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Abstract

The catalytical isoforms p110y and p1105 of phosphatidylinositide 3-kinase y (PI13Ky) and
PI3Kd play an important role in the pathogenesis of asthma. Two key elements in allergic
asthma are increased levels of eosinophils and IgE. Dual pharmacological inhibition of
p110y and p1100 reduces asthma-associated eosinophilic lung infiltration and ameliorates
disease symptoms, whereas the absence of enzymatic activity in p110y<°5°1%A mice
increases IgE and basal eosinophil counts. This suggests that long-term inhibition of p110y
and p1108 might exacerbate asthma. Here, we analysed mice genetically deficient for both
catalytical subunits (p110y/5”") and determined basal IgE and eosinophil levels and the
immune response to ovalbumin-induced asthma. Serum concentrations of IgE, IL-5 and
eosinophil numbers were significantly increased in p110y/5” mice compared to single
knock-out and wildtype mice. However, p110y/3”" mice were protected against OVA-
induced infiltration of eosinophils, neutrophils, T and B cells into lung tissue and bronchoal-
veolar space. Moreover, p110y/d”" mice, but not single knock-out mice, showed a reduced
bronchial hyperresponsiveness. We conclude that increased levels of eosinophils and IgE
in p110y/5”" mice do not abolish the protective effect of p110y/3-deficiency against OVA-
induced allergic airway inflammation.

Introduction

Asthma is a chronic inflammatory syndrome of the airways [1], which affects about 241 million
people worldwide [2]. The most common manifestation of this syndrome is the allergic asth-
matic phenotype [3]. It is characterized by mucus hypersecretion and hyperplasia of lung tissue
causing breathlessness, cough and wheezing. Moreover, it is accompanied by an elevated
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bronchial hyperresponsiveness [4]. A key immunological feature of allergic asthma is a Th2
cell-driven eosinophilia in the lung and blood, accompanied by elevated IgE levels [5]. It has
been shown that eosinophils are required for the development of experimental allergic asthma
in C57BL/6 mice [6,7] and the severity of asthma was correlated with increasing eosinophil lev-
els in human patients [8]. Allergen-specific IgE plays a major role in the development of
chronic airway inflammation [9]. Monomeric IgE has been shown to promote mast cell sur-
vival and cytokine secretion in the absence of cross-linking by allergens [9,10].

Various studies demonstrate that phosphatidylinositide 3-kinase y (PI3Ky) and & (PI3K$)
play a central role in the pathogenesis of allergic asthma and contribute to eosinophilic inflam-
mation and bronchial hyperresponsiveness [11-14]. PI3Ky and PI3K3 lipid kinases are hetero-
dimers formed by a catalytic and a regulatory subunit. The two isoforms belong to the PI3K
class I family and are activated through partially overlapping pathways [15]. PI3Ky is mainly
stimulated by G protein-coupled receptors (GPCRs), such as chemokine receptors, through
interaction with GBy dimers and Ras, whereas PI3K3 is predominantly responsive to receptor
tyrosine kinases, Toll-like receptors, cytokine and antigen receptors, and also Ras [15,16].

The catalytic PI3K subunits p110y and p1108 are mainly expressed in hematopoietic cells,
where they control various functions, including proliferation, differentiation, migration and
survival of leukocytes [17]. While p110y is involved in the development of T cells [18], growth
factor-induced anti-apoptotic signalling in neutrophils [19], and the migration of macrophages
[20], neutrophils [16,20] and eosinophils [12,13,21], p1103 is required for the differentiation
and recruitment of Th cell subsets [22-24] and the development of B cells [25,26].

Pharmacological inhibitors of PI3Ky/3 have been investigated for the treatment of inflam-
matory diseases [27,28]. TG100-115, a dual PI3KYy/3 inhibitor, showed beneficial effects on the
development and progression of eosinophilic asthma and neutrophilic-driven COPD in mice
[28]. Treatment with IPI-145, another dual PI3Ky/8 inhibitor, resulted in a significant reduc-
tion of allergic symptoms in an ovalbumin (OVA)-induced asthma model in rats [27]. While
these studies indicate that compounds inhibiting both PI3Ky and & may be effective in the
treatment of asthma, analyses of mice lacking PI3Ky/8 enzymatic activity suggest that long-
term inhibition during treatment with dual inhibitors harbours potential risks. Indeed, we and
others have shown that p110y/8 double knock-out (KO) (p1 10\{/5’/ 7) mice suffer from severe
immune defects, including B cell lymphopenia [29] and T cell lymphopenia [30], the latter of
which has also been observed after administration of the dual-specific pharmacological p110y/
d inhibitor CAL-130 [31]. Lymphopenia and a restricted T cell reservoir are often associated
with a Th2-driven eosinophilia in humans [32] and mice [33]. Interestingly, in mice lacking
p110y and expressing a catalytically inactive p1108 isoform (p110y<©/5P104
nia is indeed accompanied by infiltration of mucosal tissues by eosinophils, and hyperimmu-

mice), lymphope-

noglobulinemia IgE [23]. Eosinophils and IgE are critically involved in the pathogenesis of
allergic asthma. Therefore, eosinophils increased by a permanent block in p110y/3 signalling
might counteract the protective effect of dual p110y/3 inhibition on the onset and progression
of asthma.

