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Abstract. Semliki Forest virus (SFV) infects cells by an 
acid-dependent membrane  fusion reaction catalyzed by 
the virus spike protein, a complex containing E1 and E2 
transmembrane subunits. E1 carries the putative virus 
fusion peptide, and mutations in this domain of the 
spike protein were previously shown to shift the pH 
threshold of cell-cell fusion (G91A), or block cell-cell 
fusion (G91D). We have used an SFV infectious clone 
to characterize virus particles containing these muta- 
tions. In keeping with the previous spike protein re- 
suits, G91A virus showed limited secondary infection 
and an acid-shifted fusion threshold, while G91D virus 
was noninfectious and inactive in both cell-cell and 
virus-liposome fusion assays. During the low pH- 
induced SFV fusion reaction, the E1 subunit exposes 
new epitopes for monoclonal antibody (mAb) binding 
and forms an SDS-resistant homotrimer,  the virus asso- 

ciates hydrophobically with the target membrane,  and 
fusion of the virus and target membranes occurs. After 
low pH treatment,  G91A spike proteins were shown to 
bind conformation-specific mAbs, associate with target 
liposome membranes,  and form the E1 homotrimer.  
However,  both G91A membrane association and ho- 
motrimer formation had an acid-shifted pH threshold 
and reduced efficiency compared to wt virus. In con- 
trast, studies of the fusion-defective G91D mutant 
showed that the virus efficiently reacted with low pH as 
assayed by mAb binding and liposome association, but 
was essentially inactive in homotr imer  formation. 
These results suggest that the G91D mutant is nonin- 
fectious due to a block in a late step in membrane fu- 
sion, separate from the initial reaction to low pH and 
interaction with the target membrane,  and involving 
the lack of efficient formation of the E1 homotrimer.  

WI 
THIN eukaryotic cells, membrane fusion reac- 
ions occur thousands of times per minute during 
he formation and trafficking of endocytic and 

exocytic vesicles (1, 32, 34, 40). Fusion also takes place be- 
tween cells during such processes as myotube formation, 
fertilization, and polykaryon formation (34, 39, 40). Exten- 
sive cell fusion occurs during the developmental program 
of many tissues in C. elegans (31) and a variety of other or- 
ganisms. The ability to fuse is a critical property of cellular 
membranes, and is a strictly regulated event in terms of 
specificity, location, and kinetics. Fusion is mediated by 
proteins on cell membranes, which may act in concert with 
other proteins as part of multisubunit membrane fusion 
machines (32). However, the molecular mechanisms of 
cellular membrane fusion reactions are as yet largely un- 
defined. Our current understanding of membrane fusion 
mechanisms has come in large part from the study of well- 
characterized viral fusion proteins. 

Enveloped animal viruses have evolved a number of 
strategies to trigger the fusion of the virus membrane with 
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that of the host cell, a key step in virus infection (for re- 
view see reference 2). Many viruses use the endocytic 
pathway and low endosomal pH as an infectious entry 
route, while others fuse with the plasma membrane in a 
pH-independent reaction. Semliki Forest virus (SFV) 1 is a 
well-characterized alphavirus that infects cells by a mem- 
brane fusion reaction specifically triggered by the low pH 
present in endocytic vacuoles. Fusion is mediated by the 
SFV spike protein, which contains two transmembrane 
glycoprotein subunits, E1 and E2, each ~50,000 D, and a 
peripheral glycopolypeptide, E3, of ~10,000 D (for review 
see references 17, 35). After SFV's fusion in the endo- 
some, its RNA genome is released into the cytoplasm, new 
RNAs, capsid proteins, and spike proteins are synthesized, 
and progeny virus particles assemble and bud from the 
host cell plasma membrane. 

Recent work from several groups has yielded a fairly de- 
tailed model of the spike protein conformational changes 
that take place during low pH-dependent SFV fusion (for 
review see reference 17). After exposure to low pH, the 
normally strong heterodimer interaction between the E1 

1. Abbreviat ions used in this paper. HA, hemagglutinin; SFV, Semliki For- 
est virus; VSV, vesicular stomatitis virus. 
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and E2 subunits is weakened, as detected by the dissocia- 
tion of the two transmembrane subunits in the presence of 
non-ionic detergent. Conformational changes in both spike 
protein subunits are then thought to ensue, as detected by 
the increased sensitivity of the E2 subunit to protease di- 
gestion, and by the exposure of new sites on E1 for mono- 
clonal antibody (mAb) binding, a strong increase in E1 
trypsin resistance, and the formation of an E1 homotri- 
met. This homotrimer is thought to be the fusion active 
complex which then interacts hydrophobically with the 
target lipid bilayer (3). After virus-target bilayer associa- 
tion, a pH and temperature-dependent lag period ensues, 
culminating in the mixing of the virus and target bilayer 
membranes, and the release of the virus nucleocapsid. The 
SFV E1 subunit contains the putative virus fusion peptide, 
a highly conserved hydrophobic domain believed to insert 
into the target bilayer to trigger fusion (10, 25). A soluble 
ectodomain fragment of El ,  El*, has been shown to bind 
directly to liposomes following low pH treatment (23). Virus- 
liposome association, El*-liposome binding, and virus fu- 
sion and infection all require the presence of cholesterol in 
the target membrane (18, 23, 30, 41). Membrane fusion is 
also dependent on the presence of sphingolipid in the tar- 
get membrane (29). 

In previous expression studies of the SFV spike protein, 
we constructed and characterized mutations within the pu- 
tative E1 fusion peptide that block spike protein mem- 
brane fusion activity (G91D) or cause an acid shift in the 
pH threshold of fusion (G91A) (25). We then used an SFV 
infectious clone to express these mutations in virus, and 
demonstrated that both mutations cause a temperature- 
sensitive inhibition of virus assembly (6). During infection 
of BHK cells at 37°C, mutant spike proteins are trans- 
ported to the plasma membrane and associate with nucleo- 
capsids, but are blocked in assembly into virus particles. 
This assembly defect was rapidly reversed by shift to re- 
duced temperature (28°C), and spike proteins synthesized 
at 37°C were assembled into morphologically normal virus 
particles during a 28°C chase period. 

The infectivity and fusion phenotypes of G91A and 
G91D virus particles have been characterized here, using 
virus assembled at 28°C. As predicted from our previous 
expression studies, G91A virus was fusogenic and infec- 
tious, although with reduced activity due to its pH-shift 
phenotype. In contrast, G91D virions were nonfusogenic 
and noninfectious and were unable to form the E1 homo- 
trimer. Our results strongly suggest that E1 homotrimer 
formation is critical for SFV fusion activity, and that, un- 
expectedly, SFV membrane attachment can be uncoupled 
from E1 trimerization. 

