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Iron loading anemias are characterized by ineffective erythropoiesis and iron overload.
The prototype is non-transfusion dependent ß-thalassemia (NTDT), with other entities
including congenital sideroblastic anemias, congenital dyserythropoietic anemias, some
hemolytic anemias, and myelodysplastic syndromes. Differential diagnosis of iron
loading anemias may be challenging due to heterogeneous genotype and phenotype.
Notwithstanding the recent advances in linking ineffective erythropoiesis to iron
overload, many pathophysiologic aspects are still unclear. Moreover, measurement
of hepcidin and erythroferrone (ERFE), two key molecules in iron homeostasis
and erythropoiesis, is scarcely used in clinical practice and of uncertain utility.
Here, we describe a comprehensive diagnostic approach, including next-generation
sequencing (NGS), in silico modeling, and measurement of hepcidin and erythroferrone
(ERFE), in two brothers eventually diagnosed as X-linked sideroblastic anemia (XLSA).
A novel pathogenic ALAS2 missense mutation (c.1382T>A, p.Leu461His) is described.
Hyperferritinemia with high hepcidin-25 levels (but decreased hepcidin:ferritin ratio)
and mild-to-moderate iron overload were detected in both patients. ERFE levels
were markedly elevated in both patients, especially in the proband, who had a more
expressed phenotype. Our study illustrates how new technologies, such as NGS,
in silico modeling, and measurement of serum hepcidin-25 and ERFE, may help in
diagnosing and studying iron loading anemias. Further studies on the hepcidin-25/ERFE
axis in additional patients with XLSA and other iron loading anemias may help in
establishing its usefulness in differential diagnosis, and it may also aid our understanding
of the pathophysiology of these genetically and phenotypically heterogeneous entities.
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INTRODUCTION

Iron loading anemias are anemias characterized by ineffective
erythropoiesis and iron overload (Camaschella and Nai, 2016).
They include non-transfusion dependent ß-thalassemia (NTDT)
(Musallam et al., 2012), congenital sideroblastic anemias
(Fujiwara and Harigae, 2019), congenital dyserythropoietic
anemias (Iolascon et al., 2013), some hemolytic anemias,
and myelodysplastic syndromes (Tanno and Miller, 2010;
Camaschella and Nai, 2016; Brissot et al., 2018). X-linked
sideroblastic anemias (XLSA), which can be referred also to
the group of atypical microcytic anemias (Donker et al., 2014),
can be suspected starting from simple blood exams showing
microcytic anemia with paradoxically high ferritin after easily
discarding more frequent conditions such as thalassemia and
anemia of inflammation (Camaschella, 2013; Donker et al., 2014).
Regarding the pathogenesis of iron overload in iron loading
anemias, the hepcidin/erythroferrone (ERFE) axis seems to play
a crucial role, also representing a promising new therapeutic
target (Arezes et al., 2020). Hepcidin is the master regulator of
systemic iron homeostasis, which acts by controlling intestinal
iron absorption and macrophage iron recycling through the
inhibition of the iron exporter ferroportin (Ganz, 2011; Girelli
et al., 2016). The recently described hormone ERFE is produced
by erythroblasts in response to erythropoietin (EPO) and acts
by suppressing hepcidin, thereby increasing iron absorption
and mobilization for erythropoiesis demand (Kautz et al., 2014;
Coffey and Ganz, 2018). ERFE, likely in addition to other
mediators, is thus thought to contribute to secondary iron
overload in iron loading anemias. With the advent of next
generation sequencing (NGS) techniques, genes responsible for
sideroblastic anemias are often included in panels designed
for diagnosing hereditary anemias, allowing for detection of
an increasing number of cases, reducing misdiagnosis, and
highlighting the phenotypic variability of this group of disorders.

