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Abstract: Glioblastoma multiforme (GBM) is the most common and aggressive adult primary 

central nervous system tumor. Unfortunately, GBM is resistant to the classic chemotherapy 

drug, temozolomide (TMZ). As well as its classic DNA-targeting effects, the off-target effects 

of TMZ can have pro-survival or pro-death roles and regulate GBM chemoradiation sensitiv-

ity. Endoplasmic reticulum (ER) stress is one of the most common off-target effects. ER stress 

and its downstream induction of autophagy, apoptosis, and other events have important roles 

in regulating TMZ sensitivity. Autophagy is an evolutionarily conserved cellular homeosta-

sis mechanism that is closely associated with ER stress-induced apoptosis. Under ER stress, 

autophagy cannot only remove misfolded/unfolded proteins and damaged organelles and 

degrade and inhibit apoptosis-related caspase activation to reduce cell damage, but may also 

promote apoptosis dependent on ER stress intensity. Although some protein interactions 

between autophagy and apoptosis and common upstream signaling pathways have been found, 

the underlying regulatory mechanisms are still not fully understood. This review summarizes 

the possible mechanisms underlying the current known off-target roles of ER stress and down-

stream autophagy in the regulation of cell fate and evaluates their role in TMZ treatment and 

their potential as therapeutic targets.

Keywords: autophagy, apoptosis, chemotherapy resistance, temozolomide, glioma, endoplas-

mic reticulum stress

Introduction
Glioblastoma multiforme (GBM) is the most common and aggressive adult primary 

central nervous system tumor, with a 2-year survival rate of only 3%–5%.1 Currently, 

the standard treatment for GBM is a multimodal comprehensive approach that includes 

surgery, radiotherapy, and chemotherapy. Because complete surgical resection cannot 

be performed, and because of its multichemotherapy resistance, including the classic 

chemotherapeutic temozolomide (TMZ), recurrence is almost unavoidable, resulting in 

a very short median survival period of 12–15 months. To improve prognosis, research 

into the molecular mechanisms involved in resistance is imperative to increasing 

chemosensitivity.

TMZ, an oral alkylated chemotherapeutic drug, is a first-line drug for clinical 

glioma chemotherapy and can efficiently pass through the blood–brain barrier to 

reach the lesion. However, over time, GBM develops resistance to TMZ-induced 

damage, which is associated with several mechanisms such as DNA repair path-

ways (O6- methylguanine DNA methyltransferase [MGMT], DNA mismatch repair, 

base excision repair system), epidermal growth factor receptor (EGFR) and MDM2 
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expression, p53 mutation, and PTEN expression. In addition, 

changes in micro-RNA expression profiles are also associated 

with resistance development. These mechanisms are centered 

on DNA repair and mutation of endogenous tumor suppressor 

genes. However, in addition to the classic targeting of DNA 

damage, TMZ induces some off-target effects, which may 

promote survival or death, resulting in regulation of GBM 

chemoradiation sensitivity.

Among the off-target effects, endoplasmic reticulum 

(ER) stress is the most common. ER stress and its down-

stream signaling, such as autophagy and apoptosis, play 

an important role in regulating TMZ sensitivity. The ER 

is the intracellular organelle responsible for the synthesis 

of proteins and lipids. It can be disrupted by a variety of 

physiological or pathological stimuli (eg, withdrawal of 

nutrients, energy deprivation, hypoxia, oxidative stress, 

chemotherapeutic drugs) that can induce ER stress, leading 

to a decrease in ER protein folding ability and resulting in 

accumulation of misfolded or unfolded proteins, thereby 

activating the ER unfolded protein response (UPR). The 

UPR regulates autophagy and other degradation pathways 

that degrade misfolded proteins to restore homeostasis by 

limiting the rate of global protein synthesis, which finally 

determines cell fate. Autophagy, an important downstream 

target of ER stress, has been found to play a pro-survival or 

pro-apoptotic role at the cellular or organ level in response 

to different stresses.2 The exact mechanism by which 

autophagy performs two seemingly contradictory roles is 

still unclear. Current research shows that there is a complex 

interplay between autophagy and apoptosis. Therefore, dur-

ing GBM chemotherapy, autophagy may be an important 

event resulting from off-target effects, leading to a change 

in TMZ sensitivity (Figure 1).3,4

Thus, studies of the off-target effects of ER stress 

will contribute to develop new therapeutic strategies that 

sensitize chemoresistant glioma and/or prevent glioma 

resistance.