Materials and Methods 

Virus and Cells 
The wild-type infectious clone (WT-IC), G91D, or G91A constructs were 
propagated in the infectious SFV clone pSP6-SFV4 (26), and the plasmid 
DNA used as a template to generate in vitro RNA transcripts, all as previ- 
ously described (6~ 26). To prepare [35S]methionine and cysteine-labeled 
virus, BHK-21 cells were infected by electroporation with RNA, plated at 
37°C for 6 h in complete BHK medium (DMEM containing 5% FCS, 100 U 
penicillin and 100 ~g streptomycin/ml and 10% tryptose phosphate broth), 
and then radiolabeled overnight in methione and cysteine deficient MEM 

at 28°C, all as previously described (6). Virus was then purified either by 
pelleting through a 2.5-ml 25% (wt/wt) sucrose cushion as previously de- 
scribed (6) or by banding on a Pfefferkorn gradient (21). Sucrose cushion- 
purified virus was used throughout except as indicated in individual exper- 
iments. Care was taken to collect the radiolabled progeny virus relatively 
early in infection (beginning 6 h after electroporation), before production 
of revertants became significant. As previously discussed, two isolates 
each of WT-IC, G91D, and G91A were characterized to control for possi- 
ble mutations arising during subcloning (6). All experiments were per- 
formed in duplicate or more, and the results for duplicate isolates were 
the same in all cases. The figures show data from one isolate unless other- 
wise indicated. 

Assay of Secondary Virus Infection 
To assay the ability of WT-IC or mutant viruses to carry out a secondary 
infection, cells were infected by electroporation with the respective RNA, 
diluted 1:20 with uninfected cells, and allowed to adhere on coverslips for 
2 h at 37°C. Cultures were then switched to complete BHK medium with 
or without 15 mM NHaCI, and cultured 16-24 h at 28°C. The cells were 
then fixed with methanol and stained with a rabbit polyclonal antibody to 
the SFV spike protein, followed by a fluorescein-conjugated goat anti- 
rabbit antibody (20). Cells were photographed using a Zeiss Axiophot fluo- 
rescence microscope and Kodak TMAX400 film. 

Virus-Cell Interactions 
Virus binding to the BHK cell receptor was assayed by incubation of radio- 
labeled virus with BHK cells at the indicated pH for 2 h on ice with shak- 
ing. The cells were then scraped and washed twice with ice-cold medium 
at the indicated pH, followed by quantitation of cell-associated radioactiv- 
ity (27). Virus uptake by endocytosis was assayed by prebinding radiola- 
beled virus to BHK cells on ice in medium at pH 6.8, warming cells to 
37°C for various times to permit endocytosis, followed by removal of non- 
endocytosed virus by proteinase K digestion and quantitation of internal- 
ized virus radioactivity (27). 

Fusion Assays 
The cell-cell fusion activity of WT-IC and mutant virus was evaluated by 
infecting cells by electroporation, diluting with uninfected cells, and cul- 
turing 2 h on 22-mm square coverslips in complete BHK medium at 37°C. 
followed by overnight culture at 28°C. The cells were then washed once at 
pH 7.0, treated with medium at the indicated pH for 3 min at 28°C to trig- 
ger fusion, washed, and cultured in complete BHK medium for 3-4 h (25). 
The cells were then fixed with paraformaldehyde, stained as above with 
antibody to the SFV spike protein, permeabilized with 0.2% Triton, and 
the nuclei stained with propidium iodide (25). The number of nuclei per 
surface-positive expressing cell was evaluated by fluorescence microscopy, 
counting at least 200 nuclei per pH point. The fusion index was calculated 
as [f-(cells/nuclei)] (25, 43). 

The fusion of WT-IC and G91D virus with liposomes was evaluated us- 
ing [~SS]methionine and cysteine-labeled virus and liposomes containing 
entrapped trypsin (29, 41). Large unilamellar liposomes were prepared 
from mixtures of ph°sphatidylch°line:ph°sphatidylethan°lamine:sphin" 
gomyelin:cholesterol (molar ratio 1:1:1:1.5) by drying on a rotary evapora- 
tor and then lyophilization (23). Dried lipids were rehydrated in 20 mM 
MES, pH 7.0, 130 mM NaCI containing 10 mg/ml TPCK-trypsin (Type 
XIII, Sigma Chem. Co., St. Louis, MO), vortexed with glass beads, and 
treated with 10 cycles of freeze-thawing. Liposomes were then sized by 1 
extrusion through 2 stacked 1-1xm polycarbonate filters followed by l0 ex- 
trusions through 2 stacked 0.2 /~m filters, using a high-pressure extruder 
from Lipex Biomembranes, Inc. (Vancouver, BC) (3). The liposomes 
were then purified from free trypsin by gel filtration on a 1-cm x 50-cm 
Sephadex GI50 column. Trace amounts of 3H-cholesterol oleate were 
added to follow the yield and concentration of lipids. Liposomes were 
mixed with radiolabeled virus to a final concentration of 0.2-0.25 mM 
lipid, and soybean trypsin inhibitor added to a final concentration of 125 
~g/ml. Samples were treated at various pHs for 5 rain at 37°C, adjusted to 
pH 8.0, and the incubation continued for 1 h at 37°C to permit capsid di- 
gestion. The digestion was stopped by the addition of 1 mg/ml BSA, 0.5 mM 
PMSF, and 1% Triton X-100. The samples were then immunoprecipitated 
with a polyclonal rabbit antibody to the SFV capsid protein, provided by 
Drs. lla Singh and Ari Helenius (Yale University, New Haven. CT). The 
amount of capsid was quantitated by SDS-PAGE and phosphorimaging, 
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using a phosphorimager and Image Quant 3.3 software (Molecular Dy- 
namics, Sunnyvale, CA). Controls included samples incubated in the ab- 
sence of liposomes, to quantitate the starting amount of capsid protein, 
and samples incubated with liposomes plus 1% Triton X-100 in the ab- 
sence of soybean trypsin inhibitor, which showed complete digestion of 
capsid protein. WT-IC virus-liposome fusion experiments using liposomes 
prepared by the method and lipid composition (6 mole% phosphatidic 
acid) used in the liposome association assay (see below) gave results com- 
parable to those with extruded liposomes (data not shown), as did cush- 
ion-purified virus preparations. 