X-linked sideroblastic anemia (XLSA; OMIM 301300) is
caused by loss-of-function mutations in the erythroid-specific
5-aminolevulinate synthase gene (ALAS2) (Cotter et al., 1994).
ALAS2 gene encodes for mitochondrial 5-aminolevulinate
synthase (ALAS2), the first enzyme in heme biosynthetic pathway
in erythroid cells (Bishop et al., 1990; Cox et al., 1990). ALAS2
catalyzes the condensation of glycine and succinyl-CoA into 5-
aminolevulinic acid (ALA), using pyridoxal 5′-phosphate (PLP)
as a cofactor (Ducamp et al., 2011). To date, more than 80
different mutations in ALAS2 gene have been reported in patients
with XLSA (Ducamp and Fleming, 2019) (Human Genome
Mutation database1). Most of these are missense mutations
located within a conserved region (encoded by exons 5–11),
leading to a reduced ALAS2 activity and/or stability (Ducamp
and Fleming, 2019). Mutations in the ALAS2 regulatory region,
such as the promoter and intron 1, have also been reported,
resulting in decreased ALAS2 expression (Bekri et al., 2003;
Campagna et al., 2014).

XLSA is the most common subtype of Congenital
Sideroblastic Anemia (CSA) and typically affects hemizygous

1www.hgmd.cf.ac.uk

males, who often show a mild to moderate anemia since
childhood with complications related to iron overload in
adulthood. The anemia is hypochromic and microcytic in
males, with a mean corpuscular volume (MCV) between 60
and 70 fL and accompanying laboratory signs of iron overload,
i.e., high ferritin and transferrin saturation (Bergmann et al.,
2010), but almost always normocytic or macrocytic in females.
However, severity varies widely depending on the effect of
the mutation in ALAS2 protein and additional factors. The
phenotypic expression of XLSA is variable between families
and also within relatives of a given affected family (Cazzola
and Malcovati, 2015; Brissot et al., 2018). Although patients
with XLSA are predominantly males, because of hemizygosity
of the X-linked defect, many cases of female patients with
the heterozygous ALAS2 mutation have also been reported
(Fujiwara and Harigae, 2019), and this is usually due to an
age-related skewing of X chromosome inactivation. Additional
genetic or somatic mutations and environmental factors may
contribute to phenotypic variability (Donker et al., 2014). For
example, co-inheritance of HFE mutations may worsen the
degree of iron overload in hemizygous males (Cotter et al.,
1999). XLSA treatment is focused on two aspects: anemia and
iron overload. Most patients are not transfusion-dependent;
however, they may develop a transfusion need with increasing
age. Anemia and ineffective erythropoiesis often benefit from
pyridoxine treatment, although pyridoxine-responsiveness
is lower in the case of iron overload (Cotter et al., 1999).
Low-regimen phlebotomies (e.g., 200–250 mL every 2 weeks)
or iron chelating agents are used in the case of iron overload
(Cazzola and Malcovati, 2015).

This report illustrates how new technologies, such as NGS
and measurement of serum hepcidin-25 and ERFE, may help
in diagnosing and studying iron loading anemias. We describe
the paradigmatic case of a male proband diagnosed with XLSA
through NGS, who had a novel ALAS2 missense mutation.
His brother also carried the same mutation; however, his
phenotypic expression was slightly different. We also provide the
in silico modeling of the novel mutation and measurements of
serum hepcidin-25 and serum ERFE as possible tools for better
understanding the pathophysiology of iron overload in XLSA.

METHODS

Patients
Informed consent was obtained before conducting the
experimental analysis. All the procedures performed in this
study were in accordance with the ethical standards of our
Ethical Committee and with the 1964 Helsinki declaration and
its later amendments.

DNA samples were collected from both patients, who gave
written informed consent to DNA analysis, according to study
protocols approved by the local Ethical Committee.

ALAS2 Gene Analysis
Genomic DNA was extracted from peripheral blood leukocytes
through salting out method (Miller et al., 1988) using the Wizard
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TABLE 1 | Clinical characteristics of the two brothers.

