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GABA enhancement by simple 
carbohydrates in yoghurt 
fermented using novel, self‑cloned 
Lactobacillus plantarum 
Taj‑Apis362 and metabolomics 
profiling
Farah Salina Hussin1,3, Shyan Yea Chay1, Anis Shobirin Meor Hussin2, 
Wan Zunairah Wan Ibadullah1, Belal J. Muhialdin1, Mohd Syahmi Abd Ghani1 & 
Nazamid Saari1*

This study aimed to enhance natural gamma aminobutyric acid (GABA) production in yoghurt by the 
addition of simple sugars and commercial prebiotics without the need for pyridoxal 5′‑phosphate 
(PLP) cofactor. The simple sugars induced more GABA production (42.83–58.56 mg/100 g) compared 
to the prebiotics (34.19–40.51 mg/100 g), with glucose promoting the most GABA production in 
yoghurt (58.56 mg/100 g) surpassing the control sample with added PLP (48.01 mg/100 g). The 
yoghurt prepared with glucose also had the highest probiotic count (9.31 log CFU/g). Simulated 
gastrointestinal digestion of this GABA‑rich yoghurt showed a non‑significant reduction in GABA 
content and probiotic viability, demonstrating the resistance towards a highly acidic environment 
(pH 1.2). Refrigerated storage up to 28 days improved GABA production (83.65 mg/100 g) compared 
to fresh GABA‑rich yoghurt prepared on day 1. In conclusion, the addition of glucose successfully 
mitigates the over‑use of glutamate and omits the use of PLP for increased production of GABA in 
yoghurt, offering an economical approach to produce a probiotic‑rich dairy food with potential anti‑
hypertensive effects.

Yoghurt is a fermented form of milk with a thick consistency and has been consumed since ancient times. 
Nowadays, it is appreciated for its high nutritional value and positive health benefits, owing to the probiotic 
effects of the starter culture, i.e. lactic acid bacteria Streptococcus thermophilus (S. thermophilus) and Lactobacillus 
delbrueckii subsp. bulgaricus (L. delbrueckii subsp. bulgaricus), such as improved lactose  digestion1, prevention of 
 diarrhoea2 and stimulation of the gut immune  system3. Globally, the yoghurt market was worth approximately 
85.54 billion USD in 2019 and is forecasted to increase to 106.6 billion USD by  20244.

Gamma aminobutyric acid (GABA) is a non-protein amino acid common in animals, plants, and microorgan-
isms. In animals, it acts as the primary inhibitory neurotransmitter in the central nervous system, while it plays 
a key metabolic role in the Krebs cycle in plants and  microorganisms5. Physiologically, GABA reduces  stress6, 
inhibits cancer cell  proliferation7, decreases blood  pressure8 and prevents  diabetes9. The biosynthesis of GABA 
occurs mainly through fermentation by microorganisms such as yeast, fungi, and bacteria. Typically, yoghurt 
starter cultures have poor glutamate decarboxylase (GAD) activity, for instance, S. thermophilus exhibited GAD 
activity in the range of 0.65 to 11 μmol/g/min of  protein10, 11, while no GAD activity was reported for L. delbrueckii 
subsp. bulgaricus as reflected by extremely low GABA  production12. Most lactic acid bacteria (LAB), namely L. 
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brevis, L. paracasei, L. plantarum, and Lactococcus lactis, produce GABA through α-decarboxylation of glutamate 
via the enzymatic reaction of GAD, a pyridoxal 5′-phosphate (PLP) dependent  enzyme11.

The need for a high concentration of glutamate (32–507 mM) as well as the presence of PLP (18–200 µM) 
are major obstacles for GABA production in food  systems10, 11. Also, glutamate produces a salty/savoury taste at 
high concentrations that is unfavourable for yoghurt products while PLP cofactor is a costly ingredient. How-
ever, due to the various health benefits of GABA, yoghurt rich in GABA represents a value-added functional 
dairy product that can be conveniently consumed regularly. To the best of our knowledge, there are only a few 
studies regarding the effect of sugar on enhancing GABA production in culture  medium10, 11 and no work has 
been reported on the effect of prebiotics in culture medium or these simple carbohydrates in an actual food 
system. Therefore, this study investigated (1) the effect of different carbohydrates (simple sugars and commercial 
prebiotics) on enhancing GABA production in yoghurt cultured using a mixture of two novel, self-cloned LAB 
strains (L. plantarum Taj-Apis362, previously engineered by Tajabadi et al.17 with a GAD activity of 167.2 μmol/
ml/min, assigned as UPMC90 and UPMC91 by Institute of Bioscience, Universiti Putra Malaysia, Malaysia) to 
mitigate the over-use of glutamic acid and omit the need of PLP cofactor, (2) the stability of GABA-rich yoghurt 
during gastrointestinal digestion and 28-days of refrigerated storage, and (3) the metabolomics profile of the 
fermentation-derived biomolecules in yoghurt via 1H-nuclear magnetic resonance (NMR).