Fusion of radiolabeled virus with the BHK cell plasma membrane was 
measured by treatment of prebound virus with media of low pH to trigger 
fusion. Nonfused virus was removed by digestion with proteinase K and 
cell-associated radioactivity was determined (42). The background pro- 
teinase K resistant-radioactivity from treatment at pH 7.0 was subtracted 
from each experimental point. 

Precipitation with Acid-Conformation 
Specific Antibodies 
Acid-induced conformational changes in E1 were evaluated by treating 
[35S]methionine and cysteine-labeled virus at low pH, neutralizing, dis- 
solving in lysis buffer, and immunoprecipitating with either mAb Ela-1 
(20) or ant i-El"  (36). The total El  was determined by precipitation with a 
rabbit polyclonal antibody to the SFV spike protein (20). Precipitated E1 
was quantitated by SDS-PAGE and phosphorimaging. The amount of E1 
precipitated from pH 5.0-treated virus by a nonspecific antibody was neg- 
ligible, and was subtracted from each point. 

Virus-Liposome Association 
Virus-liposome association was measured by coflotation of radiolabeled 
virus with liposomes on sucrose step gradients. Virus was treated at neu- 
tral or low pH in the presence of 1 mM liposomes containing phosphati- 
dylcholine:phosphatidylethanolamine:sphingomyelin: phospatidic acid:cho- 
lesterol (molar ratio 1:1:1:0.3:1.5), prepared as previously described (23, 
41). In some experiments, liposomes contained the same lipid composition 
but without cholesterol. After pH treatment, samples were adjusted to pH 
8.0, 40% sucrose and a volume of 0.45 ml, layered in the bottom of a 
TLS55 tube, and overlaid with 1.4-m125% sucrose and 0.3-ml 5% sucrose 
(wt/vol in 50 mM Tris, pH 8.0, 100 mM NaCI). Gradients were centrifuged 
3 h at 54,000 rpm at 4°C, fractionated into seven 0.3-ml fractions, and the 
proportion of the virus radioactivity in the liposome-containing top three 
fractions determined (23). Recoveries of virus radioactivity ranged from 
57-100%. 

Assays of E I Homotrimer Formation 
For all homotrimer experiments, [3SS]methionine- and cysteine-labeled vi- 
rus was mixed with 1 mM cholesterol-containing liposomes prepared as in 
the virus-liposome association experiments above. After pH treatment for 
10 rain at 37°C, samples were neutralized and analyzed by several tech- 
niques to detect homotrimer. Samples were directly solubilized in SDS 
sample buffer for 2 min at 30°C and analyzed by electrophoresis on SDS- 
10% acrylamide gels (15, 38). Samples were solubilizcd in 1% NP-40 and 
centrifuged on 5-20% sucrose gradients (wt/wt in 50 mM Tris, pH 7.4, 
1 mM EDTA, 100 mM NaCl, 0.1% NP-40 and 1 mM PMSF) (15)~ After 
centrifugation in the SW 41 rotor for 22 h at 40,000 rpm and 4°C, gradients 
were fractionated from the bottom and the virus radioactivity determined 
by liquid scintillation counting. The resistance of E1 to trypsin digestion 
was assayed by digestion of the samples for 10 min at 37°C with 200 l~g/ml 
TPCK-trypsin in PBS containing 1% Triton X-100 (19). The reaction was 
terminated by the addition of a threefold excess of soybean trypsin inhibi- 
tor, and the amount of E1 in each sample evaluated by acid- or antibody- 
precipitation, SDS-PAGE, and phosphorimaging. In pilot experiments, 
the trypsin resistance of the wt virus was unaffected by the presence or ab- 
sence of liposomes during the acidification step (data not shown). Similar 
results were obtained using gradient or sucrose cushion-purified WT-IC 
virus (data not shown). 

Generation and Analysis of G91D Revertants 
BHK cells were infected with G91D RNA by electroporation, diluted 1:3 
with uninfected cells, allowed to adhere in complete BHK medium for 2 h 
at 37°C, and then cultured in individual 35-ram plates in DMEM contain- 
ing 1% FCS for various times at 28 or 37°C. The media containing poten- 

tial revertants were centrifuged at 12,000 g for 30 rain at 4°C, and superna- 
tants were titered at the relevant temperature. Titers of individual plates 
ranged from 103-109 pfu/ml. Individual revertants were isolated from each 
plate by 1-2 cycles of plaque purification using an overlay containing 
1.4% low melting point agarose (21). The plaque eluates were passaged to 
make a working stock by low multiplicity infection and growth for 20 h at 
37°C, or 27 h at 28°C. To obtain virus genomic and subgenomic RNA for 
sequencing, 100-mm plates of BHK cells were infected at 1-10 pfu/cell 
with the working stock and the infection allowed to proceed for 8-9 h at 
37°C or 16--18 h at 28°C. Total cellular RNA was then extracted using the 
RNAzol method (5), and 8 Ixg of RNA was denatured at 80°C for 5 min, 
and reverse transcribed in a 20-10.1 reaction containing 40 U of RNAsin 
(Promega, Madison, WI), 40 U AMV reverse transcriptase (United States 
Biochem. Co., Cleveland, OH), 400 ng oligo dT, 1 mM dNTPs, and AMV 
reverse transcriptase buffer (United States Biochem. Co.) for 10 min at 
room temperature followed by 60 min at 42°C. 2-4 ~1 of the resultant 
cDNA were then amplified by PCR using 200 ng each of downstream and 
upstream primers flanking the E1 fusion peptide domain, 2 U Vent poly- 
merase (New England Biolabs, Inc., Beverly, MA), 1 mM dNTPs, and 
Vent polymerase buffer (New England Biolabs) in a 50-~1 reaction, and 
reaction conditions of 30 cycles of 45 s denaturation at 94°C, 30 s primer 
annealing at 56°C, and 1 rain extension at 72°C. The amplified DNA was 
cleaned using the QIAquick spin PCR purification kit (Qiagen Inc., Chats- 
worth, CA). The resultant DNA and a second set of primers fanking the 
fusion peptide domain were used in DyeDioxy-Terminator cycle sequencing 
in the Einstein sequencing facility, using an automated DNA sequencer 
from Applied Biosystems (Foster City, CA). Both strands of DNA were 
sequenced. Control RNA from uninfected cells was prepared in parallel 
to control for contamination in each set of samples, and gave no PCR 
product when amplified. 