ER stress in GBM
ER stress can be observed in a variety of solid tumor 

samples (such as glioma), and studies have shown that it is 

closely related to the regulation of tumor chemosensitivity. 

The expression of the ER stress marker, 78 kDa glucose-

regulated protein (GRP78), is lower in normal brain tissue 

than in other normal tissues, but it is most significantly 

increased in glioblastoma compared with other tumors.5 

Furthermore, GRP78 expression significantly increases with 

the pathological grade level in gliomas.6 Several studies in 

glioma and other cancer cell line models have demonstrated 

that ER stress-associated proteins, such as GRP78/Bip,6–9 

ATF4,10 ATF6,11 and P4HB,12,13 have pro-survival roles 

and function as resistance-related factors. These evidences 

indicate that ER stress and TMZ sensitivity of gliomas are 

closely related.
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Figure 1 Schematic representation of the functional relationship between unfolded protein response, autophagy, apoptosis, and glioma cell fate under TMZ treatment. 
Notes: Under TMZ treatment, eR stress (unfolded protein response), autophagy, and apoptosis occur in glioma cells. Complex interactions between these pathways 
determine the fate of glioma cells. The UPR regulates autophagy through the PeRK, XBP1, and other pathways, and autophagy can degrade misfolded protein aggregates 
or damaged organelles through a lysosome-associated degradation system. Meanwhile, upon eR stress stimulation, the UPR can facilitate apoptosis via CHOP, JNK, ATF6, 
and other pathways, or inhibit apoptosis through global translational control, and by regulating folding capacity and misfolded protein degradation through a proteasome-
associated degradation system. iDiSC formation and XiAP degradation are critical in the process of autophagy upregulation of apoptosis. However, autophagy can also inhibit 
apoptosis through nutrient recycling and elimination of damaged organelles.
Abbreviations: eR, endoplasmic reticulum; TMZ, temozolomide; UPR, unfolded protein response.
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eR stress and UPR
Under ER stress, cells can activate a series of adaptive 

responses, such as the UPR. The UPR cannot only deal with 

stress by reducing new protein synthesis and increasing pro-

tein folding capacity, but can also reduce protein toxicity by 

reducing misfolded/unfolded protein accumulation through 

ER-associated protein degradation or autophagy. However, 

when stress persists or is too severe, the UPR initiates the 

apoptotic process to eliminate damaged cells. This indicates 

that the UPR determines cell survival and death depending 

on the stress intensity and duration.

The UPR consists of three classical pathways, PERK–

eIF2α–ATF4, IRE1α–XBP1, and ATF6. PERK, IRE1, and 

ATF6 are three transmembrane proteins that can form com-

plexes with the molecular chaperone, GRP78, and remain 

inactive under physiological conditions. When ER stress 

occurs, unfolded proteins accumulate in the ER and GRP78/

BiP is released from the complex, leading to PERK, IRE1, 

and ATF6 activation.

PERK is a major protein that, under ER stress, reduces 

mRNA translation, inhibits global protein synthesis, and 

preferentially induces ATF4 expression by phosphorylating 

eIF2α.14 ATF4 is the core factor in the integration of the stress 

response, which can transcriptionally regulate autophagy, 

apoptosis, antioxidation, and other related proteins with 

its wide transcriptional capacity. ATF4 induces autophagy 

through transcriptional regulation of autophagy-related 

genes (eg, ATG7, ATG5, LC3B)15 and activates apoptosis by 

cooperating with upregulated CHOP and promoting XIAP 

 degradation.16 CHOP initiates apoptosis by activating BIM and 

DR5 and inhibiting the antiapoptotic protein, BCL-2.17–19 DR5 

is a death receptor that can be transcriptionally upregulated 

by CHOP and induces apoptosis by activating caspase-8.20 

In addition, CHOP can induce apoptosis through the regula-

tion of IP3R, which leads to changes in calcium homeostasis.21 

Currently, PERK is the most studied branch of the UPR in 

the field of autophagy and apoptosis regulation by ER stress.