Results and Discussion
Effect of simple carbohydrates on GABA production in yoghurt. GABA production by microor-
ganisms is affected by several factors including microbial genetic characteristics, culture conditions (tempera-
ture, pH, time) and media (presence of glutamate and PLP). Most studies reported the need for a high concentra-
tion of glutamate (32–507 mM) and the presence of PLP (18–200 µM) to achieve optimum GABA production 
in different food  systems10, 11. To mitigate glutamate and PLP usage during fermentation, the current study 
improved the media by incorporating different simple carbohydrates, in the form of simple sugars and prebiot-
ics, to maximise GABA production to determine the lowest effective concentration of glutamate (11.5 mM) for 
optimal GABA production. Previous studies had reported glutamate usage of 32 mM in fermented palm date 
 residue14 and 80 mM in fermented  milk18. This proves the efficient conversion of glutamate to GABA in yoghurt 
fermented by UPMC90 and UPMC91 LAB strains under pre-defined optimum  conditions19.

The effect of different simple sugars and prebiotics on GABA content and conversion rate is depicted in 
Fig. 1A. Of the six simple carbohydrates, simple sugars induced more GABA production (42.83–58.56 mg/100 g) 
compared to prebiotics (34.19–40.51 mg/100 g). In particular, glucose significantly (p < 0.05) induced the highest 
GABA production in yoghurt (58.56 mg/100 g, conversion = 34.60%), favourably surpassing the control sample 
with added PLP (48.01 mg/100 g, conversion = 28.38%), a cofactor well known to promote GABA biosynthesis. 
In terms of viable cell count, glucose had the highest probiotic count (9.31 log CFU/g), followed by sucrose (9.06 
log CFU/g) and fructose (8.98 log CFU/g) as depicted in Fig. 1B. The efficient utilisation of glucose by LAB strains 
(both UPMC90 and UPMC91) and starter culture to produce GABA and a high probiotic count was expected 
as glucose is readily phosphorylated to glucose-6-phosphate in the glycolytic cycle of the Embden-Meyerhof 
pathway and phosphoketolase pathway to achieve bacterial cell growth. In contrast, the other two simple sugars, 
namely sucrose and fructose, have to go through additional conversion steps in the phosphoenolpyruvate-
dependent phosphotransferase system before conversion to  pyruvate20, which then either splits into the GABA-
shunt pathway to form GABA or continues to be decarboxylated through the glycolytic pathway to generate ATP, 
NADH and NADPH for cell  growth21. The straightforward metabolism of glucose explains the rapid bacterial 
growth when the sugar is present, allowing growth to reach an exponential phase in a shorter time compared to 
other simple carbohydrates. The accumulation of active bacterial cells then contributes to increased secretion of 
GAD, thus higher enzymatic activity to convert glutamate into GABA. There was a positive correlation between 
viable cell count and GABA production during fermentation, i.e. a higher viable count is associated with more 
GABA formation.

Interestingly, the yoghurt containing prebiotics of inulin, fructooligosaccharides (FOS) and galactooligosacha-
rides (GOS), had GABA contents and viable cell counts substantially lower than simple sugars, indicating poor 
utilisation of the prebiotics by the bacteria due to the high degree of polymerisation (DP) ranging from 2 to 65 in 
the  prebiotics22. Similarly, Hernandez-Hernandez et al.23 reported reduced growth of L. casei ATCC11578 and L. 
delbrueckii subsp. lactis ATCC4797 strains in the present of GOS compared to glucose and lactulose (a synthetic 
disaccharide).  Rayes24 also described that carbohydrates with high DP were poor substrates for bifidobacterial 
because prebiotics with a higher DP require cleavage into monosaccharides with a lower DP by extracellular 
bacterial enzymes before transportation into the cells for  growth25.

