 7 | Web server of PepNet. A The interface of the online web server of PepNet.
B The result interface of the application displays a result table containing the peptide
sequence, the predicted probability, and the binary classification result. The rows

highlighted in red indicate peptides predicted as positive. In addition, users can
download the result file from the top of the table.

After an assessment of PepNet’s performance and a comparative
analysis with other prominent prediction methods on several challenging
datasets, PepNet demonstrated superior accuracy in predicting AIPs and
AMPs, outperforming all comparative methods based on widely accepted

criteria. Furthermore, PepNet has not only been demonstrated to improve
the accuracy in predicting AMPs and AIPs but also exhibits strong model
interpretability, explaining the biological significance of its black-boxes. The
superiority of PepNet may stem from the following several key factors: (1)
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Utilization of high-dimensional pre-trained features derived from extensive
protein data training, facilitating the capture of essential and diverse bio-
logical information, thereby enhancing prediction accuracy. (2) Application
of the dilation convolution layers, specifically three layers with distinct
dilated coefficients in the residual dilated convolution block, enabling the
progressive expansion of the receptive field of amino acids in peptide
sequences at intervals without increasing parameters, thereby enriching
multi-order neighboring information and improving model performance.
(3) Incorporation of an all-positional attention mechanism from
the Transformer model, facilitating comprehensive analysis of peptide
sequences and enhancing feature capture comprehensiveness. (4) Imple-
mentation of residual connections in both the residual dilated convolution
block and the residual Transformer block, preserving the original feature
memory after three-layer dilated convolution and maintaining dual-
channel output feature memory after Transformer processing. PepNet
introduces an innovative deep learning strategy in sequence feature
extraction and global information integration, which greatly improves the
accuracy of the identification of AMPs and AIPs.

Despite the large improvement achieved by PepNet in identifying
AIPs and AMPs, further optimization is necessary to address the
remaining challenges in AIP or AMP prediction studies. These challenges
include: (1) Limited data availability. With the limited peptide sequence
data, especially the AIP data, PepNet may fail to capture the entire
underlying patterns and variations in the data, limiting its generalization
abilities on unseen examples. Therefore, the production of more data for
training is eager for this research area. (2) Loss of information due to
fixed sequence lengths. In PepNet, to facilitate batch learning, we pad
sequences with zeros if they are shorter than the predefined length and
truncate sequences that exceed the predefined length. However, this
process may result in the loss of peptide sequence information. (3)
Resource consumption of the attention mechanism. The attention
mechanism typically costs additional computational resources, particu-
larly when handling long sequences or large-scale datasets. Moreover, the
attention mechanism may lead to the model over-relying on a few salient
features, thereby increasing the risk of overfitting. Based on the above
issues, future work will be devoted to the implementation of these
improvement options in order to build more robust and reliable models
that can better serve the task of AMP and AIP prediction.

Methods

Data preparation

In this study, both the ATP and AMP datasets are collected from previous
studies™”’. For the AIP data, the researchers™ collected the peptides from
the Immune Epitope Database™ (IEDB) as the positive samples (AIPs)
that can induce the anti-inflammatory cytokines in human and mouse
T-cell assays, and those that fail to induce the negative samples. Anti-
inflammatory cytokines include IL-10* (suppresses pro-inflammatory
cytokine production, protects against autoimmune and allergic diseases),
IL-4" (central to the TH2 immune shift, promotes M2 macrophage
differentiation), IL-13""** (similar to IL-4, alleviates autoimmune
inflammation such as inflammatory bowel disease), IL-22*** (from
TH17 cells, essential for protection and regeneration of intestinal tissue),
TGFB* (maintains immune balance, suppresses T and B cell activity) and
IFN-a/B’"* (antiviral with anti-inflammatory properties via the JAK-
STAT pathway)””, etc. For the AMP data, the researchers™ collected the
peptides from the Anti-microbial Peptide Database™ (APD3) and
Database of Anuran Defense Peptides” (DADP) as positive samples
(AMPs), and those known not to have any antimicrobial activities
(antimicrobial, antibiotic, antibacterial, antiviral, antifungal, antimalarial,
antiparasitic, anti-protist, anticancer, defense, defensin, cathelicidin,
histatin, bacteriocin, microbicide, fungicide) as the negative samples.
There are 4194 and 8346 non-redundant samples in the AIP and AMP
datasets for training and testing. As with the two corresponding
studies™”’, both the AIP and AMP datasets are split into training and test
sets with a radio of 3:1 and 4:1, respectively. The training set is further

split into training and valid sets with a radio of 4:1. Finally, the AIP
training, valid, and testing sets contain 2516, 629, and 1049 samples,
while the AMP training, valid, and testing sets consist of 5340, 1336, and
1670 samples, respectively. Furthermore, we collect five additional AMP
datasets with different activities (antibacterial, antifungal, antiviral,
anticancer, and anti-mammalian cells) from iAMPCN* and three
additional AIP datasets (aip_datal, aip_data2, and aip_data3) from
AIPStack', BertAIP”, and IF-AIP*®. These datasets include both
balanced and unbalanced sets, which helps demonstrate the general-
ization ability of the model.