Laboratory data Proband Younger brother (Reference range)

(M, 56 years old) (M, 53 years old)

Hb (g/L) 103 134 (130–170)

RBCs (×1012) 5.2 6.14 (4.50–5.80)

MCV (fL) 73.3 69.2 (79–96)

MCH (pg) 19.8 21.8 (27–33)

Reticulocytes (×109) 54 / (27–99)

WBCs (×109) 5.9 8.3 (4–10)

PLTs (×109) 286 305 (150–400)

Ferritin (µg/L) 1,493 890 (30–300)

Transferrin saturation (%) 63 28.6 (20–50)

GOT (U/L) 38 24 (5–40)

GPT (U/L) 58 40 (10–65)

Bilirubin (mg/dL) 0.8 0.3 (0.0–1.2)

Creatinine (mg/dL) 0.7 0.9 (0.6–1.4)

Folate (ng/mL) > 20 2.7 (3.8–20)

Vitamin B12 (pg/mL) 499 483 (197–866)

Ringed sideroblasts in bone marrow 8–10% n.a. (Absence)

Erythroferrone (ng/mL) 75.51 14.47 (0.32–1.80)

Hepcidin-25 (nM/L) 27.65 10.34 (1.8–9.2)

Hepcidin:Ferritin ratio (pM/µg) 18.5 11.6 (20.9–25.3)

MRI-LIC (liver iron content) (µM/g) 295 96 (<36)

MRI-SIC (spleen iron content) (µM/g) 134 127 (Unvalidated)

MRI-Pancreas T2/T2* (ms) 24.6 n.a. (>26)

MRI-Heart T2/T2* (ms) 43 n.a. (>20)

Spleen volume estimated on MRI (mL) 562 265 (110–340)

HFE sequencing Negative for C282Y and H63D
mutations

Negative for C282Y and H63D
mutations

(No mutations)

ALAS2 sequencing Novel mutation (c.1382T>A
p.Leu461His)

Novel mutation (c.1382T>A
p.Leu461His)

(No mutations)

Transfusion-dependency No No

Number of packed red blood cells transfused in life 5 0

Comorbidities Allergic asthma, obesity, hypertension None

Subsequent treatment Pyridoxine, folate, deferasirox Pyridoxine, folate, low regimen
phlebotomies

Outcome Iron-depletion; Hb 103→ 114 g/L,
MCV 73→ 75 fL

Iron-depletion; Hb 134→ 137 g/L,
MCV 69→ 75 fL

Genomic DNA purification kit (Promega). The DNA extraction
was performed according to the manufacturer’s instructions.

The DNA sample of the proband was analyzed on an
NGS-targeted panel SureDesign software (Agilent Technologies,
Santa Clara, United States) containing 40 genes associated with
congenital hemolytic anemia and modifier genes (Rotordam
et al., 2019). Libraries were obtained by HaloPlexHS Target
Enrichment System Kit and sequenced on a MiSeq platform
(Illumina, San Diego, United States). Targeted filtering and
annotation of protein-changing variants were performed using
the wANNOVAR web tool2.

The mutation identified was confirmed by Sanger method
(ABI PRISM 310 Genetic Analyzer, Applied Biosystems,
Warrington, United Kingdom) using the Big Dye Terminator

2http://wannovar.wglab.org/

Cycle Sequencing Kit (Applied Biosystems, Warrington,
United Kingdom).

Sequence Analysis and in silico Modeling
In silico predictions of missense variants’ pathogenicity was
performed using SIFT (Kumar et al., 2009) and Polyphen-2
(Adzhubei et al., 2010) bioinformatics tools. Reviewed ALAS2
sequences from different species were retrieved from the
UniProtKB/Swiss-Prot database and aligned using the MUSCLE
(Edgar, 2004) program for multiple sequence alignments.
Conservation analysis and alignment visualization were
performed by Jalview software (version 2)3 (Waterhouse et al.,
2009) and they are available from IronGenes website4.

3www.jalview.org
4http://molsim.sci.univr.it/marchetto/alas2/alas2info.php
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The structural analysis of the missense variants was made
based on the available human ALAS2 crystallographic structure
(Bailey et al., 2020) (PDB accession code: 5QQQ, crystallographic
resolution: 1.93 Å).