To test this hypothesis, we examined the immune response of p110y/5”" mice in an OVA-
induced allergic airway inflammation model. We determined (1) the distribution of eosino-
phils, concentrations of the corresponding hematopoietic growth factor IL-5, and IgE levels in
a basal state, and (2) the immune response in the OVA-induced airway inflammation model.
Despite a pronounced eosinophilia and hyperimmunoglobulineamia IgE, the lack of both p110
kinases in p110y/5”" mice protected against OVA-induced allergic airway inflammation and
bronchial hyperresponsiveness.
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Materials and Methods
Animals

Generation of p110y™", p1108” and p110y/8”" mice was described previously [29]. Mice used
in this study were on a C57BL/6N genetic background (Charles River). For all experiments
8-14 week-old male mice were used.

Ethics statement

Animal experiments were conducted in accordance with the recommendations in the Guide
for the Care and Use of Laboratory Animals (FELASA). Animals were kept in standard cages
with enrichment under specific pathogen-free conditions (SPF) according to national guide-
lines for animal care at the animal facility of the University of Tuebingen. All animals were
kept with a 12 hour light/dark cycle and had access to food and water ad libitum. The physical
condition was monitored daily both before and during the experiments. No animal became
severely ill or died before the experimental endpoint. Protocols were approved by the commit-
tee on the Ethics of Animal Experiments of local authority “Regierungsprasidium Tuebingen”
(permit number: PH4/11, PH3/12 and $4 Mitteilung vom 26.11.2009 and 6.12.2013). All sur-
gery was performed under anaesthesia and all efforts were made to minimize suffering. For IPL
and BALF mice were anaesthetized with Pentobarbital (120 mg/kg BW).

Ovalbumin-dependent induction of allergic airway inflammation

An ovalbumin (OVA)-dependent allergic airway inflammation was induced as described previ-
ously [14,34] and illustrated in S1 Fig. In short, mice received a 200 ul i.p. injection on day 1
and 14 containing 20 pg OVA (Sigma-Aldrich) and 1 mg of Imject'™ Alum (Thermo Scien-
tific). Subsequently, all mice were challenged for 30 minutes on days 21, 22 and 23 with an
aerosolised OV A solution (3% OVA in DPBS (both from Sigma-Aldrich)) or DPBS alone for
the control group. For the challenge, animals were placed in a Plexiglas chamber and the aero-
sol with a median mass diameter of 2.2 uM was generated with a PARI BOY SX (Pari). On day
25, animals were euthanised with 120 mg/kg of sodium pentobarbital (Sigma-Aldrich), and
were either used to determine airway resistance in the isolated perfused lung (IPL) model or to
analyse leukocyte infiltration into the bronchoalveolar space and the lung tissue.

Preparation of leukocyte suspensions from spleen, blood, bone marrow,
lung tissue and BALF

Leukocyte suspensions from spleen, blood, bone marrow (BM) and lung tissue were isolated as
described previously [29,35]. To isolate leukocytes from bronchoalveolar lavage fluid (BALF) a
bronchoalveolar lavage (BAL) was performed. To this end euthanised animals were tracheoto-
mised and the trachea cannulated. Then, mice were exsanguinated and BAL was performed by
instillation of 400 pl ice cold PBS for four times. BALF was collected and BALF cells were iso-
lated by centrifugation at 500 x g for 5 min.

Cellspin preparation

Cellspins were performed on silan coated specimen holders with the Cellspin II (Tharmac) at
6°C (75 x g, ramp 4, break 6) for 10 min. 1/5 of cells collected by BAL were used for cellspin
preparation.
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Flow cytometry

For flow cytometric characterisation of leukocytes from spleen, blood, BM, lung tissue, and
BALF the following antibodies were used: F4/80 FITC (1:100, AB_893500, clone BMS; BioLe-
gend), CD3e Pacific Blue (1:100, AB_397063, clone 500A2), CD3e PerCPCy5.5 (1:100, AB_
10562558, clone 145-2C11), CD11b PE-Cy7 (1:400, AB_394491, clone M1/70), CD19 V450
(1:100, AB_1645269, clone 1D3), Ly6G FITC (1:100, AB_10562567, clone 1A8), Siglec-F PE
(1:200, AB_394341, clone E50-2440; all BD Bioscience), Ly6G APC (1:1600, 17-9668-82, clone
1AS8; eBioscience). Flow cytometry was performed with the FACS Canto II (BD Bioscience)
and the obtained data were analysed using Flow]o 7.6.1 (FlowJo).