Among the three tested prebiotics, inulin produced significantly more GABA than FOS and GOS but lower 
probiotic growth compared to FOS (Fig. 1A and 1B), suggesting that LAB strains of UPMC90 and UPMC91 
with high GAD enzyme activity prefer to metabolise inulin over FOS. In accordance with our results, Choudhary 
et al.26 also showed that inulin was fermented at a higher rate than FOS by L. paracasei CD4 in soymilk. Accord-
ing to Sarbini and  Rastall27, there are specific transport systems in LAB for trisaccharides and tetrasaccharides, 
indicating different metabolic capacity based on the type of substrate used. Also, each LAB strain has its preferred 
choice of prebiotics as substrates for fermentation depending on their respective genetic  characteristics28. These 
findings explain the preferred utilisation of inulin over FOS by the UPMC90 and UPMC91 strains used in the 
current study, whereas the high viable cell count in FOS compared to inulin is mostly due to the abundance of 
starter culture, i.e. S. thermophilus and L. delbrueckii ssp. bulgaricus, in the sample.

PLP (50 µM, positive control) enhanced GABA production (48.01 mg/100 g, conversion = 28.38%) compared 
to yoghurt without any simple carbohydrates (negative control, 29.95 mg/100 g, conversion = 17.71%) and was 
higher than that reported by Yi and  Chui29, who used 8.09 mM of PLP and 134 mM of monosodium glutamate 
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in adzuki bean milk fermented by L. rhamnosus GG. The PLP sample also showed the lowest viable cell count 
(log 6.76 CFU/g) similar to the negative control, indicating no significant effect on bacterial cell growth com-
pared to simple carbohydrates. This is in line with Li et al.30 who reported that PLP did not affect the growth of 
L. brevis NCL912. Therefore, the presence of PLP in yoghurt enhances GABA production but does not affect 
the growth of L. plantarum Taj-Apis362 strain UPMC90 and UPMC91. Among all tested simple carbohydrates, 
glucose displayed the highest substrate efficiency for bacterial metabolism, rapidly promoting cell growth which 
enhanced the conversion of glutamate into GABA during yoghurt fermentation, thus was selected for further 
studies as detailed below.

Simulated digestion study on GABA‑rich yoghurt. In vitro gastrointestinal digestion is an effective 
and valid strategy to simulate digestion in the human gastrointestinal tract. Various mechanical, chemical and 
enzymatic actions occur within the human digestive tract to degrade food matrices, releasing nutrients that are 
readily absorbed by the body. In this study, the simulation was performed at pH 1.2 for the first 2 h to mimic 
stomach digestion, followed by increasing the pH to 6.8 for the next 4 h to mimic intestinal digestion. The results 
of GABA stability and the survival of probiotic cultures are shown in Fig. 2 as GABA content and viable cell 

Figure 1.  Effect of simple carbohydrates on (A) GABA content and conversion rate and (B) Viable cell count in 
yoghurt. Different letters indicate significant difference at p < 0.05.
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count, respectively. No significant reduction of GABA was observed after 6 h of digestion. While gastrointestinal 
enzymes such as pancreatin and pepsin are available to perform hydrolysis in the simulated system, GABA is 
not digested because it is a non-protein amino acid, i.e. not a substrate for these enzymes. Instead, the structural 
integrity and stability of GABA are maintained through resistance to acidic pH. Similarly, a study by Le et al.31 
revealed no significant reduction in GABA content in germinated soymilk after 2 h of simulated digestion at 
37 °C.

In contrast, a slow reduction in probiotic viability was detected throughout hydrolysis, decreasing from 9.31 
log CFU/g at 0 h to 8.49 log CFU/g at the end of 6 h digestion. A similar reduction was reported for L. acido-
philus La-5 in fermented soy  product32 and B. animalis subsp. lactis in goat milk ice  cream33 under the same 
conditions. Probiotics are only deemed beneficial and useful when they tolerate the harsh acidic conditions in 
the stomach and withstand further digestion in the small intestine to reach the large intestine in viable form 
restoring gut microbial balance. While the viable count reduced significantly after digestion in the current study, 
it was maintained at 8.49 log CFU/g until the end of digestion, probably due to a complementary effect from the 
acid-resistance nature of bacteria and  H+ ion-dependent GABA production. Coherently, Sanchart et al.34 reported 
the survival of LAB at pH < 2.5 for at least 2 h, while Wang et al.35 reported that GABA production involves the 
consumption of  H+ ion from the extracellular environment, making it less acidic and favourable for probiotic 
survival. This study highlights the stability of UPMC90, UPMC91 and starter culture to maintain a viable cell 
count after simulated digestion.