For the sequence length distribution, we presented the length dis-
tribution of all the datasets used in this study in Supplementary Fig. 3. From
the results, we found that the lengths of AMPs and AIPs mainly distribute
within 50AA. For the percent identity shared amongst and between classes,
we used the Clustal Omega™ (clustalo) tool for global sequence alignment to
calculate the percent identity of pairwise sequences within positive samples,
within negative samples, and between positive and negative samples for each
dataset. We showed the percent identity of all the datasets used in this study
in Supplementary Figs. 4 and 5, which demonstrates that the percent
identity of AMP and AIP datasets distributes differently, but primarily
distributes in the intervals [0, 40%] and [0, 30%], respectively.

The PepNet architecture

In this section, we provide a detailed description of the PepNet model
framework, which comprises five main components: extraction of sequence
features, encoding of the original features via the residual dilated convolu-
tion block, transfer learning of the pre-trained features via the embedding
layer, learning the residue representations by the residual Transformer
block, and generation of peptide-wise binary prediction.

Extraction of sequence features. For a given peptide sequence, we
extract two kinds of features pertaining to the amino acids: the original
features, including the amino acid types and physicochemical properties,
and the pre-trained features derived from a large protein language
model™. The first features consist of a one-hot encoding of amino acid
types (20 standard amino acids) along with 14 physicochemical prop-
erties of amino acids. These properties encompass eight amino acid
indices (namely BLAM930101, BIOV880101, MAXF760101,
TSAJ990101, NAKH920108, CEDJ970104, LIFS790101, and
MIYS990104, selected as representatives from over 500 amino acid
indices available in the AAindex database” using a consensus fuzzy
clustering method™), as well as six specific physicochemical attributes
(atomicity, polarity, polarizability, net charge, hydrophobicity, pro-
pensity for B-sheet conformations). The second features comprise 1024-
dimensional sequence embeddings for each amino acid generated by
ProtT5-XL-U50%, a widely utilized pre-trained protein language model
based on the transformer architecture. In order to encode peptide
sequences in the same neural network, PepNet constructs a feature
matrix X of shape Lx(34 4 1024) for each peptide, where L is a free
hyperparameter representing a fixed peptide sequence length (in this
study, L = 40). In cases where the length of the peptide sequence is less
than L, zero-padding is employed; conversely, if the length exceeds L,
truncation is applied. Zero-padding introduces noises, and truncation
leads to information loss. Therefore, selecting the appropriate sequence
length, L is crucial. As the lengths of AMPs and AIPs are primarily within
50 AA, we selected the optimal L value by conducting experiments with L
values of 30, 40, and 50 (see Supplementary Table 12). Based on the
results in the table, we selected L = 40.

Encoding of the original features via the residual dilated
convolution block. The original features are encoded by the residual
dilated convolution block, which contains three dilated convolution
layers of hidden size d/2, progressively expanding the receptive field and
capturing information from the 2m 4 1 spaced sequence neighbors.
Suppose the input feature matrix is X™, the dilated convolution operation
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F on the element X;™ of the sequence features is defined as

m—1 2m
F(X;n,k) =ZX§ijAk'Wj+X§n W, + Z X;ij.k'wj‘f'b
j=0 j=m+1

where 2m + 1 is the kernel size (i.e. the number of neighbors), k is the
dilation factor (k=1,2,4 in the three dilated convolution layers, respec-
tively), w e R@m+D*D" *D™ is the learnable parameters, b € RP™,
i=1,2,...,L. Thus, the residual dilated convolution block can be summarized
as follows:

X! = ReLU (F(ReLU (F(ReLU (F(X°"&"! 1)),2)),4))

where X" is the original feature matrix. Then, the outputs X*' from three
convolution layers are then residual connected with the input original fea-
tures, followed by a multilayer perceptron (MLP) as follows:

X — MLP(cat(Xd , Xoriginal)) e RLXd
where cat represents the concatenation operation, d is the hidden size.

Transfer learning of the pre-trained features via the embedding
layer. For the pre-trained features generated by ProtT5-XL-U50%, we
reuse the embedding features through an MLP for the specific AIP or
AMP classification tasks. Suppose the pre-trained feature matrix is X* of
shape L x 1024, then

X = MLP(X®) € RV*¢
where d is the hidden size.