Determination of airway resistance

Airway resistance in response to methacholine (MCh, acetyl-B-methylcholine chloride; Sigma-
Aldrich) was determined with the ex vivo model of the IPL (Harvard Apparatus) [34]. In brief,
in situ mouse lungs were placed in a heated (38°C) thorax chamber and mice were ventilated
via a tracheal cannula. Ventilation rate was set to 90 breaths per minute with negative pressure
ventilation between -2.7 cm H,0 and -8.5 cm H,O. To prevent atelectasis, a hyperinflation was
triggered every 5 minutes (-25 cm H,0). Lungs were perfused with a buffer containing 4%
hydroxyethyl starch (Serumwerk Bernburg) via the pulmonary artery at a flow rate of 1 ml/
min. After a 20 minute baseline measurement, lungs were perfused with increasing concentra-
tions of MCh (5 uM, 50 uM and 500 uM) in perfusion buffer for 10 minutes each. Between
concentrations lungs were washed with perfusion buffer only for 20 min. Physiological lung
parameters, including airway resistance, were recorded automatically and analysed by
HSE-HA Pulmodyn W Software 1.1.1.202 (Harvard Apparatus). For statistical and graphical
analysis, the mean resistance values were calculated from the last 10 time stamps (40 seconds)
starting 5 min after each 10 minute of MCh exposure.

Measurement of cytokines, total and OVA-specific IgE

Serum concentrations of IL-5 in peripheral blood were determined with a Bio-Plex mouse cyto-
kine 23-plex assay (Bio-Rad Laboratories), according to the manufacturer's protocol. In brief,
the bead suspension was incubated with standard, samples, or blank for 30 min under continu-
ous shaking in a 96-well filter plate. Then, the plate was washed three times. Beads were resus-
pended in biotinylated detection antibody solution and incubated for 30 min. After three
washing steps, streptavidin-phycoerythrin was added and the plate was incubated for 10 min.
After three washing cycles, the plate was analysed using a Bio-Plex 200 suspension array system
(Bio-Rad Laboratories).

Serum concentrations of total IgE were determined using an IgE ELISA kit (BD Biosci-
ence). Measurements were performed according to the manufacturer’s protocol. In brief,
half-area plates (Greiner Bio-One) were coated over night with anti-IgE capture antibody.
After blocking the plates with 10% FBS (Gibco™ Life Technologies) in DPBS, samples were
incubated together with an IgE standard. After 2 hours, detection antibody coupled with
streptavidin-horseradish peroxidase was added. 3,3’,5,5’-Tetramethylbenzidine (TMB;
Thermo Scientific) was used as substrate and IgE concentration was determined with a
Tecan sunrise reader (Tecan). To detect OV A-specific IgE, the identical kit was applied
with the following modifications, i.e. plates were coated with 20 pg/ml OVA and OV A-spe-
cific IgE (top standard 100ng/ml, clone 2C6, AB_2285753, AbD Serotec™) was used as
standard.
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Histochemistry

Left lungs were collected after IPL and fixed with Roti™ -Histofix 4% (Carl Roth) for 72 hrs and
then embedded in paraffin for microsections. Slices of 4-6 um were deparaffinised and rehy-
drated before staining with a PAS staining kit (Carl Roth) according to the manufacturer’s pro-
tocol. Stained tissue was analysed with a Zeiss Axio Image M2 microscope (Zeiss). PAS-
positive goblet cells were counted at 200x magnifications and were quantified per 1 mm of
basement membrane.

Statistical analysis

Statistical analyses were performed as indicated in the figure legends. All calculations were per-
formed using GraphPad Prism 5.01 (GraphPad Software). A value of p < 0.05 was considered
statistically significant.

Results
p110y/d deficiency increases eosinophils, IL-5 and IgE

Eosinophil-derived mediators and IgE are major contributors to allergic asthma [5,9].
Although dual inhibitors of PI3Ky and & are considered as promising agents in the treatment
of asthma, mice constitutively lacking PI3Ky and -8 enzymatic activity suffer from eosinophilic
inflammation in mucosal tissues and IgE hyperproduction [23], suggesting that pharmacologi-
cal long-term inhibition of PI3Ky and -8 may eventually aggravate asthma by inducing eosino-
philia. Here, we examined p110y/8 double KO mice (p110y/8”" mice) and determined their
basal eosinophilic response and its potential influence on the development of OVA-induced
allergic airway inflammation.

To study the effect of a genetic p110y/d deficiency on eosinophil numbers, leukocyte suspen-
sions from organs of untreated p110y™", p1108™", p110y/86”" and wildtype (WT) mice were ana-
lysed by flow cytometry (Fig 1A). We found that percentages and total cell counts of eosinophils in
bone marrow (BM), spleen, lung, and blood from p110y/5”~ mice were significantly elevated not
only compared to WT, but also to p110y”" or p1108”" mice (Fig 1B-1E). Consistently, serum con-
centrations of the eosinophilic growth factor IL-5 were significantly higher in p110y/8”" mice com-
pared to WT mice, whereas no increase in IL-5 was detectable in p110y” or p1108”" mice (Fig 1F).

IgE plays an essential role in type I hypersensitivity, which manifests itself in many allergic
diseases including allergic asthma [9]. As increased IgE levels were previously detected in
p110y*9/8°%1% mice [23], we measured basal IgE concentrations in the serum of p110y™7",
p1108™", p110y/8”" and WT mice (Fig 1G). IgE was elevated 26-fold in p110y/8”" mice in com-
parison to WT and around 15-fold as compared to single KO animals.