The Consurf server (Ashkenazy et al., 2016) was used to
map conservation features on the structure. The prediction of
the putative effects of the variants in the structure/function
of the protein was performed also by visual inspection using
the Chimera program. The wild-type residues and the modeled
mutant were included in the publicly accessible IronGenes
database5.

Hepcidin and Erythroferrone
Measurement
Hepcidin measurement was performed using an updated
and validated Mass-Spectrometry (MS)-based assay (Castagna
et al., 2009). This analysis allowed the quantification of
the mature bioactive circulating isoform (hepcidin-25) and
two smaller isoforms (hepcidin-24 and hepcidin-20), using
a chromatography-tandem mass spectrometry (LC-MS/MS)
approach (van der Vorm et al., 2016). Hepcidin-25 synthetic
standards (the native and the isotopic labeled internal standard),
and standards for hepcidin-24 and hepcidin-20 isoforms, were
purchased from Peptide International (Lousiville, United States).
Briefly, an internal standard was added in all samples, and
the calibration curve was created. Blank serum, deprived of
hepcidin, was prepared using charcoal treatment. The calibration
curve was prepared with the blank serum and a known
concentration of standards of each hepcidin isoform. Samples
were treated by solid-phase extraction using Oasis hydrophilic-
lipophilic balanced reversed-phase (HLB) cartridges (Waters,
Italia). High-performance LC was performed using an X-Terra
MS C18 2.5 mm column (Waters, Italia), and detection was
obtained using a Triple Quad LC-MS/MS (Agilent Technologies).
The results were evaluated according to previously obtained
reference ranges for males and females at different ages
(Traglia et al., 2011).

Erythroferrone analysis was performed using the
Erythroferrone IETM ELISA kit (Intrinsic Lifesciences-The
BioIron CompanyTM), a double monoclonal antibody sandwich
ELISA method, according to manufacturer instructions. The
concentration of human ERFE was obtained from the mean
absorbance of the standard curve. The reference range (0.32–1.80
ng/mL) was obtained from a recent publication that evaluated
ERFE levels using the same ELISA kit in 78 males with median
age 47 years (Appleby et al., 2020).

Magnetic Resonance Imaging
Organ iron distribution was not-invasively studied with Magnetic
Resonance Imaging (MRI), according to Gandon’s protocol
(Gandon et al., 2004) to define liver iron content (LIC) and
spleen iron content (SIC) and with T2/T2∗ sequences (Garbowski
et al., 2014). Spleen volume was estimated based on a three-axis
approach (Prassopoulos et al., 1997).

5http://molsim.sci.univr.it/marchetto/php/gene_detail.php?geneId=ALAS2#
tabellaInit

FIGURE 1 | The ALAS2 c.1382T>A mutation confirmed by Sanger
sequencing.

RESULTS

The proband was a 56 years-old male, referred to our Center
because of a microcytic anemia known since childhood and
hyperferritinemia. Personal history and physical examination
revealed allergic asthma treated with inhalers, obesity (BMI 33
Kg/m2), hypertension, and splenomegaly. He only received five
units of packed red blood cells in his life during a hospitalization
for a transient severe drop of Hb levels. First-level laboratory
analysis showed Hb 103 g/L, MCV 73.3 fL, ferritin 1,493
ng/mL, transferrin saturation 63%; no signs of hemolysis, chronic
hepatitis, or inflammation were detected. The bone marrow
smear showed erythroid hyperplasia with dyserythropoiesis and
2–3% of blasts, ringed sideroblasts were 8–10%. A review of
historical complete blood counts (CBCs) in the proband showed
Hb values around 110–120 g/L. He had a younger brother who
also had microcytosis and low to normal Hb levels (around
130 g/L in historical CBCs series).

Patients’ characteristics are reported in Table 1, including
laboratory and instrumental data at the time of diagnosis.