Learning the residue representations by the residual Transformer
block. For the encoded sequence features X** and the reused embedding
features X*, PepNet first incorporates them through a concatenate and
MLP operations as follows:

X = MLP(cat(X®?, X**)) € RE*¢

where the cat represents the concatenate operation, d is the hidden size.

After that, the combined feature matrix X** is fed into the residual
Transformer block for capturing the global sequence information. The
residual Transformer block comprises a residual Transformer containing
an encoder-decoder structure, where the encoder maps the input
sequence representations X** to Z, and the decoder integrates the X** and
Z to produce output sequence representations X®. The encoder is
structured with N identical layers, each containing two sub-layers: a
multi-head self-attention layer, and a position-wise fully connected feed-
forward network. N is the free hyperparameter which is set to 1 in this
study. A residual connection” around both sub-layers is employed, fol-
lowed by layer normalization®. Similar to the encoder, the decoder is
structured with N identical layers, each containing three sub-layers: two
multi-head self-attention layers, and a position-wise fully connected
feed-forward network. N is the free hyperparameter which is set to 1 in
this study. The additional multi-head attention layer is implemented at
the output layer of the encoder and the first multi-head layer. The core
component of the Transformer is the multi-head self-attention, which
can effectively capture the relationship between amino acid residues over
long distances, facilitating the extraction of representation information
from specific peptide. The process of the multi-head self-attention can be
summarized as follows.

MultiHead (Q,K, V) = cat(head17 ... 7headh) we
head, = Attention (QW2, KWK, VW)

where Q, K, and V are the queries, keys, and values in the multi-head self-
attention layer, cat is the concatenate operation, / is the number of parallel
attention heads (in this study, h = 4), W WX WY, W°, are the learnable
weights applied to Q, K, V, and the multi-head outputs, Attention(g, k, v) is
the attention mechanism which is performed as follows:

T

. qk )
Attention(q, k,v) = softmax v
(@:k.7) = sof (JZ

where g, k, v are the queries, keys, and values in the self-attention
mechanism. The process of the position-wise fully connected feed-forward
network is conducted as follows.

FEN(X) = ReLU (XW, + b))W, + b,
where X is the input feature matrix. Thus,

Z =T yyeoder (X°*) = FEN (MultiHead (X**, X**, X*))
X% =T gocoter (X!, Z) = FEN(MultiHead(MulitiHead (X**, X** , X**), Z, Z))

where Tencoder aNd Tgecoder are the encoder and decoder modules in
Transformer.

Furthermore, a residual connection is implemented between the
incorporated features X** and the output presentations of the Transformer
block X°.

X% = MLP(cat(X®*, X)) € RV*4

where cat represents the concatenate operation.

In addition, the Transformer model, different from recurrent neural
networks (RNN) which inherently possess sequential order, simulta-
neously processes all residue information within a peptide sequence.
Therefore, it is imperative to incorporate positional encodings for deli-
neating sequence features. In PepNet, we use sine and cosine functions on
different feature dimensions as follows.

PE(pos, 2i) = sin(pos/10,000%/9)
PE(pos, 2i + 1) = cos(pos/10,000%/)

where pos is the position of the amino acid in the peptide sequence, i is the
dimension, and d is the hidden size.

Generation of peptide-wise binary prediction. For the learned residue
presentation matrix X¥, we first average-pool them into a sequence
representation, which can then be classified by using an MLP.

score = softmax(MLP (average(X*)))

where score is the probability ranging from 0 to 1, where a score closer to 1
indicates a higher likelihood that the input peptide belongs to the positive
class, and a score closer to 0 indicates a higher likelihood that the input
belongs to the negative class.

Statistics and reproducibility

In this study, all the experiments, including validation experiments, ablation
experiments, and interpretation experiments, were conducted based on the
AMP and AIP datasets’'. The AMP dataset was collected from AIP_MDL",
comprising 2516, 629, and 1049 samples in the training, validation, and test
sets, respectively. The AIP dataset was collected from AMPIify”’, comprising
5340, 1336, and 1670 samples in the training, validation, and test sets,
respectively. The datasets used for reproducing all the presented results can
be accessed at https://zenodo.org/records/13223516 °', and the source code
files for reproducing and evaluating PepNet are available at https://zenodo.
org/records/13734258 . The numerical data used to generate the main
figures can be found in the Supplementary Data 1 file.
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Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability

The data used for training and testing the models and for reproducing all the
presented results in this study can be available at https://zenodo.org/
records/13223516°". The numerical data used to generate the main figures
can be found in the Supplementary Data 1 file.

Code availability

PepNet is implemented by Python using the PyTorch framework. All
supporting source codes can be downloaded from https://zenodo.org/
records/13734258%.,
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