This confirms that the absence of enzymatic activity of PI3Ky and -8 results in IgE hyper-
production and IL-5-driven eosinophilic inflammation.

Deficiency in p110y, p1108 and p110y/d reduces bronchoalveolar
immune cell infiltration

To study the impact of increased basal levels of eosinophilic granulocytes and IgE, we exam-
ined the immune response of p110y”", p1108™, p110y/8”" and the corresponding WT mice in
an OV A-induced allergic airway inflammation model. Mice were sensitised twice with an
intraperitoneal injection of a mixture of OV A and adjuvant, followed by a challenge with an
aerosolised OV A solution for three consecutive days (S1 Fig). Numbers of infiltrating immune
cells in the bronchoalveolar space and lung tissue as well as the degree of bronchial hyperre-
sponsiveness (BHR) served as measures of asthma severity. Due to the complexity of the
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Fig 1. Numbers of eosinophils and serum concentrations of IL-5 and IgE are elevated in p110y/5”- mice. (A—E) Eosinophil numbers in
p110y”, p1105”", and p110y/5” and WT mice (n = 5-8). To determine eosinophil numbers, leukocyte suspensions from BM, spleen, lung, and
blood were analysed by flow cytometry. (A) Eosinophils were gated as CD3¢” CD19"CD11b* Ly6G™ Siglec F* singlet leukocytes. Lung
eosinophils were stained and gated as shown in S2 Fig. Percentages of living cells (FSC/SSC gate) and total cell counts of eosinophils (B) in
the BM, (C) in the spleen, (D) in the lung, and (E) in the blood are depicted. Serum concentrations of (F) IL-5 and (G) IgE in p110y”, p1105™,
p110y/5” and WT mice (n = 10). Bars represent means + SD. Data were analysed by One-way ANOVA followed by Bonferroni’s comparison
tests for selected pairs of columns. ***P < 0.001, **P < 0.01, *P < 0.05. Asterisks indicate differences in comparison to p110y/5” mice.

doi:10.1371/journal.pone.0159310.g001

experimental setup, each KO group was compared to its corresponding WT group. For better
comparison between the KO groups, cell counts (S1 Table) were normalised to their corre-
sponding OVA-treated WT group and expressed as cell ratios.

To analyse OV A-specific cell infiltration into the bronchoalveolar space, bronchoalveolar
lavage (BAL) was performed to collect the bronchoalveolar lavage fluid (BALF). BALF cell
numbers from OV A-treated and PBS-treated p110y™", p1108” and p110y/8”" mice and their
corresponding WT control groups were determined.

The successful induction of an OVA-specific allergic asthmatic response was verified by sig-
nificantly increased BALF cell numbers in the OVA-treated WT groups (p110y*'*, p1105*'*
and p110y/8*'*) as compared to the PBS-treated controls. This demonstrated an OV A-induced
cell infiltration into the bronchoalveolar space (Fig 2A-2C). However, this cell infiltration was
significantly reduced in OVA-treated p110y”", p1105” and p110y/5” mice compared to the
corresponding OV A-treated WT groups (Fig 2A-2C). Of note, this effect was most pro-
nounced in p110y/5”" mice, exhibiting BALF cell numbers that were comparable to PBS-
treated p110y/8”" mice (Fig 2C). These findings were corroborated by cellspin analyses of
BALF samples from PBS-treated (Fig 2D) and OV A-treated (Fig 2E) p110y™", p1105” and
p110y/8”" mice. Collectively, these data suggest that deficiency in p110y, p1108 and p110y/8
protects against OV A-induced bronchoalveolar immune cell infiltration. To analyse these infil-
trated cells in more detail, we next performed differential cell counts in BALF and lung tissue.

Deficiency in p110y, p1108 and p110y/d reduces bronchoalveolar
eosinophil, neutrophil, T and B cell infiltration

After OVA-challenge, cell counts of eosinophils were significantly increased in BALF of all
OVA-treated WT mice in comparison to PBS-treated controls (Fig 3A). Comparisons between
the OVA-treated groups demonstrated that bronchoalveolar eosinophil counts were significantly
lower in p110y”" (Fig 3A, left), p1105™ (Fig 3A, middle), and p110y/5” mice (Fig 3A, right).
Moreover, despite the fact that p110y/8”~ mice exhibited increased basal eosinophil counts in
lung tissue (Fig 1D), the lack of OVA-specific bronchoalveolar eosinophilic infiltration was most
pronounced in p110y/5” mice (Fig 3 A, right). Neutrophils are also involved in the onset and
progression of allergic asthma [3,4]. Accordingly, bronchoalveolar neutrophil counts were signif-
icantly increased in OVA-treated WT groups compared to PBS-treated controls (Fig 3B). Again,
OVA-induced bronchoalveolar neutrophil infiltration was significantly reduced in p110y™,
p1105” and p110y/8”" mice in comparison to WT mice (Fig 3B). Similar to the granulocytes, T
and B cells were reduced in all OV A-treated knock-out groups (Fig 3C and 3D).

