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Relationships between neuroimaging measures and behavior provide important
clues about brain function and cognition in healthy and clinical populations. While
electroencephalography (EEG) provides a portable, low cost measure of brain dynamics,
it has been somewhat underrepresented in the emerging field of model-based inference.
We seek to address this gap in this article by highlighting the utility of linking EEG and
behavior, with an emphasis on approaches for EEG analysis that move beyond focusing
on peaks or “components” derived from averaging EEG responses across trials and
subjects (generating the event-related potential, ERP). First, we review methods for
deriving features from EEG in order to enhance the signal within single-trials. These
methods include filtering based on user-defined features (i.e., frequency decomposition,
time-frequency decomposition), filtering based on data-driven properties (i.e., blind
source separation, BSS), and generating more abstract representations of data (e.g.,
using deep learning). We then review cognitive models which extract latent variables
from experimental tasks, including the drift diffusion model (DDM) and reinforcement
learning (RL) approaches. Next, we discuss ways to access associations among
these measures, including statistical models, data-driven joint models and cognitive
joint modeling using hierarchical Bayesian models (HBMs). We think that these
methodological tools are likely to contribute to theoretical advancements, and will help
inform our understandings of brain dynamics that contribute to moment-to-moment
cognitive function.

Keywords: EEG, ERP, blind source separation, partial least squares, canonical correlations analysis,
representational similarity analysis, deep learning, hierarchical Bayesian model

INTRODUCTION

In the neural sciences, we are rarely afforded a one-to-one relationship between neural signals and
phenotypic expression of a behavior or disease. It is increasingly common to use computational
models to distill the latent features mediating brain-behavior relationships. Indeed, the field
of computational psychiatry has emerged to formally address how such latent factors may
inform clinically relevant expressions of disease (Montague et al., 2012; Huys et al., 2016).
While this approach has leveraged neuroimaging to tie latent features to neural mechanisms,
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the field of human electrophysiology (electroencephalography,
EEG) has been somewhat underrepresented by this approach.
The purpose of this review article is to provide a theoretical
and methodological manifest to advance the unique virtues of
computationally-informed EEG. We first describe approaches
to extract features from EEG, including time-frequency
decomposition and machine learning approaches. Next we
review the extraction of latent features from behavior derived
from cognitive models. Finally, we highlight approaches to
link these datasets post hoc with standard statistical tests, or to
derive features jointly using data-driven joint decomposition,
or cognitive joint modeling using hierarchical Bayesian models
(HBMs).

EEG is commonly known as a useful neuroimaging
measure due to its portability, affordability and high temporal
resolution. In addition, EEG provides a direct measure of neural
activity, since it reflects the aggregate synchronous synaptic
activity of hundreds of thousands of radially oriented cortical
pyramidal cells (Nunez and Srinivasan, 2006). There is a long
history of literature demonstrating relationships between EEG
oscillations and cognitive function (Klimesch, 1999; Jensen
et al., 2007; Nyhus and Curran, 2010; Harmony, 2013), as
well as the relationship between event-related potential (ERP)
components and cognition and perception (Regan, 1989; Luck
and Kappenman, 2012; Luck, 2014). However, researchers are
beginning to focus on other features of EEG such as single
trial transient events and non-sinusoidal fluctuations (Jones,
2016; Cole and Voytek, 2017). For example, waveform shapes
may differ between different conditions (Cole et al., 2017), and
amplitude modulations may be present within only a subset
of peaks that follow the steady-state response (Bridwell et al.,
2017).

ERP components are presumed to reflect latent
computational operations (Luck, 2014), but they remain
nebulously defined and are altered by experiment-specific
(i.e., modality) and population level (i.e., age) factors, challenging
their utility (Donchin et al., 1978). These issues are pointedly
stated by Erol Basar in the book Brain Function and Oscillations
in the following quote:

‘‘Usually the averaged evoked response is described in terms
of several arbitrarily defined components such as peak (wave)
latencies and wave magnitudes. These arbitrarily defined
components depend generally upon the location of the recording
electrode, behavioral state or sleep stage of the subject under
study, and upon the nature of the stimulating signal. Therefore,
the interpretation of these arbitrarily defined components is very
difficult . . .’’ (Basar, 1999)

It is widely observed but rarely formally acknowledged that
event-related EEG activities reflect canonical neural operations
that are predictably modulated within spatio-temporal windows.
ERP components are only revealed by averaging across
individual trials and subjects—these components (and their
corresponding interpretations) may not hold at the individual
subject or individual trial level (Rousselet and Pernet, 2011;
Luck, 2014). For example, Gaspar et al. (2011) demonstrate that
ERP responses to faces and noise are reliable across repeated

measurements of the same subject, but that the individual subject
averages differ among each other and with the group average.
Thus, the emphasis on component peaks which appear following
trial and subject averaging may detract from the ability to detect
EEG features at the single trial or single subject level, and may
limit the ability to relate those features with behavior.

Moreover, components are oftentimes defined by latent
cognitive constructs (i.e., attention, working memory; Donchin
and Coles, 1988; Folstein and Van Petten, 2007), which may not
be effective characterizations of underlying neural computations.
For example, it is not likely that different ERP components
map onto the chapter titles within Psychology textbooks. In
order to address these issues, we focus on deriving features
from EEG which are not dependent upon the identification of
canonical ERP component peaks (and their interpretations). For
example, the processes which contribute to these stimulus and
subject averaged responses may be decomposed based on their
temporal frequency, and single trial data can be transformed to
a lower dimensional representation using machine learning tools
such as independent component analysis (ICA), representational
similarity analysis (RSA), general linear modeling (GLM) and
deep learning, as described in subsequent sections. We think that
these methodological advancements are likely to contribute to
theoretical advancements, and help to advance this field beyond
a focus on ERP components.