Results 

Effects of the Mutations on Virus Infectivity 

To assay the infectivity of virus particles containing the 
G91D or G91A mutations, ceils were electroporated with 
WT-IC or mutant RNA, mixed with nonelectroporated 
ceils, and cultured at 28°C, conditions which we have pre- 
viously shown result in production of WT-IC, G91D, and 
G91A viruses (6). We compared parallel sets of cells cul- 
tured in control medium or in medium containing 15 mM 
NH4CI to block endosome acidification and secondary in- 
fection. The spread of the primary infection to neighbor- 
ing, nonelectroporated cells by secondary infection was 
evaluated using immunofluorescence to detect infected 
cells. Cells infected with WT-IC showed single, isolated in- 
fected cells in the presence of NHaC1, and abundant 
spread of infection to neighboring cells in control medium 
(Fig. 1). Cells infected with the G91A mutant showed 
more limited secondary infection in the absence of NH4C1, 
in keeping with the predicted decrease in viral fusion effi- 
ciency and more acidic fusion threshold (25). Cells in- 
fected with the G91D mutant showed no evidence of sec- 
ondary infection, in agreement with the predicted block in 
virus membrane fusion activity. When the infected cul- 
tures were maintained at 37°C, neither mutant showed evi- 
dence of secondary infection, presumably due to the virus 
assembly block at this temperature, while WT-IC showed 
abundant virus spread (data not shown). 

To determine that the decreased infectivity of the mu- 
tants was due to their fusion phenotype, it was important 
to demonstrate that other steps in the infectious pathway 
were unimpaired. We prepared radiolabeled WT-IC and 
mutant viruses by RNA electroporation and growth at 
28°C, and assayed their ability to bind to the BHK cell 
plasma membrane receptor (Fig. 2). The binding effi- 
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Figure 1. Infectivity of wild- 
type and mutant viruses on 
BHK cells. BHK cells were 
electroporated with G91D, 
G91A, or wt-ic RNA, diluted 
1:20 with nonelectroporated 
cells, and plated on duplicate 
coverslips. Cells were al- 
lowed to adhere for 2 h at 
37°C, and then some cultures 
were switched to medium 
containing 15 mM ammo- 
nium chloride to prevent sec- 
ondary infection. After fur- 
ther incubation for 16--24 h at 
28°C, cells were fixed with 
methanol and reacted with a 
rabbit polyclonal antibody 
against the SFV spike pro- 
tein, followed by fluorescein- 
conjugated goat anti-rabbit 
antibody. Representative 
fields were photographed by 
fluorescence microscopy. 
Bar, 100 ~m. 

ciency of all three viruses was similar and showed a com- 
parable pH dependence. We also assayed the endocytic 
uptake of the three viruses, and found similar entry kinet- 
ics, although somewhat decreased uptake efficiency for 
both mutants (data not shown). The striking decrease in 
virus infectivity thus appeared most likely to be due to the 
predicted effects of the mutations on the fusion pheno- 
type. 

Virus-Membrane Fusion Activity 

Several assays were used to directly test the fusion activity 
of the mutants. First, the ability of virus-infected cells to 
fuse into polykaryons following low pH treatment was 
assayed. This experiment was performed using 28°C incu- 
bation for both virus growth and pH-treatment. Under 
these conditions, both wild type and mutants will produce 
virus particles and active, budding-competant spike pro- 
teins in the plasma membrane (6). Cells infected with WT-IC 
showed efficient low-pH dependent cell-cell fusion activ- 
ity with a pH-threshold of about pH 6.2 (Fig. 3). In con- 
trast, cells infected with the G91A mutant showed a pH- 
threshold of about pH 5.4, and a decrease in the final extent 
of fusion even at the optimal pH. The Gg lD  mutant was 
inactive in cell-cell fusion even after pH treatment as low 
as pH 4.7. These data agree with the previously published 
assay of cell--cell fusion using expressed spike proteins and 
37°C conditions (25). 

Although polykaryon formation is a useful fusion assay, 
there are examples in which virus spike proteins are un- 
able to catalyze polykaryon formation but nonetheless can 

carry out fusion with liposomes or red blood cells (12). To 
obtain conclusive evidence for the fusion block of the 
G91D mutation, we used a liposome fusion assay based on 
the digestion of the virus contents (the capsid protein) by 
the iiposome contents (entrapped trypsin), in the presence 
of external trypsin inhibitor (29, 41). This assay is quanti- 
tative and can be performed with the small amounts of ra- 
diolabeled mutant virus obtainable by growth at 28°C. Ra- 
diolabeled WT-IC and G91D virions were prepared, mixed 
with trypsin-containing liposomes, and treated at various 
pHs for 5 min at either 37°C or 28°C (Fig. 4). The WT-IC 
capsid was efficiently digested following exposure to lipo- 
somes under acidic conditions at either 37°C or 28°C. 
Quantitation of two experiments by phosphorimaging showed 
that WT-IC virus had 1% capsid protein digested follow- 
ing 37°C pH 7.0 treatment, and 70% and 59% following 
pH 5.0 treatment at 37°C or 28°C, respectively. In contrast, 
the G91D mutant had negligible capsid digestion follow- 
ing low pH treatment at either temperature (Fig. 4), and 
quantitation showed capsid digestion of 0% for 37°C incu- 
bation at pH 7.0, 2% for 37°C incubation at pH 5.0, and 
1% for 28°C treatment at pH 5.0. Both viruses showed 
complete capsid digestion when incubated with trypsin- 
containing liposomes in the presence of detergent (data 
not shown). 

In addition, the ability of radiolabeled WT-IC or G91D 
virus to fuse with the BHK cell plasma membrane follow- 
ing low pH treatment was tested by assaying its resistance 
to removal by proteinase K digestion (42). An average of 
~12% of cell-bound WT-IC became proteinase K-resistant 
due to low pH treatment at 28-37°C, while only 1% of 
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Figure 2. pH dependence of binding of wt and mutant SFV to 
BHK cells. [35S]Methionine and cysteine-labeled wt-ic, G91A, 
and G91D viruses were bound to duplicate 35-mm plates of BHK 
cells at the indicated pH for 2 h on ice with shaking. The cells 
were scraped, washed, and the bound radioactivity quantitated by 
liquid scintillation counting. 

G91D became resistant to removal by protease (data not 
shown). Taken together, and in agreement with our previ- 
ous assays of the expressed spike protein (25), these re- 
sults indicate that the G91A mutant  has an acid-shifted fu- 
sion threshold, reduced fusion efficiency, and decreased 
infectivity, while the G91D mutant  is virtually inactive in 
membrane  fusion and is noninfectious. 