Deficiency in p1108 and p110y/d reduces lung tissue infiltration by
eosinophils, neutrophils, T and B cells

Immune cell infiltration into the airways requires OV A-induced leukocyte recruitment into
the lung, followed by transmigration of cells across endothelial and epithelial barriers. To
investigate whether the reduction of immune cells in the BALF in OV A-treated p110y™",
p1108™" and p110y/8”" mice resulted from an impaired leukocyte recruitment into the lung,
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Fig 2. Bronchoalveolar cell infiltration is reduced in OVA-treated p110y™, p1105™, and p110y/5” mice. To determine OVA-induced bronchoalveolar

cellinfiltration, cells were collected by BAL and counted with a Neubauer counting chamber. For better comparison between the knock-out groups, cell
counts were normalized to the corresponding OVA WT group. To this end, ratios of BALF cells were calculated as individual cell count/ mean cell count of
the corresponding OVA WT group. (A—C) BALF cells from OVA-treated and PBS-treated KO and corresponding WT mice. (A) BALF cells from p110y”- and
WT mice (n = 3-6). (B) BALF cells from p1105”" and WT mice (n = 4-5). (C) BALF cells from p110y/3” and WT mice (n = 5-6). Bars express means + SD.
Data were analysed by One-way ANOVA followed by Bonferroni’'s comparison tests for selected pairs of columns. *** P <0.001, ** P <0.01,"P<0.05.*
indicate differences between WT PBS and WT OVA groups. ***P < 0.001, **P < 0.01, *P < 0.05. Asterisks indicate differences between OVA-treated
groups. Representative cellspins of BALF samples after (D) PBS and (E) OVA-treatment. 1/5 of total BAL cells were used for each cell spin. Magnification

100x, scale = 100 uM.
doi:10.1371/journal.pone.0159310.g002

we determined OV A-induced cell infiltration into the lung tissue. To this end lung cells were
prepared following BAL and exsanguination of the animals and then analysed by flow cytome-
try. We found that OV A-treated p110y”~ mice showed a trend towards an increased infiltration
of eosinophils into the lung tissue when compared to the corresponding WT group (Fig 4A,
left). In contrast, eosinophil numbers in the lung tissue of OV A-treated p1108”" mice were sig-
nificantly lower (Fig 4A middle). As expected from the analysis of the basal eosinophil numbers
in untreated p110y/8”" mice (Fig 1D), we also found an increase of eosinophils in the lung tis-
sue of PBS-treated p110y/5”~ mice, which was not altered after OV A-treatment (Fig 4A, right).
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Fig 3. Bronchoalveolar infiltration of eosinophils, neutrophils, T and B cells is reduced in OVA-treated p110y”", p1105™, and
p110y/5™ mice. To determine the number of eosinophils, neutrophils, T and B cells in the BALF from OVA-treated and PBS-treated KO and
corresponding WT mice, cells were collected, and analysed by flow cytometry. Cell counts were normalised as described in Fig 2. (A)
Eosinophils (eos) in BALF from p110y”- and WT mice (left), from p1105™ and WT mice (middle), and from p110y/5” and WT mice (right).
(B) Neutrophils (neutros) in BALF from p110y”~ and WT mice (left), p1105” and WT mice (middle), and p110y/5” and WT mice (right). (C) T
cells in BALF from p110y” and WT mice (left), p1105” and WT mice (middle), and p110y/5” and WT mice (right). (D) B cells in BALF from
p110y” and WT mice (left), p1105” and WT mice (middle), and p110y/5” and WT mice (right). Data (n = 3—-6) are presented as means

+ SD. Data were analysed by One-way ANOVA followed by Bonferroni’s comparison tests for selected pairs of columns. *** P < 0.001, **

P <0.01,* P <0.05. * indicate differences between WT PBS and WT OVA groups. ***P < 0.001, **P < 0.01, *P < 0.05. Asterisks indicate
differences between OVA-treated groups.

doi:10.1371/journal.pone.0159310.9003

Rather, eosinophil numbers in the lung tissue of OVA-treated p110y/5”~ mice were still signifi-
cantly lower as compared to OVA-treated WT mice.

When analysing neutrophils in the lung tissue, similar, but not identical, infiltration pat-
terns were observed: while these cells were significantly increased in lungs of OVA-treated
p110y”" mice (Fig 4B, left), a significant reduction in OVA-treated p1108” mice was evident
(Fig 4B, middle), whereas there were no significant differences between PBS- and OV A-treated
pl 10y/8'/' mice (Fig 4B, right).

T and B cells in the lung tissue of OV A-treated p110y”" or p1108”" mice showed no signifi-
cant differences compared to the corresponding WT mice (Fig 4C and 4D, left, middle). How-
ever, in p110y”" mice T and B cell numbers tended to be increased after OV A-treatment (Fig
4C and 4D, left). Moreover, T cell (Fig 4C, right) and B cell numbers (Fig 4D, right) in p110y/
8”7 mice were lower, when compared to WT controls.