ALAS2 Mutation and in silico Modeling
A novel missense mutation in ALAS2 gene (c.1382T>A,
p.Leu461His, NM_000032.5), located in exon 9 was identified
in the proband by targeted NGS, and confirmed by Sanger
sequencing in both the proband and the brother (Figure 1).
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No other pathogenic variants associated with congenital
anemias were detected.

The new mutation was not been previously reported in XLSA
patients and was predicted to be probably damaging using five
predictive tools: Mutation Taster6, Polyphen-27, SIFT8, MutPred9,
and SNPs&GO10. Splice site prediction tools showed no evidence
of slicing site abnormalities (NetGene211; NNSplice12; MutPred
Splice13).

The variant was neither found in ExAC nor gnomAD and
classified as likely pathogenic according to ACMG Standards and
Guidelines (Richards et al., 2015).

Targeted NGS analysis also excluded concomitant presence of
mutations in HFE gene associated with hemochromatosis.

In position 461, the leucine residue appears well conserved
(58.1%) in our multiple sequence alignment (see footnote 4).
Moreover, the presence of a hydrophobic residue (Leu, Ala,
and Val) at that position is ensured for more than 90% of
the sequences, indicating the need of a hydrophobic residue

6http://www.mutationtaster.org/
7http://genetics.bwh.harvard.edu/pph2/
8https://sift.bii.a-star.edu.sg/
9http://mutpred.mutdb.org/index.html
10https://snps.biofold.org/snps-and-go/snps-and-go.html
11http://www.cbs.dtu.dk/services/NetGene2/
12https://www.fruitfly.org/seq_tools/splice.html
13http://www.mutdb.org/mutpredsplice/about.htm

able to stabilize that protein region locally. Indeed, our
in silico analysis of the amino acids around the mutated
residue points in this direction. Figure 2 shows that Leu461
is surrounded by a bunch of hydrophobic residues, i.e., L460,
M457, V533, and I476 among others, and that its mutation
into a histidine residue may hamper the formation of this
hydrophobic network (Figure 2) (see footnote 5). Indeed,
the I476 residue has been shown to reduce the enzymatic
activity when mutated into Asn, likely by altering the local
folding of the mutant enzyme (Cotter et al., 1992). Similarly
to the I476N mutation (rs137852299), the L461H mutation
introduces a polar residue in a hydrophobic environment.
We therefore cannot exclude a similar effect on the local
folding of the enzyme.

Serum Hepcidin and Erythroferrone
High hepcidin-25 levels were found in both patients, especially in
the proband (27.65 vs. 10.34 nM/L, normal range 1.8–9.2 nM/L).
Ferritin levels were increased in both patients and higher in the
proband (1,493 vs. 890 µg/L, normal range 30–300 µg/L). The
hepcidin:ferritin ratio was decreased in both patients (18.5 and
11.6, respectively, normal range 20.9–25.3). ERFE levels in the
proband, who had the more expressed phenotype, were markedly
higher than reference range (75.51 ng/mL, reference range 0.32–
1.80 ng/mL) and about five times higher than those of his brother
(14.47 ng/mL) (Table 1).

FIGURE 2 | ALAS2 structure. Chains A and B are indicated in green and cyan, respectively. The selected region (square) indicates the localization of L461 residue. In
the insights we show the WT residue (upper) and the mutated residue (lower) with the closest neighbors.

FIGURE 3 | (A) T2-w MRI of the proband. (B) T2-w of the younger brother.
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Magnetic Resonance Imaging
In the proband, Magnetic Resonance Imaging (MRI)
demonstrated a significant iron accumulation in liver (LIC
295 µM/g), and a mild accumulation in spleen (SIC 134 µM/g)
and pancreas (T2/T2∗ 24.6 ms) (Figure 3A and Table 1), whereas
no accumulation was detected in heart (T2/T2∗ 43 ms). The
younger brother had a mild accumulation in liver (LIC 96 µM/g)
and spleen (SIC 127 µM/g) (Figure 3B and Table 1). Only the
proband had splenomegaly (562 vs. 265 mL).