Analysis of Steps Preceding Membrane Fusion 

Having demonstrated that the mutants exhibit severe de- 
fects in membrane fusion, we next used them as a means of  
dissecting the molecular events during fusion. After  expo- 
sure to low pH, a series of conformational changes occurs 
in the SFV spike protein, culminating in membrane fusion 
(for review see reference 17). Analysis of the G91A and 
G91D mutants following low pH treatment should both 
determine the molecular basis for their profound fusion 
defects, and add to our understanding of the function, im- 
portance, and sequence of the spike protein conforma- 
tional changes. 

The first observed alteration upon low pH treatment is 
an increased lability of the E l -E2  dimer interaction. As 
previously described, the G91D or G91A spike protein 
dimer is more easily dissociated than wt by the addition of 
non-ionic detergent, making it technically difficult to as- 
sess pH-dependent  alterations in the dimer (6). The spike 
protein next undergoes a series of  kinetically indistin- 
guishable alterations, including exposure of new epitopes 
for E1 m A b  binding, alterations in the protease sensitivi- 
ties of both E1 and E2, and formation of  an E1 homotri-  
mer. We tested whether the mutants were defective in any 
of the conformational  changes in the E1 subunit. 

To assay m A b  binding, radiolabeled WT-IC or mutant  

1.0 

0.8 ~ c  

0.6 

.0 
0.4 

0.2 

c,91D \ 

0 , I , I , I i 

4.0 5.0 6.0 7.0 8.0 

p H  

Figure 3. Low pH-dependent polykaryon formation in wt and 
mutant SFV-infected BHK cells. BHK cells were electroporated 
with wt-ic, G91A, or G91D RNA, diluted 1:50 (wt) or 1:15 (mu- 
tants) with nonelectroporated cells, plated on coverslips for 2 h at 
37°C, and then cultured 18-20 h at 28°C. The cells were treated at 
the indicated pH for 3 min at 28°C to induce cell--cell fusion, re- 
cultured at 28°C for 3-4 h, and fixed. Cells were stained with an 
antibody to the SFV spike protein and nuclei were stained with 
propidium iodide. The number of nuclei per expressing cell was 
evaluated by fluorescence microscopy, and the fusion index de- 
termined. The data shown are the average of two experiments, 
one with each virus isolate. 

virus particles were treated for 10 rain at 37°C at various 
pHs, and then adjusted to pH 7.0 and 1% Triton X-100 and 
immunoprecipitated with either of two acid conformation- 
specific mAbs, an t i -E l "  (36) or Ela-1 (20). E1 precipita- 
tion by the antibody was quantitated by S D S - P A G E  and 
phosphorimaging. As shown in Fig. 5, t reatment of WT- 
IC, G91A, and G91D E1 spike proteins at a range of pHs 
resulted in comparable levels of  precipitation by an t i -El" .  
Treatment  for 10 rain at 28°C and pH 5.0 also gave compa- 

Figure 4. Fusion activity of wt and G91D viruses with liposomes. 
Gradient-purified [35S]methionine and cysteine-labeled wt-ic and 
G91D SFV were mixed with trypsin-containing liposomes and 
treated at the indicated pH for 5 min at 37°C or 28°C. The sam- 
ples were adjusted to pH 8.0, incubated for 1 h at 37°C to permit 
capsid digestion, and then mixed with detergent and protease in- 
hibitors. The capsid protein was immunoprecipitated and electro- 
phoresed on an SDS 10% acrylamide gel. Control samples (C) 
were incubated on ice at neutral pH in the absence of liposomes 
and immunoprecipitated as above. 
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Figure 5. Reactivity of low pH-treated wt, G91D, and G91A vi- 
rus with an E1 acid-conformation specific monoclonal antibody. 
[35S]Methionine and cysteine-labeled wt-ic, G91D, and G91A 
SFV was treated for 10 min at 37°C at the indicated pH, neutral- 
ized, dissolved in lysis buffer, and immunoprecipitated with the 
acid-conformation specific mAb anti-El". The amount of anti- 
El"-reactive E1 was quantitated by SDS-PAGE and phosphor- 
imaging, and compared to the total E1 precipitated by a rabbit 
polyclonal antibody to the SFV spike protein. The data shown 
are the average of two experiments, one with each virus isolate. 

rable efficiencies of acid-conversion, as did immunopre- 
cipitation experiments with mAb Ela-1 (data not shown). 
Thus, the G91A and G91D mutant spike proteins did not 
show an overall block in their response to acid pH, or a 
change in the pH dependence, temperature sensitivity, or 
efficiency of conformational changes detected by two spe- 
cific mAbs. 

After the exposure of the ant i -El"  and Ela-1 epitopes, 
but before membrane fusion, the virus associates hydro- 
phobically with the target lipid bilayer. This hydrophobic 
interaction is distinct from virus binding to the cellular 
protein receptor, is specifically induced by acid pH, and 
requires the presence of cholesterol in the target liposome 
membrane (3, 18). To assay virus-liposome association, 
radiolabeled WT-IC or mutant virus was mixed with lipo- 
somes containing ~33 mole% cholesterol, treated for 10- 
15 min at 37°C at the indicated pH, neutralized, and lipo- 
somes plus associated virus separated from free virus on a 
discontinuous sucrose gradient (23). Although both gradient- 
purified WT-IC and G91A mutant showed significant lipo- 
some association following treatment at pH 4.7 or 5.4 (Ta- 
ble I A), we found that the efficiency of the G91A-liposome 
interaction was substantially decreased. In addition, while 
WT-IC liposome association was equivalent following treat- 
ment at pH 6.2, 5.4, or 4.7, G91A-liposome association was 
markedly reduced at pH 6.2. Thus, G91A-liposome bind- 
ing showed an acid-shifted pH threshold and decreased 
overall efficiency, similar to the fusion phenotype of this 
virus. Qualitatively similar results were obtained using su- 
crose cushion-purified preparations of G91A and WT-IC, 

Table I. Low pH-dependent Liposome Association of WT and 
Mutant SFV 

Percent virus cofloating with liposomes 

A. pH 7.0 pH 6.2 pH 5.4 pH 4.7 

wt-ic 7 88 83 84 

G 9 1 A  2 16 53 50 

B. p H  7.0 pH 5.0 

wt-ic 8 (5) 47 (12) 