Storage stability study
GABA content, viable cell count and pH. The GABA content and probiotic viability during storage are 
vital to ensure good bio-functionalities and health benefits for consumers without jeopardising the organoleptic 
properties (in terms of sourness measured as pH). The effects of 28-day refrigerated storage (2–4 °C) on GABA 
content, viable cell count and pH of GABA-rich yoghurt are illustrated in Fig. 3. A significant increase in GABA 
content was observed over 28-days storage compared to freshly fermented yoghurt on day 1 (59.00 mg/100 g), 
with the GABA content reaching a maximum of 113.95 mg/100 g on day 21, then decreasing to 83.65 mg/100 g 
on day 28. Despite this reduction, the GABA content was still higher than the initial value, indicating that 
refrigerated storage up to 28 days is acceptable but storage for 21 days is optimum. The increased GABA con-
tent over 28 days of storage reflects the continuous formation of GABA by the GABA-producing LAB strains 
of UPMC90 and UPMC91 as well as starter culture throughout the study period. The increasing GABA content 
during storage is in agreement with a previous  finding36, whereby GABA increased from 5.71 mg/100 g (day 
1) to 10.33 mg/100 g (day 14) during refrigerated storage of yoghurt cultured with starter culture and GABA-
producing strains of L. cremoris and L. lactis O-114, L. helveticus Lh-B 02 and L. rhamnosus B-1445.

The viable cell count of GABA-rich yoghurt was initially recorded at 9.68 log CFU/g on day 1 and peaked 
at 10.23 log CFU/g on day 14, followed by a sharp reduction to 9.17 and further to 9.06 log CFU/g on day 21 
and 28, respectively. While the viability reduced over time, it is still in accordance with the minimum standard 
count of 6.00 log CFU/g required for probiotic food  recognition37, thus the GABA-rich yoghurt is a probiotic 
food for 28 days of storage. Interestingly, the highest GABA content was recorded on the reduced viable cell 
count on day 21 because GABA accumulates over time and is rarely converted into other products by microbes 
as GABA is not a preferred substrate. However, at the end of storage (day 28), the reduced GABA content may 
be attributable to Saccharomyces cerevisiae, a spoilage microbe known to utilise  GABA38 and is often detected in 
yoghurt  products39, 40. This strain contains enzymes that degrade GABA, i.e. GABA-permease, which is respon-
sible for GABA uptake from the extracellular environment into the cell where it is converted to succinate by 
GABA-transaminase and semialdehyde dehydrogenase before entering the Krebs cycle for further assimilation 
as a carbon and/or nitrogen  source41, 42. Since there were early signs of GABA reduction by day 28 of storage, 
extending the storage time longer than 28 days is not recommended. In terms of pH, a significant reduction was 
observed from pH 3.99 to 3.88 in GABA-rich yoghurt due to the production of lactic acid in the milk during 
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Figure 2.  Effect of simulated digestion on GABA content and viable cell count in GABA-rich yoghurt. Different 
letters indicate significant difference (p < 0.05) for GABA content (small letters) and viable cell count (capital 
letters) during 6 h of simulated digestion.
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refrigerated  storage43. This pH range falls within the acceptable limits of pH 3.7–4.6 for commercial yoghurt, 
thus complying with the product specification requirement.

In standard yoghurt, GABA is minimally produced by the starter culture (a mixture of S. thermophilus and 
L. delbrueckii ssp. bulgaricus), recording values from 9.02 mg/100 g (day 1) to 17.16 mg/100 g (day 28) that are 
significantly lower than that of GABA-rich yoghurt. While the GABA-producing ability of these two strains has 
been  acknowledged44, the conversion rate is low. Watanabe et al.45 reported poor GABA production (less than 
5 mM) after 48 h of milk fermentation by the said starter culture. Therefore, the GABA-rich yoghurt had more 
GABA compared to standard yoghurt during 28 days of refrigerated storage.

Water holding capacity and syneresis
Water holding capacity (WHC) and syneresis directly reflect the coagulum strength of yoghurt as a semi-solid, 
gel-like food product and are related to the textural and sensorial properties (mouthfeel, eating experience) of 
a  product46. Syneresis, a common phenomenon in yoghurt, is considered unfavourable to consumers owing to 
the presence of exudate/fluid release from the food matrix. As shown in Fig. 4A, the WHC of GABA-rich and 
standard yoghurt recorded no significant changes over 28 days of storage, except for an increment on day 7, 
indicating the high stability of the yoghurt over time. The GABA-rich yoghurt exhibited a minor decrease in 
syneresis values (11.70–15.03%) compared to the standard yoghurt (20.79–21.63%) during storage (Fig. 4B). The 

Figure 3.  GABA content, viable cell count and pH of GABA-rich yoghurt compared to standard yoghurt 
during 28 days of storage at 4 °C. Different letters indicate significant difference (p < 0.05) among GABA-rich 
yoghurt (capital letters) and standard yoghurt (small letters) on different days of storage.
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low syneresis values are due to the acidic environment that enhances the gel network to resist syneresis during 
 storage47. According to Lobato-Calleros et al.48 and Nguyen et al.49, the increasing WHC and reduced syneresis 
resulted from effective water molecule entrapment in the protein network. The addition of glucose did not affect 
the WHC and syneresis of the GABA-rich yoghurt and standard yoghurt.