Figure 1 provides an overview of the EEG and behavioral
processing steps discussed within this review. The original
EEG or behavioral signal represents the lowest level of
abstraction, i.e., is closest to the original measurement, while
various processing steps may be subsequently implemented to
abstract from the original measurement using models that are
justified mathematically, biologically, or both (in contrast to the
data-driven focus within the EEG literature, behavioral measures
are often directly linked with computational mechanism and
cognitive theory via cognitive modeling; Turner et al., 2016).
Within Figure 1, while the level of abstraction increases from
top to bottom within the blocks for EEG and behavior,
the level of sophistication of the approaches to link each
dataset increases from top to bottom (as depicted within the
center of the blocks in Figure 1). At the lowest level of
sophistication, the EEG and behavioral features are derived
independently and then linked post hoc, using standard statistical
tests. At a higher level of sophistication, EEG and behavioral
features are extracted independently and links are identified
by decomposing the features within a common framework,
i.e., joint data-driven decomposition such as joint-ICA (jICA)
or multiset Canonical correlation analysis (CCA; i.e., ‘‘late
fusion’’ approaches described within Dahne et al., 2015). Each
level provides increasingly more information to the data fusion
approach (Calhoun and Sui, 2016). Further, EEG features may
contribute to the estimation of cognitive model parameters in
parallel with direct measures of behavior (i.e., by specifying
an explicit relationship between EEG features and behavioral
features). HBMs have been implemented to accomplish linking
in this manner, allowing EEG and behavioral features to jointly
contribute to estimates of higher level cognitive processes (e.g.,
Frank et al., 2015; Nunez et al., 2017).
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FIGURE 1 | Overview of electroencephalography (EEG) and behavioral processing steps reviewed, and approaches to integration. The original EEG data is depicted
within the upper left. The arrow points to a series of processing steps which aim to extract features relevant to the experiment. These processing steps are generally
comprised of user-defined (i.e., pre-selected) temporal filters with few or many parameters, or data-driven filters such as canonical correlation analysis (CCA), blind
source separation (BSS) and deep learning. Within this article, we review time-frequency decomposition (with wavelets), various BSS approaches and deep learning
approaches. These processing steps are useful for enhancing the signal at the single-trial level, which improves the ability to detect relationships between EEG and
behavior. Using a similar depiction on the right, the original behavioral data (e.g., hit rate, false alarm rate, reaction time) may be used to derive latent measures of
cognitive function (e.g., using drift diffusion models (DDM), or reinforcement learning (RL) models as examples). Measures at various levels of
abstraction/sophistication within EEG and behavior may be combined using various approaches reviewed, including simple statistical models, data-driven joint
models and cognitive joint models, as indicated in the middle of the plot.

By appropriately constructing models, these analyses should
strive for understanding cognitive function at the single trial level
within healthy and patient populations. Within the sections that
follow, the EEG processing steps are described first, followed
by the extraction of latent variables from direct measures of
behavior. Then, simultaneous data-driven decomposition and
joint approaches to integrate these measures are reviewed.
Importantly, many of these methods can be implemented using
publicly available toolboxes (see Table 1).

OVERVIEW OF EXTRACTING FEATURES
FROM EEG

Selecting User-Defined Features With
Time-Frequency Filters
Like a prism to sunlight, time-frequency filters decompose a
time-series input into a dimension-expanded representation of
frequency-specific temporal activities. In the context of EEG,
filters like wavelets decompose the signal into biologically
reasonable frequency bands (see Figure 2), and we focus on
wavelets here as a representative example of a time-frequency
filter.

Wavelet convolution operates by computing the similarity
over time between the input signal and a template short-time
frequency-specific oscillation (motivating the diminutive ‘‘let’’
after the word ‘‘wave’’ in ‘‘wavelet’’). Morlet wavelets are
constructed by multiplying a complex exponential carrier with
a Gaussian window. A family of Morlet wavelets may include

50 frequency-specific sine waves (e.g., 1–50 Hz), each tapered
(i.e., convolved) with a Gaussian function (Lachaux et al., 2002).
This would reveal a dimension-expanded 50-frequency by time
matrix of activity from the input signal.

To understand this approach, it is important to know
that convolution in the temporal domain is mathematically
equivalent to multiplication in the frequency domain. This
means that while wavelet convolution is a useful concept to
understand how signal similarity underlies this transformation,
the same output is usually computed by the much faster
procedure of multiplying each of the Fourier coefficients for
the input signal and the wavelet followed by reconstruction
of the time-series via inverse Fourier transform. At its core,
the wavelet procedure has some mathematical equivalence with
other techniques for deriving time-frequency representations
like the short time Fourier or band-passed Hilbert transform
(Bendat and Piersol, 2010). However, these are oftentimes
inexact replications, as parameters like filter width alter the
output in subtle but meaningful ways. The pervasiveness of
the Fourier transform across techniques offers an excellent
way to double-check one’s data processing for hidden bugs
by comparing outputs derived via wavelet vs. filter-Hilbert
techniques (Le Van Quyen et al., 2001; Yuan and Luo,
2012).

The dimension-expanded representation includes both the
phase angle of the frequency-specific signal at each temporal
moment (instantaneous phase) as well as the amplitude of this
signal (usually squared to derive power). This decomposition
is tremendously important for continued specification of the
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TABLE 1 | Select publicly available toolboxes for electroencephalography (EEG) analysis.

Toolbox Notable functions Citation(s) Link

EEGLAB BSS Delorme and Makeig (2004) http://sccn.ucsd.edu/eeglab
EEGIFT Group BSS Calhoun et al. (2001) and Eichele et al. (2011) http://mialab.mrn.org/software/eegift/
FIT Joint ICA; CCA + Joint ICA; Parallel ICA Calhoun et al. (2009) and Calhoun and Sui (2016) http://mialab.mrn.org/software/fit
EP Toolkit PCA Dien (2010) http://sourceforge.net/projects/erppcatoolkit/
LIMO EEG Hierarchical Linear Modeling of EEG Pernet et al. (2011) http://github.com/LIMO-EEG-Toolbox/limo_eeg

BSS, blind source separation; ICA, independent component analysis; CCA, canonical correlation analysis; PCA, principle component analysis.

neural features that underlie cognitive operations. If multiple
trials of an event are associated with consistent phase angles,
the event is likely re-setting ongoing phase dynamics or
instantiating a phase-dependent neural process (Makeig et al.,
2002). This has strong implications for the nature of underlying
neural networks that are created and dissolved over various
time scales (and frequencies). Brain regions that are phase
consistent are likely using phase dynamics to structure temporal
windows for neurons to simultaneously fire and form a transient
neural network (Fries, 2005). To clarify some unfortunately
common terminology that appears in the field, wavelets do
not reveal ‘‘oscillatory’’ activity, nor are oscillations necessary
inputs for wavelet decomposition. Any time-series signal can be
decomposed into a time-frequency representation; the repeating
nature of the signal is irrelevant.

The process of wavelet convolution (or equivalently, Fourier
coefficient multiplication) is conceptually and procedurally quite
simple. However, many free parameters are critical for successful
usage such as frequency range selection, taper dynamics, signal
length and selection of an appropriate baseline to obviate the
non-linear distribution of power between frequencies (i.e., the
1/f nature of EEG spectra). An interested scientist can find a full
description of each of these issues as well as MATLAB code in the
book Analyzing Neural Time Series Data (Cohen, 2014).