Therefore, in p1105”~ and p110y/5”" mice, but not in p110y”" mice, the infiltration pattern
seen in the bronchoalveolar space was roughly mirrored in the lung tissue. This might indicate
that in our experimental model the immune cells of OV A-treated p110y”" mice are recruited
into the lung, but partly fail to transmigrate into the airways. Collectively, this suggests that
p110y and p1103 are both involved in allergen-induced recruitment of eosinophils into the
lungs, although the observed differences in the lung tissue infiltration of eosinophils between
p110y”" and p1108”" mice suggest that the two isoforms play distinct roles in the migration
and transmigration process.

OVA-specific IgE is increased in p110y/d” mice during allergic airway
inflammation

IgE has an essential role in allergic asthma [9]. As untreated p110y/8”" mice exhibited elevated
total IgE concentrations (Fig 1G), we determined total and OV A-specific IgE during OVA-
induced allergic asthma (Fig 5). Interestingly, OVA-treatment did not further increase the
inherently elevated total IgE levels in p110y/8”" mice, and the levels were still significantly
higher than in OVA-treated WT mice (Fig 5A, right). In OVA-treated p110y” or p1105™~
mice, we could not detect any significant differences in total IgE concentrations (Fig 5A, left
and middle). In contrast to the single KO groups, p110y/5” mice showed a massive increase in
OV A-specific IgE (Fig 5B). This suggests that double-deficiency in p110y/8 increases total IgE
concentrations at the basal state and enhances the production of allergen-specific IgE during
OVA-induced allergic airway inflammation.

Bronchial hyperresponsiveness and goblet cell metaplasia are reduced
in OVA-treated p110y/3” mice

Asthma is characterized by variable and reversible obstruction of the airflow caused by
increased mucus production and bronchoconstriction [4]. This bronchial hyperresponsiveness
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Fig 4. Lung tissue infiltration by eosinophils, neutrophils, T and B cells is only reduced in OVA-treated p1105”- and p110y/5™ mice.
To determine OVA-induced infiltration of immune cell populations into the lung tissue, leukocytes were prepared from lungs after BAL and
exsanguination of PBS-treated and OVA-treated KO and corresponding WT mice. Cell populations were analysed by flow cytometry. Cell
counts were normalised as described in Fig 2. (A) Eosinophils (eos) in lung tissue from p1 10y”" and WT mice (left), p1105” and WT mice
(middle), and p110y/5” and WT mice (right). (B) Neutrophils (neutros) in lung tissue from p110y” and WT mice (left), p1105” and WT mice
(middle), and p110y/3”" and WT mice (right). (C) T cells in lung tissue from p110y™ and WT mice (left), p1105” and WT mice (middle), and
p110y/5” and WT mice (right). (D) B cells in lung tissue from p11 Oy”"and WT mice (left), p1105”" and WT mice (middle), and p110y/5” and
WT mice (right). Data (n = 3-6) are presented as means + SD. Data were analysed by One-way ANOVA followed by Bonferroni’s
comparison tests for selected pairs of columns. *** P <0.001, ** P < 0.01, * P <0.05. * indicate differences between WT PBS and WT OVA
groups. ***P <0.001, **P <0.01, *P < 0.05. Asterisks indicate differences between OVA-treated groups.

doi:10.1371/journal.pone.0159310.9004

(BHR) is even inducible by unspecific stimuli, such as the muscarinic agonist methacholine
(MCh). The degree of BHR was determined as an additional parameter of severity of OVA-
induced airway inflammation. To this end, the isolated, ventilated and perfused lung (IPL)
model was used and the muscarinic agonist MCh was applied in increasing concentrations
[34]. The airway resistance was measured as an indicator of airway constriction. All PBS-
treated KO groups (p110y”", p1108™", p110y/8”") showed no significant differences in their air-
way resistance as compared to WT controls (Fig 6A). As expected, the airway resistance mas-
sively increased in OV A-treated WT mice (Fig 6B), where measurements were only possible
up to a MCh concentration of 50 uM and higher concentrations led to a complete block of air-
flow. Similar responses were observed in OVA-treated p110y”” and p1108™ mice. In contrast,
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Fig 5. Basal and OVA-specific IgE levels are increased in p1 10y/5” mice. Total and OVA-specific IgE was determined in sera of PBS-treated and OVA-
treated KO and corresponding WT mice using ELISA. (A) Total serum IgE. (B) OVA-specific serum IgE. Bars express means + SD; n = 4-8 pooled from three
independent experiments. Data were analysed by One-way ANOVA followed by Bonferroni’'s comparison tests for selected pairs of columns; **P < 0.01,

*P <0.05.

doi:10.1371/journal.pone.0159310.g005
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OVA-treated p110y/8”" mice showed a significantly lower airway resistance at 50 yM MCh
and 50% of the mice could be measured up to the highest MCh concentration (500 uM), which
otherwise was only possible for PBS-treated mice (Fig 6B).