1H‑NMR Metabolomics analysis
Yoghurt comprises numerous biomolecules including proteins, lipids, sugars, amino acids, organic acids, fatty 
acids, minerals and volatile aroma compounds that contribute to the overall flavour and taste profile. In this study, 
both GABA-rich and standard yoghurt were freeze-dried before NMR spectroscopy to prevent signal interference 
from water  molecules50. It is known that each microorganism induces metabolite changes via different metabolic 
pathways during  fermentation51, therefore, a metabolomics approach based on 1H-NMR was used to compare 
the major metabolite profile of freeze-dried GABA-rich yoghurt (GY) and freeze-dried standard yoghurt (SY), 

Figure 4.  Effect of refrigerated storage on (A) WHC and (B) syneresis of GABA-rich yoghurt compared to 
standard yoghurt. Different letters indicate significant difference (p < 0.05) for GABA-rich yoghurt (capital 
letters) and standard yoghurt (small letters) on different days of storage.
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both of which were fermented from milk, with SY containing only a starter culture of S. thermophilus and L. del-
brueckii ssp. Bulgaricus, while GY contains additional GABA-producing LAB strains of UPMC 90 and UPMC91.

Figure 5 depicts the 1H-NMR spectra, showing that a total of 16 and 13 compounds were detected in GY and 
SY, respectively. The different metabolite profiles may be due to the strain-specific metabolic activities of GABA-
producing LAB strains (UPMC90 and UPMC91). Similarly, a previous study reported that the free phenolic 
content varied during fermentation of whole-grain barley when different species of lactobacillus were  used52. 
Table 1 tabulates the amino acid, sugar and organic acid content of GY and SY. Briefly, GY comprised seven 
amino acids including GABA, glutamine, alanine, histidine, proline, cysteine and valine, while SY comprised 
only four amino acids including GABA, alanine, histidine and choline. When the amino acid was present in both 
samples, GY showed a higher concentration than SY except for alanine. Similarly, GY demonstrated a higher 
GABA content (97.65 mg/100 g) than SY (25.10 mg/100 g), confirming that the addition of glucose increased 
natural GABA production by UPMC90 and UPMC91 LAB strains and that GABA was produced naturally by 
the starter culture in SY without the presence of GABA-producing strains.

Seven sugars (glucose, lactose, lactulose, trehalose, arabinose, galactose and N-acetylglucosamine) were 
identified in both GY and SY samples, with more glucose (311.85 mg/100 g), trehalose (1174.00 mg/100 g) and 

Figure 5.  1H-NMR spectra of (A) freeze-dried standard yoghurt (SY) and (B) freeze-dried GABA-rich yoghurt 
(GY). The spectra was analysed using MestReNova software (Mestrelab, Santiago de Compostela, Spain). https:// 
mestr elab. com/.

https://mestrelab.com/.
https://mestrelab.com/.
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galactose (549.48 mg/100 g) in GY compared to SY. The high concentration of glucose was due to the addi-
tion of this sugar into the fermentation medium as a GABA enhancer. Galactose is excreted into the medium 
when the microorganisms (starter culture and GABA-producing LAB strains) consume the glucose moiety of 
lactose in the  milk53, leaving behind the galactose residue. The increased level of galactose in GY indicates the 
increased consumption of lactose as the preferred substrate in the starter culture co-inoculated with UPMC90 
and UPMC91 LAB strains. Similar to our findings, a higher galactose content was observed when co-culturing 
L. plantarum WCFS1 with S. thermophilus and L. delbrueckii ssp. bulgaricus compared to that without L. plan-
tarum  WCFS154. The lower amount of lactose correlates to the lower amount of lactic acid in GY, which can be 
explained by the heterofermentative metabolism of UPMC90 and UPMC91 strains favouring lactose utilisation 
for energy production while generating metabolites other than lactic acid, thus lowering the amount of lactic acid.

In contrast, the starter culture (S. thermophilus and L. delbrueckii ssp. bulgaricus) in SY produced more lactic 
acid due to homofermentative metabolism that generates lactic acid as the main end-product55. While yoghurt 
is widely recognised as suitable for lactose intolerant individuals, the significantly lower amount of lactose in GY 
(346.41 mg/100 g) compared to SY (1025.00 mg/100 g) provides an additional benefit to patients suffering from 
severe lactose intolerant symptoms. In short, the metabolites were produced due to major structural alteration of 
milk components through two biochemical pathways, (i) glycolysis whereby carbohydrate is converted into lactic 
acid or other metabolites, and (ii) proteolysis whereby casein is hydrolysed into a peptide or free amino  acid56.