Blind Source Separation
Time-frequency decompositions (e.g., wavelets, discussed in
the previous section) can emphasize signals that correspond
to a distinct frequency band, removing artifacts that typically
fall outside biologically plausible frequencies (e.g., <1 Hz
changes in skin impedance, high frequency muscle artifacts,
and 50/60 Hz electrical line current). However, broadband
artifacts and artifacts which overlap in frequency with biological
oscillations are more problematic for this filtering approach.
These scalp signals are superimposed with various sources of
noise, including eye blinks, eye movement, muscle tension,
heartbeat, AC electrical line current, and skin potentials. In
addition, some sources of noise influence neural signals directly,
e.g., when the content of visual stimuli changes with eye
movements or blinks. Thus, various blind source separation
(BSS) techniques have been applied to derive data-driven filters
which disentangle these signal mixtures.

BSS approaches have been developed and implemented for
matrix decomposition (Onton et al., 2006) or higher order
(N ≥ 3 dimension) tensor decomposition (Cong et al., 2015)
of EEG. These approaches provide an improved separation
of EEG signal from EEG signal, or EEG signal from noise.
Temporal ICA and principle component analysis (PCA) are
two common EEG data reduction approaches with relative

FIGURE 2 | Time-frequency decomposition of simulated EEG with wavelets. A simulated EEG signal (A; from the SIMEEG toolbox
http://mialab.mrn.org/software/simeeg/index.html) was decomposed into time courses which correspond approximately to the delta (0–3.91 Hz), theta
(3.91–7.81 Hz), alpha (7.81–15.62 Hz) and beta (15.62–31.25 Hz), EEG frequencies (B). Wavelet coefficients were estimated using the discrete wavelet transform
(DWT) implemented in MATLAB (http://www.mathworks.com) with the wavedec and wrcoef functions (biorthogonal spline mother wavelet; bior3.9; dyadic
decomposition; 5 levels; Adapted from Bridwell et al., 2016).
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advantages and disadvantages that depend on the degree in
which the data aligns with the methods assumptions (Bugli
and Lambert, 2007; Dien et al., 2007). PCA derives a set
of latent variables which are uncorrelated, while temporal
ICA decomposes the data into a linear mixture of temporally
independent sources and their associated loadings or mixing
matrix (i.e., scalp topography; Makeig et al., 1997; Hyvarinen
et al., 2001; Stone, 2004). Temporal ICA has been particularly
popular since assumptions of the approach are consistent with
the linear mixture of independent cortical electrical potentials
that occurs across the scalp due to volume conduction. And
temporal ICA is particularly robust as a pre-processing step
in EEG artifact removal, since eye blinks and eye movement
artifacts are independent and non-Gaussian sources which
contaminate the EEG. These artifactual sources may be removed
before converting the data back to the original channel space
(Jung et al., 2000; Makeig et al., 2004; Onton et al., 2006).

Temporal ICA and PCA have demonstrated utility in
decomposing the multiplexed ERP response into distinct ERP
peaks (for temporal ICA, see Onton et al., 2006; Bridwell et al.,
2014, 2015, for PCA see Bernat et al., 2005), which likely leads
to a more accurate estimate of the amplitudes of distinct ERP
components than the original superimposed response. However,
these models suffer from similar caveats as many of the modeling
approaches discussed—they require extensive user attention and
parameter selection (e.g., PCA componentsmay differ depending
on how many are selected for rotation, the type of rotation and
how the data are conditioned; Kayser and Tenke, 2003; Dien
et al., 2005).

In general, artifacts are readily separated from EEG sources
with temporal ICA due to their non-Gaussian distribution
(Hyvärinen et al., 2010). However, temporal ICA seems ill
equipped at separating non-artifact sources, motivating the use
of alternative BSS approaches for decomposing different EEG
oscillations (e.g., EEG collected in the absence of an explicit task),
including algorithms designed to decompose EEG oscillations
explicitly and those that decompose real or complex valued EEG
spectra (Anemüller et al., 2003; Bernat et al., 2005; Hyvärinen
et al., 2010; Porcaro et al., 2010; Nikulin et al., 2011; Shou et al.,
2012; Bridwell et al., 2016). These approaches are well suited for
decomposing the broad EEG spectra into functionally distinct
frequency bands, including separating the alpha band (8–12 Hz)
into its low and high frequency sub-bands (Niedermeyer, 1997;
Nunez et al., 2001; for an example, see Bridwell et al., 2013).

Various extensions to BSS have been developed to address
the issue of determining which BSS sources correspond across
subjects, including approaches which decompose the aggregate
group EEG data (Kovacevic and McIntosh, 2007; Congedo
et al., 2010; Eichele et al., 2011; Cong et al., 2013; Lio and
Boulinguez, 2013; Ponomarev et al., 2014; Ramkumar et al., 2014;
Huster et al., 2015; Huster and Raud, 2018; Labounek et al.,
2018). Within temporal Group ICA implemented in EEGIFT1,
sources are estimated at the aggregate group level and individual
subject sources are recovered by back-reconstruction (Calhoun
et al., 2001; Calhoun and Adali, 2012). This approach effectively

1http://mialab.mrn.org/software/eegift/

‘‘filters’’ the individual subject data by the source activity that
is robust at the group level. However, the emphasis on the
aggregate group dataset introduces issues in generating reliable
decompositions in cases where there are topographic differences
across subjects (Huster et al., 2015). Nevertheless, Group ICA
is particularly advantageous in cases where individual trials are
analyzed, as demonstrated by Bridwell et al. (2014), where single
trial ERP amplitudes were correlated with single trial measures
of prediction error or surprise. Within further studies, these
single trial amplitudes would provide useful input measures to
simple and joint models which integrate EEG and behavior
(e.g., as discussed in the sections on Single Trial Regression
and HBMs).