Mucus is an important contributor to airway obstruction in asthma, and increased numbers
of mucus-secreting goblet cells are commonly seen in the lung epithelium of human asthmatic
patients [36], but also in mouse models of asthma [34]. To determine the number of mucus-
containing goblet cells in the airways, lungs were collected after IPL and lung sections were
stained for carbohydrates using the periodic acid-Schiff (PAS) reaction. In lung sections of
PBS-treated KO or WT mice no differences in the number of PAS™ cells were observed (repre-
sentative images; Fig 6C). In accordance with the findings on airway resistance, OVA-treat-
ment resulted in increased percentages of PAS* cells in WT, p110y”~ and p1108” mice. In
contrast, the analysed lung sections from OV A-treated p110y/5”~ mice showed no increase in
PAS" cells when compared to the control sections from PBS-treated mice (representative
images; Fig 6D). Accordingly, statistical analysis of the lung tissue sections showed a signifi-
cantly lower numbers of PAS" cells per mm basement membrane in OVA-treated p110y/5™"
mice in comparison to the other OVA-treated groups (Fig 6E). Thus, p110y/8 double defi-
ciency partly protects from allergen-induced BHR.

Discussion

In this study we demonstrated that mice lacking both p110y and 8 exhibit increased eosinophil
counts and elevated serum IL-5 and IgE levels in a basal state, suggesting that a deficiency of
p110y/8 causes IgE-hyperproduction and eosinophilia. In spite of the fact that eosinophilia and
increased serum IgE levels are two key elements of allergic asthma, p110y/3”" mice were partly
protected against OV A-induced experimental airway inflammation.

IgE plays a major role in the development of allergen-induced chronic airway inflammation.
Cross-linking of IgE-FceRI complexes by allergens leads to cellular degranulation and the
release of cytokines, histamine and lipid mediators [9,10,37]. These factors are known to be
involved in the recruitment of Th2 cells, eosinophils, basophils, as well as in vasodilatation and
bronchoconstriction [37]. Monomeric IgE has been shown to increase mast cell survival and
induce cytokine secretion in the absence of cross-linking by allergens [9,10]. Thus, one might
speculate that increased levels of natural IgE in a basal state predispose p110y/8 mice to aggra-
vated allergic responses.

Our results demonstrate, for the first time, that in addition to elevated basal levels of natural
IgE p110y/8”" mice exhibit increased antigen-specific IgE concentrations following OV A-treat-
ment. The role of p110y and p1103 signalling in allergen-induced production of OVA-specific
IgE is unclear. On one hand, the genetic deficiency in p110y had no influences on allergen-
induced production of OVA-specific IgE [12]. On the other hand, pharmacological inhibition
of p1103 with IC87114 attenuated OV A-induced increases in total and OV A-specific IgE [11].
By contrast, another study found that genetic or pharmaceutical inactivation of p1108 resulted
in increases of total and OV A-specific IgE [38]. Our findings, showing that only p110y/5”
mice, but not the single KO groups, exhibited a massive increase in OV A-specific IgE, suggest
that both p110y and p1108 contribute to the regulation of allergen-specific IgE production in
these animals.

Although the serum levels of both natural and OV A-specific IgE were drastically elevated in
OVA-treated p110y/5” mice, this did not result in an exacerbated phenotype of allergic airway
inflammation, in fact it inferred protection from the disease syndrome. Impaired allergic
responses in the presence of increased IgE concentrations may be due to altered mast cell num-
bers and/or reduced IgE-signalling. It has been previously reported that genetic inactivation of
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Fig 6. Bronchial hyperresponsiveness and goblet cell metaplasia are reduced in OVA-treated p110y/5” mice. To determine bronchial
hyperresponsiveness, lung function analysis was performed using the IPL and changes in airway resistance were measured following systemic
application of rising doses of methacholine (MCh). Some values had to be excluded, e.g. when lungs were damaged during the experiments.
Changes in airway resistance in (A) PBS-treated (n = 3—10) and (B) OVA-treated (n = 5-7) KO and WT mouse groups. All three WT groups were
analyzed and pooled for a clearer graphical presentation. Data in (B) were analysed by Two-way ANOVA followed by Bonferroni’s comparison
tests *P < 0.05. (C, D) Mucus production in PBS-treated and in OVA-treated KO and WT mice. To measure mucus production, lungs were
collected after IPL and cut into 6 um thick slices. Sections were stained for carbohydrates using the periodic acid-Schiff (PAS) reaction and counter
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stained with H&E. Representative lung tissue sections from WT, p110y™", p1105™", and p110y/3” mice after (C) PBS-treatment and (D) OVA-
treatment. Magnification 100x, inserts 630x. (E) PAS™ cells (pink) per basement membrane in mm. Bars express means + SD; Data (n = 3—6 mice)
were analysed by One-way ANOVA followed by Tukey’s Multiple Comparison Test; ***P < 0.001.

doi:10.1371/journal.pone.0159310.g006

p1103 decreases mast cell numbers in mice [39]. Furthermore, both p110y and p1108 appear
to be required for IgE/antigen-triggered allergic responses, with PI3K3 acting earlier and
PI3Ky acting later in response to IgE [17].