DISCUSSION AND CONCLUSION

Our targeted NGS panel analysis revealed a novel ALAS2
missense mutation c.1382T>A (p.Leu461His) in exon 9 in the
two brothers. Although Sanger sequencing is usually the first
choice in patients presenting with classical features of X-linked
sideroblastic anemia due to low costs, we choose performing a
NGS panel analysis due to our experience on a not negligible
prevalence of digenic inheritance in iron overload disorders
(Badar et al., 2016), as well as because of the slightly different
phenotype in the two brothers. Leu461 is located in an α-
helix, which in turn is located in the central catalytic domain,
the most evolutionary conserved domain of ALAS2. Indeed,
our sequence alignment analysis revealed that Leu461 (or a
hydrophobic residue) is highly conserved across different species.
Previously described pathogenic mutations were found in the
same highly conserved domain of the protein (Cotter et al.,
1992). Indeed, our in silico modeling showed that the mutant
residue (His) is bigger than the wild type residue (Leu), and
with very different physicochemical properties. The inclusion of
a polar/charged amino acid in a highly hydrophobic environment
(Figure 2) (see footnote 5) could, with high probability, cause
alterations in the local folding of the protein (alpha-helix
structure) by disrupting the local hydrophobic core network
of interactions.

Iron homeostasis in the two affected brothers was studied,
linking biochemical parameters, serum hepcidin-25 and ERFE,
MRI organ iron distribution, and clinical characteristics. Both
patients had a mild-to-moderate iron overload, with some
differences. The proband had a more expressed phenotype
with lower Hb and higher ferritin, TSAT, LIC and spleen
volume. His ERFE and hepcidin levels were higher compared
to reference range and to the younger brother. However,
when hepcidin was studied in relation to ferritin levels, the
hepcidin:ferritin ratio was decreased in both patients, indicating
that hepcidin levels were not as high as they would be
expected for the ferritin levels. Indeed, since hepcidin is
physiologically regulated by body iron stores, the usefulness
of hepcidin:ferritin ratio is to assess whether or not hepcidin
production is appropriate for the degree of iron overload.
Surprisingly, the younger brother, who had the milder phenotype
and milder iron overload, had the lower hepcidin:ferritin ratio.
According to current hypothesis, in iron loading anemias,
erythroid signals override signals from the replete stores, causing
and perpetuating iron overload, with ERFE being the major

candidate erythroid regulator of hepcidin production (Kautz
and Nemeth, 2014; Camaschella and Nai, 2016). In humans
it has been showed that blood loss or EPO administration
increase serum ERFE concentrations, and that patients with
both NTDT and transfusion-dependent β-thalassemia have
very high serum ERFE levels, which decrease after blood
transfusion (Ganz et al., 2017). ERFE levels in our two patients
with XLSA were quite higher than normal, resembling levels
found in NTDT patients (Ganz et al., 2017). This suggests
the presence of a significant erythroid stimulus affecting iron
metabolism notwithstanding a relatively mild XLSA phenotype.
Nonetheless, further studies are needed in additional patients
with XLSA, other sideroblastic anemias, and other iron
loading anemias.

Our study has the obvious limitation that, given the rarity
and the molecular heterogeneity of mutations in ALAS2 gene,
no other cases carrying this mutation have been described
so far. The different clinical severity observed in the two
brothers raised the possibility of concomitant causes of
anemia or iron overload, here excluded by targeted-NGS panel
analysis. Furthermore, it must be taken into account that
environmental factors, like obesity in the proband, may have
influenced the phenotype.

In conclusion, our report illustrates how new methods,
like NGS panels, hepcidin-25 and ERFE measurement, may
help in differential diagnosis of iron loading anemias. Further
studies on the hepcidin-25/ERFE axis in additional patients
with XLSA and other iron loading anemias may help in
establishing its usefulness in the differential diagnosis as well as
to better understand pathophysiology of these genetically and
phenotypically heterogeneous entities.
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