Deep Learning
Deep learning is a subfield of machine learning that during
the last decade has gained substantial popularity by breaking
benchmark records in various domains (such as computer vision,
automatic speech recognition, natural language processing and
bioinformatics). The term deep learning was coined as a
reference to deep artificial neural networks (ANNs) with more
than one hidden (i.e., non-input or -output) layer of neurons.
Most notably, these techniques are able to learn complex
non-linear functions that transform raw signals into feature
representations or derive probability distributions over latent
variables. The latter can be achieved through probabilistic
graphical models like restricted Boltzmann machines (RBMs) or
deep belief nets (DBNs). Popular approaches for the former are
convolutional and recurrent neural networks—CNNs and RNNs
respectively (for a review in the context of neuroimaging, see
Plis et al., 2014). In a convolutional layer, the input is convolved
with trainable filters as illustrated in Figure 3, whereas recurrent
connections feed the layer output back into earlier layers as
additional input. All these techniques support unsupervised

FIGURE 3 | Illustration of a convolution operation with a single 2d 3 × 3 kernel
(orange) applied to a 2d 5 × 5 input. In a convolutional layer, the input is
convolved with trainable filters. Generally, input and kernels may have different
shapes and span multiple channels (not shown here). Further, multiple kernels
can be applied in parallel within the same convolutional layer. The convolution
is commonly followed by an element-wise application of a non-linear
transformation (not shown) and optionally a pooling step (blue) that
aggregates neighboring output values.
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training for signal modeling and learning high-level patterns
as well as supervised training for discriminative tasks such as
classifying EEG based on the recorded trial type or upon collected
behavioral measures. Importantly, the approach can incorporate
the entire spatial and temporal structure, and the outputs of the
kernel may be visualized as topographic feature maps (Figure 4;
Bashivan et al., 2016).

A common approach for unsupervised training of ANNs
which goes back to the 1980s is the auto-encoder (Bourlard
and Kamp, 1988). Such a network consists of an encoder and
a decoder. The encoder transforms input data into an internal
representation whereas the decoder computes a reconstruction
of the input from this representation. The whole network is
trained by minimizing the reconstruction error for some training
dataset. In order to make this task non-trivial and force the
auto-encoder to learn meaningful features that represent the data
well, a representational bottleneck is commonly required—for
instance, limiting the number of neurons in the inner-most layer
(structural bottleneck), adding noise to inputs or activations,
or sparsity regularizations. Auto-encoders can be stacked to
incrementally learn higher-level features.

With respect to supervised learning approaches, a neural
network pre-training technique for learning discriminative
features from stimulus-driven EEG signals was described by
Stober (2017). Demanding that encodings of two trials from the
same class are more similar to each other than to encoded trials
from other classes, a respective encoder pipeline was trained
that improved the signal significantly even across subjects. This
tuple-based training approach is especially suitable for small
datasets and measures with a low signal-to-noise ratio (SNR),
such as EEG.

In applying deep learning to EEG datasets, there are a few
important considerations. Investigators should be careful in
instances where unrealistically high accuracy is observed, as this
is usually an indicator of a flawed experiment. For instance, the
way the data was recorded and split into subsets for training and
evaluation could have introduced artifacts that were exploited
by the classifier. This so-called ‘‘Horse’’ phenomenon has, for
instance, been described by Sturm (2014). Another potential

cause for flawed results are software bugs such as mistakes in
indexing trials or accidentally duplicating trials that result in
overlapping training and evaluation data.

OVERVIEW OF ESTIMATING LATENT
VARIABLES FROM BEHAVIOR

The previously discussed EEG processing steps derive useful
features which may be subsequently related to behavior. Within
this section, we review approaches to integrate latent cognitive
variables for linking with EEG within subsequent steps, which
differs from the typical focus on observable, experimenter-
defined objective variables. For example, categorical variables
(e.g., stay vs. switch trials) are used to pool trials into groups
across which the neural signal is then compared (Collins et al.,
2014), or continuous variables (e.g., the amount of conflict) can
be used for single trial analysis of the EEG signal (Cohen and
Cavanagh, 2011). This categorical approach can be improved by
implementing cognitive modeling (i.e., computational modeling
of behavior) techniques to estimate latent variables on a trial by
trial basis, and subsequently relating these measures with EEG.

Computational models of behavior usually propose a
mechanistic or algorithmic description of the computations that
may be happening in the brain to support behavior. These
models usually have parameters (e.g., drift rate or learning
rate, see below for details), that quantitatively modulate the
computations made by the model. Model fitting techniques allow
us to infer the parameters that are most likely to give rise to
the observed behavior. Then, given a set of parameters for a
model, it is also possible to obtain the latent variables that are
part of the models’ computations, and thus that putatively are
the underlying variables needed to account for the observed
behavior.

Thus, cognitive modeling may provide two types of benefits
to relate behavior and EEG signal. First, fitting computational
models to behavioral data allows researchers to extract model
parameters that are putatively related to mechanisms underlying
behavior; these parameters may then capture variability (between

FIGURE 4 | Topographic features derived from kernels in recurrent-convolutional neural networks. The input EEG with the highest activation across the training set is
indicated in (A). Feature maps were derived from the kernel (#122 in the 3rd stack output) and plotted in (B), and back-projected topographies were computed using
deconvnet in (C). The figure is modified from Bashivan et al. (2016) and reproduced with permission.
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conditions or individuals) better than raw behavior would.
Second, model fitting also allows researchers to extract latent
variables that putatively reflect the computations supporting
behavior. These variables may then be better candidates to reflect
the trial-by-trial neural signal. In the next paragraphs, we give
an overview of the computational modeling process with these
two target benefits, and focus on two key examples: drift diffusion
modeling (DDM) for perceptual decision making (Ratcliff, 1978;
Ratcliff and McKoon, 2008), and reinforcement learning (RL)
modeling (Sutton and Barto, 1998).

The DDM is a special case of a sequential sampling model
(SSM) we focus on here. The DDM is a used to account
simultaneously for accuracy and reaction time observations in
binary perceptual decision tasks, such as the random dots motion
task (e.g., Roitman and Shadlen, 2002). Specifically, the DDM
formalizes decision as a noisy accumulation of evidence to one
of two bounds; it assumes that once the decision variable reaches
the bound, the corresponding choice is made. The DDM is
usually parameterized with three parameters: non-decision time,
drift rate and threshold. The non-decision time reflects a fixed
period of time during which no information is accumulated;
mechanistically, it may include both initial perception latency
and motor command latency after the decision is made. The drift
rate reflects the rate at which information is accumulated, or the
strength of each new piece of evidence. The threshold indicates
the level the evidence should reach prior to a decision being
taken. Other parameters are sometimes included in the DDM to
better capture behavior; for example, a bias term may be needed
to capture participants’ tendency to select one option more than
another (see Figure 5A).

Simulations of the DDM can show how changing the
parameters modifies performance, and reaction times for
different conditions (e.g., correct vs. incorrect trials; Ratcliff and
McKoon, 2008). For example, with a higher threshold, more
evidence accumulation is required before reaching a decision,
which is less likely to happen due to noise; thus, the observed

behavior is more conservative: fewer errors with longer reaction
times. Slower drift rates produce a qualitatively similar pattern,
but quantitatively different. We thus need a quantitative method
to disentangle the role of different parameters in the observed
behavior of participants. Themodel fitting procedure computes a
measure of fit, the ability of the model to predict the distributions
of choices and reaction times across the two conditions for a
given set of parameters; it then attempts to maximize this fit
measure to find the set of parameters that best explain the
behavior. Fitting can be done separately for different subjects
or conditions, and fit parameters can then be related to neural
signal—for example, frontal theta power and DDM threshold
(Cavanagh et al., 2011).