Conclusion
The current study is the first to report the effect of simple sugars and prebiotics in enhancing natural GABA 
production in a food system (yoghurt). The addition of glucose (2% w/v) enhanced GABA production in a very 
low concentration of glutamate (11.5 mM) without the need to add a PLP cofactor. The simulated gastrointestinal 
and storage studies revealed the good stability of GABA and viable cell count under gastrointestinal conditions as 
well as refrigerated storage up to 28 days, meeting the minimum requirement of 6.00 log CFU/g for recognition 
as a probiotic food. The addition of glucose had no adverse impact on the water holding capacity compared to 
standard yoghurt. This study successfully mitigates the over-use of glutamate and omits the use of the expensive 
PLP cofactor in the production of GABA-rich yoghurt, offering an economical approach to produce a probiotic-
rich, functional dairy food with prospective stress management and cardiovascular disease prevention properties. 
Before human consumption, a rigorous risk assessment involving the identification of potentially hazardous 
substances and the likelihood of the occurrence of adverse effects from genetic engineered strains should be 
conducted on the GABA-rich yoghurt to ensure product safety.

Materials and methods
Materials. Non-fat skimmed milk powder (Sunlac brand) and pasteurised fresh milk (Goodday brand) 
were purchased locally. Food grade commercial prebiotics (90–95% purity), inulin and galactooligosaccharides 
(GOS) were purchased from CK Chemical Sdn Bhd and fructooligosaccharides (FOS) were purchased from 
Greenfinite Sdn Bhd. MRS agar and MRS broth were obtained from HiMedia Laboratories Pvt. Ltd. (Mumbai, 
India). Glutamate, GABA standard and triethylamine were obtained from Merck KGaA (Darmstadt, Germany). 

Table 1.  Metabolite profiles in freeze-dried GABA-rich yoghurt (GY) and freeze-dried standard yoghurt (SY) 
determined using 1H-NMR metabolomics-based analysis. s = singlet; d = doublet; t = triplet; dd = doublet of 
doublets; m = multiplet; ND = not determined.

Metabolite 1H-NMR characteristic signals

GY SY

mg/100 g

Glucose δ 3.889 (dd), δ 3.824 (m), δ 3.889 (dd) 311.85 226.64

Glutamate δ 2.04 (m), δ 2.119 (m), δ 2.341 (m), δ 3.748 (dd) 461.25 ND

GABA δ 1.89 (m), δ 2.28 (t), δ 3.00 (t) 97.65 25.10

Glutamine δ 2.13 (m), δ 2.44 (m), 290.53 ND

Alanine δ 1.47 (d) 15.45 18.97

Histidine δ 3.16 (dd), δ 3.23 (dd) 205.49 152.98

Choline δ 3.189 (s) ND 29.48

Proline δ 3.33 (dt), δ 3.34 (m) 54.34 ND

Cysteine δ 3.38 (dd) 177.02 ND

Valine δ 3.61 (d), 3.7 (m), 38.80 14.41

Lactose δ 3.55 (m), δ 3.79 (m), δ 4.44 (d),
δ 5.22 (d) 346.41 1025.00

Lactulose δ 3.582 (m), δ 3.732 (m) 189.54 307.23

Trehalose δ 3.44 (t), δ 5.18 (d) 1174.00 842.39

Arabinose δ 3.68 (m), δ 3.95 (m), δ 4.52 (d) 196.37 367.82

Galactose δ 4.07 (t) 549.48 441.38

N-Acetylglucosamine δ 3.47 (m), δ 3.65 (dd), δ 3.76 (m) 51.10 49.55

Lactic acid δ 1.32 (d), δ 4.14 (d) 1338.00 2060.00
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Methanol-d4, deuterium oxide  (D2O) and sodium deuteroxide (NaOD) for NMR analysis were purchased from 
Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA). All other chemicals were analytical or HPLC 
grade.