Allergic asthma is also characterized by the accumulation of eosinophils in the lungs [40],
and increasing eosinophil numbers in humans correlate with the disease severity of asthma [8].
Reduction of eosinophils by application of anti-IL-5 mAbs ameliorated asthma in a selected
sub-population of asthma patients with demonstrable eosinophilic airway inflammation (refer-
ences in Walsh et. al. [6]). Decreased numbers of eosinophils in anti-IL-5-treated mice were
protective in an OVA-model of allergic asthma (references in Walsh et. al. [6]). Asthma studies
using two strains of eosinophil-deficient mice demonstrated that eosinophils play a significant
role in asthma-related airway hyperresponsiveness and mucus accumulation [41]. In C57BL/6
mice eosinophils are required for the induction of OVA-induced asthma [6,7].

Our findings demonstrated that, at a basal state, eosinophilia in p110y/5”" mice correlated
with increased levels of IL-5. This indicates that in p110y/8”" mice basal eosinophilia is driven
by type 2 immune responses. Following OV A-treatment, eosinophil numbers in the lung tissue
of p110y/5”" mice were not further increased and the animals were protected against eosino-
philic infiltration into the airways. Similarly, p1108”~ mice exhibited a reduced OVA-related
lung tissue migration and airway infiltration of eosinophils compared to WT controls. In con-
trast, in p110y”" mice numbers of OV A-induced lung tissue eosinophils exceeded WT levels,
although the number of eosinophils infiltrating into the airways was significantly reduced.
Other studies confirm the involvement of p110y and p1103 in eosinophil migration [13,14,21].
The fact that the increased basal levels of eosinophils in the lungs of p110y/5”" mice did not
promote airway inflammation following OV A-treatment might be explained by an impaired
allergen-induced cell activation and degranulation of p110y/8”~ eosinophils. However, so far
the importance of PI3K signalling in eosinophil activation has only been shown by pan-PI3K
inhibition using wortmannin [42,43].

The striking phenotype of p110y/5” mice exhibiting a Th2-driven eosinophilia and high
IgE levels might be explained by an impaired TCR-activation-mediated Ca*" signalling [44]
and consecutively impaired NFAT activation [45]. Alternatively, the phenotype might be
related to T cell lymphopenia in p110y/8”" mice [29,30]. Low T cell counts are additionally
observed in p110y<°3"°'* mice, which also suffer from IgE-hyperproduction and eosino-
philia [23]. Although the mechanism is unclear, the correlation between low T cell numbers
and type 2 cytokines, eosinophilia and/or IgE hyperproduction appears to be a common phe-
nomenon in humans [32,46] and mice [33].

Collectively, this may suggest that eosinophilia and IgE-hyperproduction in p110y/8”" mice
result from a lymphopenia-driven induction of Th2 responses. If so, then this may have serious
consequences for the treatment with dual pharmacological inhibitors of p110y and p1103. This
is supported by the finding that, similar to genetic ablation, pharmacological inactivation of
p110y and p11038 with the dual-specific inhibitor CAL-130 inhibits T cell development [31].
This suggests that long-term treatment of patients with pharmacological inhibitors of p110y
and p110§ could induce lymphopenia, possibly accompanied by induction of Th2 responses,
increased IgE levels and eosinophilia.

In summary, our data provide further evidence for the importance of combined p110y and
p1103 signalling in pathogenesis of allergic airway inflammation, supporting the concept that
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short-term treatment with dual pharmacological inhibitors of p110y/8 might ameliorate the
severity of the disease syndrome. Nevertheless, the immunocompromised phenotype of p110y/
8" mice suggests that these inhibitors could harbour severe side effects if applied in long-term
treatment in patients, causing severe immune defects and thereby possibly also increasing the
susceptibility towards opportunistic infections.

Supporting Information

S1 Fig. Timeline of OV A-dependent induction of allergic airway inflammation. Asthma
was induced as described by Park, et al. 2010 [14]. Mice were sensitised on day 1 and 14 with
an i.p. injection of OVA in Imject™ Alum, followed by a challenge with aerosolised OV A for
three consecutive days (days 21-23). On day 25 animals were sacrificed and analysed, either by
collecting the BALF and lung tissue, or by performing lung function analysis with the IPL.
Control animals were sensitised with Imject"™ Alum only and challenged with PBS.

(EPS)

S2 Fig. Gating strategy for BALF leukocytes. T and B cells were gated as CD11b” SSC'°" sin-
glet cells that were CD3e" or CD19", respectively (upper and third lane, far right graphs). Neu-
trophils were identified following exclusion of CD11b" SSC'°" cells ("not gate") and consecutive
gating on CD11b" Ly6G" cells (second and forth lane, left graphs). After exclusion of CD11b"
Ly6G" neutrophils ("not gate") eosinophils were gated as F4/80'°""" Siglec F* cells (second and
forth lane, right graphs). Shown are representative samples from one OVA-treated WT and
one OVA-treated p110y/8” mouse.

(EPS)

S1 Table. Absolute Numbers of BALF and lung tissue cells. Absolute numbers of BALF and
lung tissue cells from Figs 3 and 4.
(DOCX)
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