Model fitting can also provide inferred trial-by-trial latent
variables on which decisions rely. For example, in a learning task
where participants learn to select the best out of two options
using probabilistic feedback (Frank et al., 2004), the inferred
learned value of each option at each time point is a continuous
variable of interest that is not directly observable. RL models
assume that participants track an estimate V t of the value of
different options at each time t, and that they update this estimate
when they obtain a reward rt by incrementing it by a proportion
of the reward prediction error (RPE), the difference between
the observed reward and the predicted reward: rpe = rt − V t .
By how much the estimate is incremented is controlled by the
learning rate parameter α, such that the new estimate at time
t + 1 is V t+1 = V t + αrpe. The choice between two options
depends on the estimated values, and can be controlled by a
noise parameter (e.g., the softmax inverse temperature β ; see
Figure 5B).

The best parameters for a participant can be obtained by
a similar model-fitting procedure to the one described for the
DDM. Once the parameters are inferred, researchers can deduce
a sequence of latent variables defined by the computational
model, the fit parameters and participants’ choice and reward
history. For example, in a probabilistic learning task, we can

FIGURE 5 | DDM and RL Model. In the DDM in (A), single traces show multiple examples of simulated noisy accumulation of evidence to correct (black) or incorrect
(red) decisions. The resulting distribution of reaction times are plotted for correct (top) and incorrect trials (bottom). The DDM relies on three main parameters—the
non decision time, the threshold q indicating the bounds to which evidence is accumulated, and the drift rate indicating the rate of evidence accumulation. In the
RLM depicted in (B), an example of a sequence of 30 learning trials is given where the left choice is rewarded with probability p = 0.2, and the right with probability
p = 0.8. Given a choice and reward history (black), the computational model provides the inferred underlying changes in expected value for each option (V, red and
blue traces), and the inferred reward prediction error (RPE, yellow). The latent variables from modeling can be used to analyze trial by trial voltage. Within (C) activity
over mid-frontal electrodes is correlated with RPEs from correct trials (modified from Collins and Frank, 2016).

Frontiers in Human Neuroscience | www.frontiersin.org 7 March 2018 | Volume 12 | Article 106

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Bridwell et al. Moving Beyond ERP Components

extract the sequence of expected values and RPEs that best
explain participants’ choices. These latent variables can then be
linked to the neural signal on a trial by trial basis (e.g., Collins
and Frank, 2016, and Figure 5C), thus giving insight into the
computational mechanisms underlying behavior.

While using computational models for analyzing behavior
and linking it to the neural signal can be extremely helpful, it
also has many potential pitfalls that should be carefully kept
in mind, and a number of methods can mitigate them (Nassar
and Frank, 2016). The most important step is the validation of
the model. It is impossible to be sure that a given model is a
good mechanism for a cognitive process of interest, however,
it is important to ensure that it is a reasonable candidate. A
relative measure of a model’s goodness includes comparing its
fit to other candidate models. Quantitative comparisons should
take into account model complexity, as more complex models
are more likely to overfit the data. A more absolute measure of
a model’s goodness of fit requires posterior predictive checking:
it is important to simulate a model that would result from the
best-fit parameters and ensure that the pattern of simulated
behavior is a qualitative match to participant performance.

DATA FUSION: LINKING EEG/ERPs AND
BEHAVIOR IN AN
EXPLORATORY/DATA-DRIVEN MANNER

In the sections that follow, we highlight approaches to link EEG
data and behavioral data without imposing cognitive modeling
constraints on their relationships. Single trial regression
identifies associations between the two measures based upon
their linear relationships, while the data-driven approaches
(i.e., data-driven joint models) link EEG and behavior based
upon the particular assumptions of the BSS model. These
approaches do not incorporate an explicit link to cognitive
parameters as the joint cognitive models discussed within the
subsequent section (see ‘‘Linking EEG/ERP and Behavior With
Latent Variable Estimation (Hierarchical Bayesian Models)’’
section), but nevertheless hold considerable utility in revealing
the relationship between EEG responses and behavior.

Single Trial Regression
Trial-by-trial correlations between neural signals and behavior
offer the most stringent correlational test of brain-behavior
relations. Yet, it is arguably more common to see brain-behavior
correlations computed between, rather than within individuals.
While this can account for important individual differences, it
does not offer a mechanistic test of how the brain facilitates
behavior.

As an example, consider the question about how
self-generated error signals motivate behavioral correction. The
Error-Related Negativity (ERN) is a robust EEGmarker of motor
errors of commission (Falkenstein et al., 1991; Gehring et al.,
1993), and early reports showed that it predicted slower response
times following the error: an important manifest indicator that
may indicate the application of cognitive control (Laming,
1979; Gehring et al., 1993). Subsequent studies contributed

inconsistent evidence for a predictive relationship between
MCC control signals and behavioral adjustments (see Weinberg
et al., 2012). The ambiguity, however, reflected an over-focus
on between-subject examinations and a failure to examine
within-subject trial-to-trial brain-behavior relationships.

A meta-analysis of 20 between-subjects studies revealed a
significant meta-effect between error signals and post-error
slowing, yet five within-subjects studies revealed a significantly
larger relationship (Cavanagh and Shackman, 2015).
Importantly, these between subjects findings don’t tell us if
the ERN is actually linked to subsequent behavioral adjustment:
it could be the case that, for example, a personality dimension
like anxiety simply makes people more cautious in general.

In statistical terminology, within-subject single trial
regressions can be considered a Level 1 analysis and between-
subjects brain-behavior regressions are a Level 2 analysis. These
can be modeled together using mixed linear modeling (Singer
and Willett, 2003), hierarchical linear modeling (see ‘‘Linking
EEG and BehaviorWith Latent Variable Estimation (Hierarchical
Bayesian Models)’’ section), or by using the regression weight
of the Level 1 analysis as a first-order statistical summary for
input into standard General Linear Models (i.e., as implemented
in toolboxes such as SPM, Fieldtrip and LIMO EEG). This
simple approach has been used to show that people with
Generalized Anxiety Disorder indeed have different single
trial brain-behavior relationships than controls, suggesting
that (Level 2) individual differences influence (Level 1)
mechanisms for instantiating cognitive control (Cavanagh
et al., 2017).