Preparation of starter culture and GABA‑producing LAB strains. Two L. plantarum Taj-Apis362 
strains possessing high intracellular GAD activity (UPMC90) and high extracellular GAD activity (UPMC91) 
were obtained from the culture collection of the Institute of Bioscience, Universiti Putra Malaysia and routinely 
stored in sterile MRS broth at -80 °C as a stock culture. These strains were characterised previously, whereby 
the wild-type L. plantarum Taj-Apis362 was isolated from the stomach of the honeybee Apis dorsata and used 
as a host for GAD gene overexpression to produce UPMC90 and UPMC91  strains17. All procedures involving 
the use of L. plantarum Taj-Apis strains were approved by the National Board of Biosafety, Ministry of Natural 
Resources and Environment, Malaysia (approval no. JBK [S]-602–1/2/207). Commercial starter culture (Lactina 
brand) containing S. thermophilus and L. delbrueckii ssp. bulgaricus was obtained from YoghurtBio (Sofia, Bul-
garia). Reconstituted skim milk was prepared by mixing commercial pasteurised fresh milk and skimmed milk 
powder to reach 16% non-fat dry matter, then heat-treated at 80–85 °C for 30  min49, cooled to 4 °C on ice before 
aliquoting into 250-mL screw-capped Schott bottles and storage at 4 °C for 24 h before use. At the beginning of 
each fermentation cycle, i.e. production of a new batch of yoghurt sample, starter culture and LAB strains were 
prepared fresh from the stock. The starter culture was inoculated into sterilised reconstituted skimmed milk and 
incubated at 42 °C for about 6 h until the pH reached 4.5–4.6. LAB strains were streaked for single colony isola-
tion on MRS agar, then transferred to 10 mL MRS broth, incubated for 18 h at 37 °C to allow cell growth, and 
transferred to sterilised reconstituted skimmed milk for sub-culture for 22–24 h. At the end of incubation, the 
coagulated milk was employed as inoculum for yoghurt production.

Addition of sugars and prebiotics to yoghurt. Eight samples of yoghurt were prepared: negative con-
trol (yoghurt with glutamate only), positive control (yoghurt with glutamate + 50  µM of PLP cofactor), and 
yoghurt with glutamate + 2% (w/v) of glucose, sucrose, fructose, inulin, FOS and GOS, respectively. The amount 
of sugar/prebiotic (2%) was selected based on previous studies to induce GABA in various samples of  kimchi57, 
cornhub  hydrolysate58 and skimmed  milk59. Briefly, the yoghurt samples were prepared by co-inoculating the 
starter culture and GABA-producing LAB strains (viable count of  106 CFU/g) simultaneously at a ratio of 2:1 
w/w into fresh sterilised reconstituted skimmed milk, then 11.5 mM glutamate was added and fermentation was 
allowed for 7.25 h at 39°C19. Upon completion, samples were rapidly cooled in an ice bath to stop fermentation 
and stored at 2–4 °C until further analysis.

Determination of GABA content. GABA and glutamate were determined following the method previ-
ously described by  Tajabadi17 via HPLC (Shimadzu LC 20AT, Shimadzu Corporation, Kyoto, Japan) equipped 
with an oven (model CT0-10ASVP), pump system and PDA detector (model SPD-M20A). A Chromolith RP-18 
endcapped separation column (100 mm length × 4.6 mm internal diameter, Merck KGaA, Darmstadt, Germany) 
was used for this analysis. The yoghurt sample was centrifuged at 10,000 × g for 15 min at 4 °C and 10 μL of the 
supernatant was placed into a small Durham tube and evaporated under vacuum for 40 min. Then, the dried 
supernatant was dissolved in 20 μL of a mixture of ethanol/water/triethylamine solution at a ratio of 2:2:1 and 
vacuum evaporated for another 40 min, followed by the addition of 30 μL of a mixture of ethanol/water/trieth-
ylamine/phenylisothiocyanate solution at a ratio of 7:1:1:1 and left for 20 min at room temperature to allow phe-
nylisothiocyanate-GABA formation. The sample was vacuum evaporated for 40 min to remove excess reactant.

The derivatised sample was then diluted and subjected to HPLC analysis. The mobile phase A was prepared by 
dissolving 8.205 g of sodium acetate, 0.5 mL of trimethylamine and 0.7 mL of acetic acid in 1000 mL of deionised 
water, then the pH was adjusted to 5.8 using 0.1 M sodium hydroxide. Meanwhile, mobile phase B was prepared 
by mixing acetonitrile with deionised water at a ratio of 60:40 (v/v). Both mobile phases were filtered through a 
0.45 μm membrane filter. The sample (5 µL) was injected and eluted at a flow rate of 0.6 mL/min using isocratic 
elution of 80% mobile phase A + 20% mobile phase B. Compound detection was performed using a diode array 
detector at λ = 254 nm. The GABA and glutamate contents were calculated by comparing the sample peak area 
with the GABA standard and glutamate standard, respectively.