G 9 1 D  8 (2) 50 (10) 

[35S]Methionine and cysteine-labeled wt or mutant SFV was prewarmed at 37°C for 
2-5 min in the presence of I mM cholesterol-containthg liposomes, treated at the indi- 
cated pH for 10-15 rain at 37°C, and neutralized. Virus-liposome association was 
then determined by cofloatation analysis on 40-25-5% discontinuous sucrose gradi- 
ents as described in methods. 
A. Both virus preparations were prepared by banding on a sucrose gradient, and the 
average of two experiments is shown. B. Both virus preparations were prepared by 
sedimentation through a sucrose cushion, and the average of three experiments is 
shown, where the number in parentheses is the standard deviation. 

but with somewhat lower overall binding than gradient pu- 
rified virus. We then assayed liposome association using 
sucrose cushion-purified preparations of WT-IC and G91D 
mutant (Table I B). The percent of virus radioactivity co- 
floating with liposomes was lower than with the gradient- 
purified viruses assayed in Table I A, but both WT-IC and 
G91D bound liposomes with comparable efficiency in three 
experiments. This binding was specific because it required low 
pH treatment and was reduced to background levels when 
cholesterol-free liposomes were assayed (data not shown). 

Our data with G91D thus indicated that the mutant 
spike protein could expose acid-specific epitopes and asso- 
ciate with target membranes, but was inactive in fusion. 
The other E1 conformational changes that occur before 
fusion are formation of the E1 homotrimer and acquisition 
of E1 trypsin resistance. Homotrimer formation was as- 
sayed in WT-IC, G91A, and G91D by acidification of radio- 
labeled virus in the presence of cholesterol liposomes for 
10 min at 37°C, followed by solubilization in SDS sample 
buffer for 2 min at 30°C. Under these conditions, wild-type 
E1 forms an SDS-resistant E1 homotrimer that can be de- 
tected by its slower migration in SDS-PAGE (15, 38). As 
shown in Fig. 6, both WT-IC and the G91A mutant formed 
the E1 homotrimer at either pH 5.0 or 5.8, although the ef- 
ficiency of G91A homotrimer production (~10% of total 
E l )  was somewhat decreased compared to that of wild 
type (~27%). Importantly, little or no homotrimer was 
detected in assays of the G91D mutant at either pH 5.0 or 
5.8 (0-1%). 

It was possible that G91D formed the homotrimer but 
that it was less stable to the mild SDS solubilization used 
in this assay. Homotrimer formation was therefore as- 
sayed by sucrose gradient sedimentation, using radiola- 
beled virus that was acidified in the presence of choles- 
terol liposomes and then solubilized with 1% NP-40 (15). 
Under these conditions and as previously described, WT- 
IC formed the homotrimer efficiently following treatment 
at pH 5.5, showing a peak on the gradient from fractions 
22-26, with the remaining E1 and E2 sedimenting predom- 
inantly as monomers (Fig. 7). At neutral pH the WT-IC 
spike proteins were found as monomers and dimers (15, 
37). In contrast, G91D spike proteins sedimented primar- 

The Journal of Cell Biology, Volume 134, 1996 868 



Figure 6. Formation of the E1 homo- 
trimer as detected by SDS-PAGE. 
[35S]Methionine and cysteine-labeled 
wt-ic, G91D, and G91A SFV was pre- 
warmed at 37°C for 5 min in the pres- 
ence of 1 mM cholesterol-containing li- 
posomes, treated at the indicated pH 
for 10 min at 37°C, and neutralized. 
The samples were solubilized at 30°C 
for 3 min in SDS-sample buffer, and 
analyzed by electrophoresis on an SDS 
10% acrylamide gel. 

ily as monomers after treatment at either pH 7.0 or 5.5, 
and showed no peak at the homotrimer position (6). 

After low pH treatment in vitro or acidification within 
the endosome, E1 converts to a form that is very resistant 
to trypsin digestion (19, 22). The trypsin resistance of E1 
from WT-IC, G91A, and G91D was assayed following pH 
treatment in the presence of cholesterol-containing lipo- 
somes for 10 rain at 37°C (Fig. 8). E1 from wild-type virus 
converted to trypsin resistance at pH 6.0 or below, with a 
maximum efficiency of ~50% of the total El .  In contrast, 
E1 from the G91A mutant showed a reduced overall effi- 
ciency of E1 conversion, with a maximum of N35% of the 
total E1 being trypsin-resistant at pH 5.0. The pH depen- 
dence of G91A was also shifted, with E1 conversion at pH 
6.0 being significantly less than that at pH 5.0. Strikingly, 
results with the G91D mutant showed that little or no E1 
conversion to trypsin resistance occurred at any pH tested. 

These data suggested that the trypsin resistance of acid- 
treated E1 correlated with the ability of E1 to form a ho- 
motrimer and could be a property of the protein's highly 
stable quaternary structure. In a separate experiment, we 
treated the virus as above at pH 5.0 or 7.0, and compared 
the amount of E1 converting to trypsin resistance with that 
migrating as a homotrimer (data not shown). For WT-IC 
and G91A samples, a strong correlation between trypsin 
resistant E1 and E1 homotrimer was observed, with the 
amount of trypsin resistant E1 being ~l .3-2-fold higher 
than the amount of E1 homotrimer. The differing efficien- 
cies presumably reflect differences in the properties of the 
assays. As expected, parallel G91D samples showed negli- 
gible amounts of both E1 homotrimer and trypsin resistant 
E1 (data not shown). 

Taken together, our results indicate that the G91D mutant 
was inhibited in formation of the E1 homotrimer, as as- 
sayed by the properties of the protein in gel electrophore- 
sis, gradient sedimentation, and protease resistance assays. 