In practice, the low signal to noise features of EEG
lead to limited resolution of single trial activities. This
can be bolstered by the approaches discussed within this
review, including spatial and temporal filtering (see Debener
et al., 2005), but users often apply non-parametric methods
like Spearman’s rank correlation coefficient in order to
diminish the influence of outliers and non-linearity. Single
trial multiple regression can be computed in MATLAB
with ample protection against outliers using the robustfit
function, which uses robust regression to down-weight outliers.
Alternatively, LIMO EEG implements first and second level
GLM’s using robust statistical tools which emphasize effect
size and which do not require preselection of peaks or
components.

Similarity Analysis
One of the issues that arises in identifying relationships between
unique datasets is the difference in the nature and dimensionality
of each measure. We highlight RSA as a promising method for
transforming different datasets into a common representational
space prior to assessing their similarity (Kriegeskorte et al.,
2008). Of note, RSA has been used to identify relationships
among diverse types of neuroimaging datasets, such as EEG and
magnetoencephalography (MEG; Su et al., 2012, 2014), MEG and
fMRI (Cichy et al., 2014, 2016), ERP’s and fMRI (Salmela et al.,
2018), or intracranial EEG (iEEG) and fMRI (Zhang et al., 2015).
Relationships among neuroimaging measures and behavior
(Wardle et al., 2016), neuroimaging measures and competing
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models (Kaneshiro et al., 2015), neuroimaging measures and
stimulus features (Su et al., 2014), may also be examined.

Within RSA, similarities among responses within a dataset
are first derived by computing a matrix of similarities between
responses across separate conditions or stimuli. This matrix,
termed the representational dissimilarity matrix (RDM) may
be constructed from pairwise correlation distances, pairwise
classification accuracies (Cichy et al., 2016), or from confusion
matrices from multi-class classifications (Kaneshiro et al., 2015).
The RDMmatrix represents a complexity reduced representation
of the original dataset which preserves information within the
original data space (i.e., by correlating fine-grained spatial or
temporal activations, as opposed to the loss of information
of conventional averaging; Kriegeskorte et al., 2006). By
relating different RDM matrices, RSA provides a framework
for identifying relationships among neuroimaging measures and
behavioral data or computational models (Kriegeskorte et al.,
2008).

To visualize differences between conditions, the pairwise
distances among the elements within an individual RDM may
be projected to two or three dimensions using multidimensional
scaling (MDS; Edelman et al., 1998), and the hierarchical
structure may be visualized using hierarchical clustering (Dubes
and Jain, 1980). These visualization tools hold considerable
promise for preserving the high-dimensional structure of these
datasets, which we demonstrate using t-Distributed Stochastic
Neighbor Embedding (t-SNE; van der Maaten and Hinton, 2008;
Figure 6). t-SNE emphasizes the local structure of data points as

opposed to the global structure, emphasized byMDS. Thus, there
are different advantages to each dimension reduction approach
depending on the structure of the dataset that the researcher
seeks to highlight (and the nature of the data; Rieck and Leitte,
2015; Kruiger et al., 2017).

While t-SNE has been a useful visualization tool for fMRI
and MRI datasets (Mwangi et al., 2014; Du et al., 2015; Mahfouz
et al., 2015; Panta et al., 2016), it has been underutilized within
EEG. Within Figure 6A, we demonstrate the t-SNE projection
(perplexity = 25; PCA dimensions = 50; tolerance = 0.0001)
of single trial 64 channel ERP oddball data collected on a
single healthy subject. The trials containing frequent stimuli (in
black) reasonably separate from the trials containing infrequent
stimuli (in red). This separation was quantified by computing
the average Euclidian distance among infrequent and frequent
stimuli minus the average distance among infrequent stimuli.
Using this measure, we observed a greater separation between
the two trial types among healthy controls (HC; N = 58)
than among individuals diagnosed with schizophrenia (SZ;
N = 58; Figure 6B; bootstrap test; p < 0.001; for participant
and experiment information, see Bridwell et al., 2014). These
results demonstrate that the information within single-trial
EEG’s may be meaningfully projected to a two-dimensional
representation with t-SNE (Bridwell et al., 2018). These findings
provide motivation for using visualization tools which consider
the high dimensional structure of the data. However, careful
consideration should be given to approaches better suited to
continuous data such as EEG, and different ways to quantify

FIGURE 6 | Single trial event-related potential (ERP) projection using t-Distributed Stochastic Neighbor Embedding (t-SNE). t-SNE projects multi-dimensional
datasets into a lower dimensional space for visualization. A high dimensional 654 (98 infrequent stimuli + 556 frequent stimuli) × 12224
(64 electrodes × 191 time-point) matrix of single trial ERP’s was projected to two dimensions using t-SNE (single healthy subject) in (A). The single-trial ERP
responses to infrequent auditory oddball stimuli (in red) reasonably separate from the single-trial ERP responses to frequent auditory stimuli (in black), motivating the
use of t-SNE for visualizing multi-electrode single-trial ERP’s. The separation between frequent and infrequent stimuli was quantified as the average Euclidian
distance between frequent and infrequent stimuli minus the average distance among infrequent and infrequent stimuli. A boxplot of the distribution of differences is
indicated in (B) for healthy controls (HC) and patients with schizophrenia (SZ). These results indicate a better separation among frequent and infrequent stimuli
among HC than SZ (bootstrap test; p < 0.001; modified from Bridwell et al., 2018).
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the separation of points in the lower dimensional space (e.g.,
Mahalanobis distance; Mahalanobis, 1936).

BSS Decompositions Incorporating
Multiple Datasets
BSS extracts meaningful information from large datasets in a
data-drivenmanner (for a review in the context of neuroimaging,
see Silva et al., 2016). Focusing on a lower dimensional EEG
dataset reduces the number of statistical relationships between
EEG measures and external variables, which alleviates the
possibility of being overly conservative in correcting for multiple
statistical comparisons. This is advantageous when identifying
relationships between EEG responses and behavior, as well
as when examining associations between EEG and other high
dimensional datasets, such as fMRI (Calhoun et al., 2009; Eichele
et al., 2009; Bridwell and Calhoun, 2014).