Viable cell count. Bacterial enumeration was performed using the pour plate method. Firstly, 1.0  g of 
yoghurt sample was diluted with 9.0 mL of sterile peptone water. Subsequently, a tenfold dilution was made 
using peptone water, and 0.1 mL of the diluted sample was spread on MRS agar and cultured at 37 °C for 48 h to 
allow cell growth. The colonies appearing on the plates were then counted, multiplied by the dilution factor, and 
expressed as log colony-forming unit per g (log CFU/g).

Gastrointestinal stability study (simulated digestion). From the six yoghurt samples with different 
sugars and probiotics, the sample with the highest GABA content and viable cell count was selected for further 
product performance evaluation and characterisation as follows: gastrointestinal stability study, 28-days storage 
stability study and metabolomics profiling. Simulated digestion was performed following the method described 
by  Auwal60. Two solutions were prepared, simulated-gastric-fluid (SGF) and simulated-intestinal-fluid (SIF). 
The SGF was prepared by mixing 20 mg/mL of pepsin, 350 µL of concentrated HCl and 0.1 g of NaCl in deion-
ised water to a total volume of 50 mL and the pH was adjusted to 1.2. Next, 1 mL of the SGF solution was added 
to 3 mL of yoghurt and incubated at 37  °C in a water bath shaker for 2 h. Meanwhile, the SIF solution was 
prepared by mixing 34 mg/mL of  KH2PO4, 3.85 mL of NaOH (200 mM) and 0.5 g of pancreatin in deionised 
water to a final volume of 50 mL and the pH was adjusted to 6.8. Then, 1 mL of the SIF solution was added to the 
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reaction mixture and re-incubated for 4 h under the same conditions. Aliquots (1 mL) were taken at 0, 2, 4 and 
6 h and boiled at 100 °C for 10 min to inactivate enzymes and stored at − 20 °C for GABA content. For viable cell 
count, aliquots of 1 mL were also taken at 0, 2, 4 and 6 h and rapidly cooled before storing at -20 °C.

pH determination. The pH value of yoghurt samples was measured using a pH meter (model S20 Sev-
enEasy, Mettler-Toledo GmbH, Columbus, OH, USA).

Water holding capacity and syneresis. The WHC of yoghurt was determined according to the modified 
procedure described by  Abdelmoneim61. Yoghurt sample of 10 g  (W1) was centrifuged at 5000 g for 10 min at 
4 °C, the supernatant was collected and weighed  (W2). The WHC (%) was calculated as follows:

Syneresis was determined according to the method of  Aguilera62. Briefly, 10 g of yoghurt sample  (W1) was 
centrifuged at 700 g for 10 min at 4 °C, the supernatant was collected and weighed  (W2), and the degree of 
syneresis (%) was calculated as follows:

Metabolomics profiling (1H‑NMR analysis). Yoghurt samples were freeze-dried and subjected to 1H-
NMR analysis as described by  Muhialdin63. A total of 10 mg of freeze-dried yoghurt was mixed with 0.375 mL 
of  CH3OH-d4 and 0.375 mL of  KH2PO4 buffer in  D2O containing 0.1% trimethylsilyl propionate as an internal 
standard. The pH was adjusted to 6 with NaOD. The mixture was vortexed for 1 min, sonicated in an ultra-
sonicator at 30 °C for 15 min and centrifuged at 13,000 rpm for 10 min. Aliquots of supernatant (600 μL) were 
transferred to an NMR tube for 1H-NMR analysis. Spectra were recorded at 26 °C on a spectrometer (model 
UNITY INOVA 500, Agilent Technologies Inc., Santa Clara, CA, USA) using a frequency of 500  MHz and 
tetramethylsilane was used as an internal standard. The spectra were automatically phased and bucketed with 
standard bins of δ 0.05 ranging from region δ 0.50 to 10.00. The metabolites were identified using Chenomx soft-
ware version 8.5 (Chenomx Inc., Edmonton, Canada). The residual methanol region (δ 3.28 to 3.33) and water 
region (δ 4.70 to 4.96) were excluded from the analysis. Two-dimensional 1H–1H J-resolved and Heteronuclear 
Multiple-Bond Correlation (HMBC) were employed for metabolite identification. Six replicates were examined 
for each yoghurt sample.

Statistical analysis. Analysis of variance (ANOVA) followed by Duncan’s test and 2-sample t-test were 
used to evaluate means at significant difference of p < 0.05 using Minitab software version 16 (Minitab Inc., State 
College, PA, USA). All values were reported as means ± standard deviation from at least triplicate determina-
tions.
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