Generation of  G91D Revertants 

Since the G91D mutant was largely blocked in fusion and 
infectivity, a strong selection for revertants of the G91D 

mutation existed. Such revertants could provide informa- 
tion on the requirement for a glycine residue at position 
91, on the ability of other amino acids to substitute at this 
position, and on the potential for mutations at other sites 
in the spike protein to compensate for the presence of as- 
partate 91. To select for revertants, cells were electropo- 
rated with G91D RNA and cultured for various periods of 
time at either 28°C or 37°C. Under the 28°C incubation 
conditions, the G91D mutant will assemble into virions 
but be blocked in secondary infection due to the fusion de- 
fect. Selection at 37°C simultaneously selects for rever- 
tants that can both assemble and fuse at this incubation 
temperature. The media from infected cells were titered at 
the relevant temperature, isolated plaques were picked, 
and RNA from virus-infected cells was analyzed to deter- 
mine the sequence at position 91. As expected, given the 
high mutation rate of RNA viruses, within 48-h growth at 
28°C substantial numbers of revertant viruses were re- 
leased into the medium, with titers of individual culture 
dishes ranging from 103 to 108 pfu/ml. Sequence analysis 
was performed on eleven independent revertants isolated 
by 28°C growth conditions (Table II). All of the revertants 
had regained the wild-type glycine at position 91. Al- 
though the G91D mutant (GAC) could revert to glycine 
by changing one nucleotide to give a GGC codon, in the 
majority of cases the revertant had the wild-type G G G  
codon. This appears to reflect a viral nucleotide sequence 
preference or host cell codon preference, rather than con- 
tamination with wild-type virus. The wild-type virus was 
never present during the isolation or growth of the rever- 
tants, and RNA isolated from parallel uninfected cells 
never yielded a PCR product (data not shown). Four inde- 
pendent revertants were isolated and sequenced from the 
37°C selection conditions, and all had regained the glycine 
at position 91 (Table II). Thus, even under 28°C conditions 
which favored assembly of the mutant, the selection for 
the wild-type phenotype was strong enough to result in the 
rapid reacquisition of glycine 91. Although other types of 
revertants may have been present in the original popula- 
tion, they were not stable under either 28°C or 37°C 
growth conditions. 
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Figure 7. Formation of the E1 homotrimer as detected by sucrose 
gl'adient sedimentation. [35S]Methionine and cysteine-labeled wt-ic 
aja~l G91D SFV were prewarmed at 37°C for 5 min in the pres- 
~ of 1 mM cholesterol-containing liposomes, treated at the in- 
~licated pH for 10 min at 37°C, neutralized, and solubilized in 1% 
NIP-40. The samples were analyzed by centrifugation on 5-20% 
(:wJ/wt) sucrose gradients (in buffer containing 0.1% NP-40). The 
sradients were centrifuged at 40,000 rpm in an SW41 rotor for 22 
'~'at 4~C, fractionated, and the radioactivity determined. The po- 
rtions of the spike protein dimer (d), monomer (m), and E1 ho- 
motrimer (t) peaks are indicated. The bottom of the gradient is 
fraction 1. 

Discussion 
The original characterization of the fusion phenotypes of 
the G91A and G91D mutants was performed on tran- 
siently expressed spike proteins (25). Immunofluorescence 
and radio-immunoassays of these mutants demonstrated 
efficient cell surface expression of  the E1 and E2 spike 
protein subunits, and cell-cell fusion studies showed a pH 
shift and fusion efficiency decrease for G91A and a fusion 
block for G91D. Subsequent analysis using the SFV infec- 
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Figure 8. Trypsin resistance of E1 from low pH-treated wt, 
G91D, and G91A virus. [35S]Methionine and cysteine-labeled 
wt-ic, G91D, and G91A SFV were prewarmed at 37°C for 5 rain 
in the presence of I mM cholesterol-containing liposomes, 
treated at the indicated pH for 10 min at 37°C, neutralized, and 
digested with 200 ixg/ml trypsin in 1% Triton X-100 for 10 min at 
37°C. The digestion was stopped by the addition of soybean trypsin 
inhibitor, and the samples were acid- or antibody-precipitated 
and analyzed by electrophoresis on an SDS 10% acrylamide gel 
followed by phosphorimaging. The amount of trypsin-resistant 
E1 was compared to the total E1 in a control treated with trypsin 
premixed with inhibitor. The data shown are the average of three 
experiments for wt virus, and two experiments each with G91D 
and G91A virus• 

tious clone revealed that both mutations conferred an un- 
expected virus assembly defect that was partially reversed 
by incubation of infected cells at 28°C (6). Since all of the 
original fusion assays had been performed at 37°C, it was 
important to determine the phenotype of mutant virus 
particles assembled and assayed at the permissive temper- 
ature. Results described here showed that the fusion phe- 
notypes of the mutant  viruses were identical to those pre- 
viously observed for expressed spike proteins. These data 

Table 11. Sequence Analysis of G91D Revertants 

Virus isolate Selection conditions Amino acid/Nucleotide sequence 

wt-ic G 9 1 / G G G  

G91D D 9 1 / G A C  

28.1-28.6  48h  g rowth  at 28°C G 9 1 / G G G  (5), G G C  ( 1 ) 

28.7-28.11 72h g rowth  at  28°C G 9 1 / G G G  (4), G G C  (1) 

37.1-37.3 29h growth  at 37°C G 9 1 / G G G  (1), G G C  (2) 

37.4 48h  growth  at  37°C G 9 1 / G G G  (1) 

BHK cells were electroporated with G91D RNA and cultured in individual plates un- 
der the indicated selection conditions. The media were then harvested, titered, and in- 
dependent revertants isolated by picking a plaque from each original plate. Revertants 
are identified by the temperature of ~lection followed by a decimal point and number. 
Virus stocks of each revertant were prepared by growth at low multiplicity at the rele- 
vant temperature. Ceils were infected with revertant stocks at the relevant temperature, 
and RNA prepared for sequence analysis as described in Materials and Methods. The 
numbers in parentheses are the number of independent revertants isolated with the in- 
dicated sequence. 
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together with our previous assembly studies suggest that 
the mutants are temperature sensitive during budding 
from the plasma membrane, but have wild-type tempera- 
ture requirements for both spike biosynthesis and low pH- 
triggered fusion functions. 

A number of assays have been used to follow irrevers- 
ible low pH-triggered conformational changes in the SFV 
spike protein (for review see reference 11, 17). Our results 
with G91A and G91D give insights into the fusion mecha- 
nism of alphaviruses, and also enable distinctions to be 
drawn between several of the conformational changes in 
the E1 subunit. The available data indicated that with 
comparable kinetics the E1 protein becomes reactive with 
acid conformation-specific mAbs, trypsin resistant, and 
trimeric (3, 15). Immunodepletion and biochemical studies 
indicated that these three conformational changes involve 
the same pool of E1 (23, 38), and led to the suggestion that 
mAb ant i -El"  recognizes the E1 homotrimer (3, 38). 

However, the G91D mutant reacted efficiently with both 
mAb ant i -El"  and Ela-1, but did not form significant E1 
homotrimer in several assay systems. Thus, the mAbs 
identify distinct conformational changes that occur effi- 
ciently in the mutants. Data from the mutants also strongly 
argue that the trypsin resistance of E1 is due to its trimer- 
ization, since the levels of trimer and trypsin-resistant E1 
correlate in wt and the two mutants. 