Beyond integrating information from multiple modalities
in parallel, many approaches have been developed and
implemented to extract concurrent fluctuations from multiple
measures in a joint decomposition, including simultaneous
decompositions of EEG’s and fMRI (Martínez-Montes et al.,
2004; Calhoun et al., 2006, 2010; Moosmann et al., 2008;
Edwards et al., 2012; Mijovíc et al., 2012, 2014), EEG spectra and
structural MRI (sMRI; Soh et al., 2015), or EEG spectra, fMRI
and sMRI (Sui et al., 2014), often with applications to clinical
populations (Calhoun et al., 2009; Adali et al., 2015; Calhoun and
Sui, 2016). Including all data within a multivariate multimodal
decomposition isolates complex relationships between measures
that may be more difficult to observe with more conventional
tests, improving the ability to observe relationships between
multimodal networks and behavior.

Instead of examining post hoc associations between
neuroimaging measures and behavior, a more integrated
approach is to decompose neuroimaging and multivariate
behavioral profiles at the same time (Liu et al., 2008; Groves
et al., 2011; Calhoun and Sui, 2016). Since these are two
fundamentally different types of data (e.g., with different
dimensions), a more flexible version of jICA, termed parallel-
ICA, has been particularly promising. Parallel-ICA imposes
constraints on the two datasets during decomposition such that
correlated components are decomposed together (for details see
Liu et al., 2008; Pearlson et al., 2015). For example, Meier et al.,
2012 isolated a sub-component of the ‘‘resting state’’ network
(RSN) that co-varied with behavior in a sustained attention
task, and a sub-component of the left inferior frontal gyrus that
co-varied with behavior during a memory task (Meier et al.,
2012).

Decomposition algorithms have also been developed
to decompose neuroimaging data into components which
maximally differ based on a reference measure, such as single
nucleotide polymorphism (SNP) allele frequencies, cognitive
state estimates, or behavioral measures. The Source Power
Comodulation (SPoC) approach, for example, is effective
at identifying components which correlate with a target
variable (e.g., correct responses, reaction time, or stimulus
features), especially low SNR responses (Dähne et al., 2014).

As opposed to the standard data-driven decomposition of
components, decomposition with reference imposes constraints
on the decomposition such that sources are extracted which
meaningfully differ based upon an external variable of interest
(e.g., Liu et al., 2012).

Multi-dataset decompositions with reference have also been
implemented recently by Qi et al. (2018). The authors applied
‘‘multi-site canonical correlations analysis with reference + jICA’’
to decompose fMRI, sMRI and dMRI data using working
memory performance as a reference (Qi et al., 2018). The
approach (implemented in the FIT toolbox2) holds considerable
promise by providing a joint framework for identifying
information from multiple modalities based on cognitive and
behavioral differences among populations. And future studies
may incorporate EEG data within these decompositions to
identify differences associated with behavioral measures such as
reaction times or percent correct, or latent behavioral measures
such as DDM parameter estimates.

Partial Least Squares
Predictive brain-behavior relationships can be established using
partial least squares (PLS) regression analyses (N-way toolbox,
Andersson and Bro, 2000) of EEG. PLS is well established
in neuroimaging studies (McIntosh et al., 1996; McIntosh
and Lobaugh, 2004) as a method to address the problem of
multicollinearity in regression models where a very large number
of independent variables derived from brain data are used to
model a few behavioral variables. PLS regression models estimate
orthogonal components (similar to PCA) which maximize the
covariance between behavioral data and the EEG data. More
specifically, the PLS components are based on the optimization
of a least-squares fit of a partial correlation matrix between the
EEG data and dependent variables of interest (Andersson and
Bro, 2000). Although PLS components lead to optimal regression
models using only a few components, they are susceptible to
overfitting, since the component structure is determined by the
covariance with behavioral data. Thus, PLS models (as well as
CCA models) must be validated by testing the prediction of new
data not used in estimating the model (Huang et al., 2011; Kang
et al., 2016).

Although PLS has been more extensively used in
neuroimaging, a number of studies have made use of PLS
models to relate EEG and evoked potential properties to
individual differences in behavior. In studies of attention,
PLS models have been applied to steady-state visually evoked
potentials (SSVEP) responses to flickering signals and noise
to account for how individual differences in the deployment
of spatial attention can predict accuracy data (Krishnan et al.,
2013). Similar models of the SSVEP have also been used to
assess the optimal attentional filters in detection of biological
motion (Hasan et al., 2017). In studies of motor learning, PLS
models have been used with resting state EEG coherence to
demonstrate that the functional connectivity of motor cortex can
predict short-term motor learning (Wu et al., 2014). In studies
of stroke patients, PLS models have shown that EEG coherence

2http://mialab.mrn.org/software/fit
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with motor cortex in the resting state can predict both motor
impairment and improvement over a period of rehabilitation
(Wu et al., 2015, 2016).

Canonical Correlation Analysis
CCA is conceptually similar to PLS (Rosipal and Krämer,
2006), except that in PLS linear structure is assumed as hidden
(i.e., ‘‘latent’’) variables while CCA is a more nonparametric
approach to finding weights that produce maximum correlation
(for additional comparisons between CCA and PLS, see Sun et al.,
2009; Dahne et al., 2015).

CCA transforms two multi-dimensional datasets such that
the resulting variates are maximally correlated across datasets
and uncorrelated within each dataset (Hotelling, 1936). The
application of CCA to joint datasets consisting of EEG and
behavioral or cognitive measures is limited, so we highlight select
studies here which have used multi-subject extensions of CCA to
identify covariations between EEG data and other neuroimaging
measures such as fMRI, and sMRI (for an example linking
brain connectivity patterns and demographic and psychometric
measures, see Smith et al., 2015).

Multi-subject extensions of CCA (termed multimodal CCA,
jCCA or mCCA) have been developed using ERP time courses
and fMRI spatial maps as features (Li et al., 2009; Correa
et al., 2010a). Unlike jICA, which is also implemented on multi-
subject multi-modal datasets, mCCA allows a separate mixing
matrix for each modality and does not emphasize independence
among the multimodal sources. Thus, mCCA is suitable for
operating on diverse data-types with differing dimensionalities.
The relationships between multi-modal feature loadings and
behavioral variables such as percent-correct, confidence ratings,
and average reaction time may then be examined (Correa et al.,
2008, 2009, 2010a,b). Further extensions of mCCA to single
trials will be useful for identifying associations in concurrently
recorded ERP and fMRI datasets, and the loadings of these
multi-modal variates may be related to corresponding single trial
behavioral measures.

LINKING EEG AND BEHAVIOR WITH
LATENT VARIABLE ESTIMATION
(HIERARCHICAL BAYESIAN MODELS)

Within this section, we focus on combining EEG and behavior
for simultaneously estimating latent cognitive measures.
Hierarchical Bayesian modeling (HBM) of human cognition
is one of the most powerful methods to integrate EEG and
behavior, since these datasets are linked with respect to
the cognitive function specified by the model and shared
relationships are estimated simultaneously. The hierarchical
Bayesian modeling (HBM) framework is ideally suited for the
joint analysis of multiple modes of data (Lee, 2011; Turner
et al., 2013). In addition, the EEG data can also provide new
and additional information about the cognitive process that
cannot be discerned with just behavior alone. This flexible
framework can inform building and testing theoretical models of

the relationship of electrical observations from the human cortex
(EEG), human cognition and human behavior.

Bayesian inference refers to underlying probability theory
and methods used to obtain conclusions about data (for an
entertaining introduction to Bayesian inference see Etz and
Vandekerckhove, 2017). Hierarchical modeling refers to the
mathematical procedure of assuming statistical relationships
between multiple levels of data description. Hierarchical
modeling often yields better estimates of parameters due
to shrinkage, a phenomenon whereby parameters are better
estimated (and data are better described) because hierarchical
relationships enforce similarity across similar parameters. For
instance, the condition-level mean accuracies in an experimental
task could statistically describe observed subject-level mean
task accuracies through a normal distribution, and yield more
predictive estimates of future subject-level ability (see Lee and
Wagenmakers, 2014 for an introduction to HBMs). HBM also
allows discovering complex relationships between multiple data
types within cognitive neuroscience (Wiecki et al., 2015; Turner
et al., 2016) by allowing simultaneous estimation of posterior
distributions of multiple parameters. Fitting procedures produce
samples from probability distributions that display knowledge
(i.e., ‘‘uncertainty’’) about parameter estimates and thus certainty
about the effects of cognition or EEG data in specific theoretical
models.

Using the DDM of quick decision-making as an example,
single-trial estimates of evidence accumulation rate during quick
decision making and non-decision time (time in milliseconds
of a human reaction time not related to a decision) have
been obtained using hierarchical Bayesian modeling with ERP
amplitude estimates on single trials, time-locked to the onset
of visual stimuli. Such work is described in Nunez et al.
(2017). It was found that ERP measures described trial-
to-trial differences in visual encoding time (a component
of non-decision time during reaction time) and trial-to-trial
differences in evidence accumulation rate, as described by trial-
level estimates of the drift parameter (Figure 7). EEG correlates
of additional cognitive processes, such as visual attention, can
also add inference about the overall human cognitive process
when used in combination with behavioral modeling. Nunez
et al. (2015) found evidence that differences in experimental
participants’ attention (both visual noise suppression and visual
signal enhancement) as measured by SSVEPs related to some
specific differences in participants’ cognition during decision-
making.

Modern software allows HBM to be easily created, built
and tested with both behavioral and EEG data using multiple
types of Markov Chain Monte Carlo (MCMC) sampling
techniques (see Table 2). Although still being developed and
improved, JAGS (Plummer, 2003), Stan (Carpenter et al.,
2017), and PyMC3 (Salvatier et al., 2016) are all recommended
tools for these steps. These programs allows users to build
almost any cognitive hierarchical models they choose. For
example, these programs can readily be adapted to HBM
of EEG and behavior using RL models. However, cognitive
neuroscientific theory must be further developed to learn useful
combined generative models of observed cortical dynamics,
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FIGURE 7 | Single trial ERP influence on DDM parameters. Two trials of a subject’s spatially weight-averaged ERP are shown (top and bottom panels) along with
simulations of this subject’s cognitive representation of evidence (middle panel) that are derived from RT distributions. The 10th and 90th percentiles of this subject’s
single-trial drift rates (within-trial average evidence accumulation rates in a Brownian motion process as assumed by the DDM) are shown as the orange and green
vectors. Results from hierarchical Bayesian modeling suggested that single-trial N200 amplitudes (peaks and spline-interpolated scalp maps denoted by the orange
and green asterisks) influence single-trial drift rates (i.e., one latent cognitive parameter that describes the time course and latency of a decision). Using fitted
parameters from real data, the larger drift rate is a linear function of the larger single-trial N200 amplitude (∗∗), while the smaller drift rate is a linear function of the
smaller N200 amplitude (∗). The three dark blue evidence time courses were generated with the larger drift rate (orange vector) which is more likely to produce faster
reaction times (where one path describes the time course of the example decision time and subsequent remaining non-decision time in the Middle panel). The three
dotted, light blue evidence time courses were generated with the smaller drift rate (green vector) which is more likely to produce slower reaction times. True Brownian
motion processes were estimated using a simple numerical technique discussed in Brown et al. (2006). Further explanation of the simulation and model fitting exists
in Nunez et al. (2017).

cognition, and human behavior. Specific examples of these
programs in use include (1) HDDM: python functions that
can perform linear regression between calculated EEG signals
on single-trials and parameters of DDMs of accuracy and
reaction time data (Wiecki and Frank, 2013); (2) Hawkins
et al. (2017) created R code and examples for sampling
from hierarchical drift-diffusion models (HDDM) with neural
inputs3; and (3) MATLAB and JAGS example code performing
some HDDM analyses with single-trial EEG inputs can be
found at https://github.com/mdnunez/mcntoolbox (Nunez et al.,
2017).

CONCLUSION

Neuroimaging research is focused on understanding the links
between neural activity and observable behavior. This knowledge

3https://osf.io/ws3fn

will help us understand how individual differences in the brain
contribute to individual differences in cognitive processes. EEG
is low cost, portable and provides millisecond resolution of
brain activity. Thus, it is a promising tool for examining neural
measures at the time scales of cognitive function. In order to
relate EEG features with behavior, it will be important to obtain
reliable single-trial estimates of EEG features using advanced
processing and machine learning tools described within this
review, and to move beyond the conventional focus on evoked
components derived after averaging across trials and subjects.
In addition, the accumulation of EEG depositories through data
sharing and quantitative extensions beyond binary comparisons
will also help advance the field. The resulting single trial EEG
measures may be correlated with direct or latent measures
of behavior post hoc, decomposed jointly with behavior, or
integrated with behavior to derive estimates of latent variables
which represent cognitive function. In doing so, we hope to

TABLE 2 | Publicly available toolboxes for (hierarchical) Bayesian parameter fitting.

Toolbox Programming language Citation Link

JAGS Base software and Interfaces for Python, R, and MATLAB Plummer (2003) http://mcmc-jags.sourceforge.net/
Stan Interfaces for Python, R, MATLAB, and Julia Carpenter et al. (2017) http://mc-stan.org/
PyMC3 Python Salvatier et al. (2016) https://github.com/pymc-devs/pymc3
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further our understanding of brain dynamics that contribute to
moment-to-moment cognitive function.
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