Similar to this mutant's membrane fusion activity, both 
G91A liposome association and E1 trimerization were less 
efficient than wild type, and showed a clearly acid-shifted 
pH threshold. However, we found that both G91A mem- 
brane association and E1 trypsin resistance were maximal 
at pH 5.4, while G91A membrane fusion was not maximal 
until approximately pH 5.0. Thus, G91A was similar to 
G91D in that liposome association was observed under 
conditions in which little fusion took place. In contrast to 
G91D, however, the G91A liposome interaction involved 
virus containing the E1 homotrimer. One model to explain 
the G91A fusion phenotype is that at the nonpermissive 
pH of 5.4, homotrimer formation and E1 target membrane 
interaction take place, but that subsequent fusogenic rear- 
rangements of the E1 subunits in the target membrane do 
not occur, resulting in the observed lack of fusion. This 
model is similar to that proposed to explain results with wt 
virus and liposomes lacking sphingolipid (29). Homotrimer- 
containing virus binds efficiently to sphingolipid-deficient 
liposomes at low pH but does not fuse, presumably due to 
the lack of further sphingolipid-dependent spike protein 
rearrangements or activation. 

In kinetic studies, wt E1 trimerization occurs before 
membrane association, and was suggested to be required 
for this subsequent step in the fusion pathway (3). A sur- 
prising finding of our experiments was that, in spite of its 
lack of homotrimer formation, the G91D fusion block mu- 
tant efficiently associated with target liposome mem- 
branes in a cholesterol and low pH-dependent reaction. It 
remains possible, however, that this G91D liposome asso- 
ciation was mediated by small amounts of E1 homotrimer 
below the detection limit of our assays. We measured the 
extent of G91D liposome binding, homotrimer formation, 
and fusion following 10 rain of low pH treatment at 37°C. 
All of these processes occur within seconds of similar 
treatment of wt virus, and thus our experiments were end- 

point assays. In future studies, it will be interesting to de- 
termine if the kinetics and pH dependence of G91D-liposome 
association are altered from those of the wt virus, perhaps 
reflecting a difference in the mechanisms of their associa- 
tion with membranes. 

Although the alphavirus system is unique in the relative 
ease with which mutations can be expressed in virus parti- 
cles, mutagenesis of a number of other virus spike proteins 
has been used to identify putative fusion peptides and ex- 
amine their amino acid sequence requirements. In the 
rhabdovirus vesicular stomatitis virus (VSV), fusion is trig- 
gered by low pH and mediated by the single spike protein, 
G (for review see reference 24). A conserved, uncharged 
region from approximately amino acids 118-139 has been 
suggested to be the VSV fusion peptide (7-9, 45), and mu- 
tation of alanine 133 to lysine, glycine 124 to alanine, or 
proline 127 to glycine or leucine greatly decreased G's 
cell-cell fusion activity (8, 45). Interestingly, several amino 
acids are conserved between the VSV and SFV putative 
fusion peptides, including a residue adjacent to SFV G91 
(8, 45). The mechanism of inhibition by the VSV G pro- 
tein mutations is unknown, but the mutations do not affect 
pH-dependent G protein trimer stability, which is believed 
to be an assay of the conformational change involved in G 
protein fusion. Highly conserved glycines also seem to be 
involved in the fusion of the pH-independent paramyxovi- 
ruses. The viral F protein contains a hydrophobic putative 
fusion peptide at the cleaved amino terminus of the F~ 
chain. Alanine substitution of glycines 3, 7, or 12 of the 
SV5 Fl protein increased fusion activity (14), while lysine 
substitution of glycines 3 or 7 of the Newcastle disease vi- 
rus Fl protein greatly inhibited fusion activity (33). The 
mechanisms responsible for these effects on paramyxovi- 
rus fusion are hypothesized to involve the conformation or 
membrane insertion of the fusion peptide (14, 33). 

The best understood virus fusion protein is the influenza 
hemagglutinin (HA), a trimeric molecule containing three 
copies of the disulfide-bonded HA1 and HA2 subunits (for 
a review see references 2, 4, 40, 44). The HAt subunits 
form globular head domains containing the receptor-bind- 
ing sites, while the HA2 subunits make up most of the stem 
region and contain the protein transmembrane domain 
and the amino terminal hydrophobic fusion peptide. Mu- 
tagenesis of the fusion peptide and transient expression 
studies demonstrated the key role of this protein domain 
in fusion (12, 13). Mutation of the NH2-terminal glycine to 
glutamic acid (HA G1E) blocks all fusion activity, muta- 
tion of glycine 4 to glutamic acid raises the threshold pH 
and decreases the fusion efficiency, and substitution of 
glutamic acid 11 with glycine inhibits polykaryon forma- 
tion without affecting red blood cell fusion. In spite of these 
drastic effects on fusion, all three mutant HAs retain the 
ability to undergo pH-dependent conformational changes 
as detected by a protease assay, and can associate hydro- 
phobically with liposomes. Interestingly, an HA in which 
the normal transmembrane and intracellular domains have 
been replaced with a lipid glycophosphatidyl inositol an- 
chor carries out only "hemifusion," the mixing of the outer 
bilayer leaflets in the absence of complete membrane fu- 
sion and content mixing (16, 28). This activity has been 
proposed to represent a normal membrane fusion inter- 
mediate. 
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The phenotype of the SFV G91D mutant is striking in 
its association with the target bilayer in the absence of 
membrane fusion. Notably, the fusion assays we employed 
monitor either the content mixing of virus with the lipo- 
some lumen, or polykaryon formation, and thus are "com- 
plete" fusion assays. The membrane association of G91D 
might enable the mutant to carry out partial fusion similar 
to the hemifusion described for lipid-anchored HA. Alter- 
natively, G91D may resemble the HA G1E mutant, which 
is blocked in both complete fusion and hemifusion, but re- 
sponds generally to low pH by a change in protein confor- 
mation, and binds liposomes although with slower kinetics 
(12, 13). Our current studies seek to examine the charac- 
teristics of G91D liposome association, the mechanism of 
wt and G91D fusion peptide insertion into the membrane, 
and the possibility that G91D carries out hemifusion. This 
characterization will continue to define the role of the E1 
homotrimer and other spike protein rearrangements in vi- 
rus membrane fusion. 
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