When the UPR is activated, the cytoplasmic region of 

IRE1α oligomerizes and autophosphorylates and is acti-

vated by forming a complex with tumor necrosis factor 

receptor-associated factor-2 (TRAF2) and apoptosis signal-

regulating kinase-1 (ASK-1), which in turn actives Jun-N-

terminal kinase (JNK) and induces autophagy or  apoptosis.22 

Moreover, IRE1α can activate the apoptotic process by 

its RNase activity through the cleavage of miRNAs that 

inhibit  caspase-2, such as miR-17, miR-34a, miR-96, and 

 miR-125b.23 IRE1α can also induce autophagy by regulating 

the expression of Beclin-1 via XBP1.24

ATF6 is a transcription factor activated under ER stress, 

whereupon it translocates to the Golgi and is cleaved by S1P 

and S2P to its short form, which translocates to the nucleus 

and binds to the ATF/CRE element or the ERSE element 

to initiate target gene transcription (eg, GRP78, CHOP, 

XBP1) and regulate autophagy and apoptosis through XBP1 

and CHOP.25

eR stress: a double-edged sword in TMZ 
sensitivity adjustment
The protective roles of eR stress
ER stress plays an important role in the resistance of GBM 

to TMZ toxicity by enhancing the ability of the molecular 

chaperones’ protein folding capacity and upregulating the 

ER-associated protein degradation pathway, autophagy, 

and other cellular adaptive responses. Currently, studies 

on the link between ER stress and TMZ chemoresistance 

have primarily focused on cellular models and on multiple 

glioma cell models. However, the exact mechanism has 

not yet been clarified. These studies suggest that GRP78 

is crucial for the changes in glioma chemosensitivity.26 In 

GBM cell lines, knockdown of GRP78 by siRNA induced 

cell death by inducing CHOP expression and caspase-7 

activation, whereas overexpression of GRP78 significantly 

increased the resistance of GBM cells to chemotherapeutic 

agents such as TMZ.9 Epigallocatechin 3-gallate (EGCG) 

is a green tea extract that inhibits GRP78 by targeting the 

ATP-binding domains and has been demonstrated to enhance 

GBM sensitivity to TMZ in vitro. Furthermore, using two 

pairs of TMZ-sensitive/resistant cell lines (D54-S and D54-R; 

U87-S and U87-R), Sun et al discovered that the ER stress-

induced protein, prolyl 4-hydroxylase subunit beta (P4HB), 

has an important role in glioma TMZ resistance. P4HB is 

an ER stress-inducible multifunctional protein with disulfide 

isomerase activity and is overexpressed in TMZ-resistant 

and recurrent GBM. P4HB overexpression or siRNA knock-

down in GBM cell lines resulted in resistance or sensitivity 

to TMZ.12 In addition, it has been shown that miR-210 is 

involved in the regulation of P4HB expression and confers 

GBM cell resistance to TMZ.13 Thus far, there is little evi-

dence linking ER stress molecules with TMZ-resistance; 

most studies have focused on the cellular adaptive response 

mediated by ER stress, such as autophagy (described in detail 

below). By analyzing cell models, xenograft tumor models, 

human GBM pathology samples, and databases, Epple et al 

found that the UPR may generate resistance via regulation 

of cell metabolism.27 Moreover, it has been demonstrated at 
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the cellular level that the ER stress factor, ATF4, can regulate 

oxidative metabolism through xCT (SLC7a11) and increase 

the resistance of glioma cells to TMZ.10

Thus, under mild ER stress, the activated UPR can 

maintain cellular homeostasis via activating molecular 

chaperones, inhibiting global protein synthesis, increasing 

the degradation of misfolded or unfolded proteins, chang-

ing the oxidative metabolism, and then inhibiting cell death, 

resulting in reduced sensitivity of GBM to chemotherapy.

eR stress acts as a pro-death mechanism
Under mild ER stress, a variety of cytoprotective effects 

can lead to glioma cell resistance to TMZ. However, under 

persistent and severe ER stress, cell homeostasis cannot be 

restored, resulting in the activation of various pathways. 

For instance, knockout of the ER stress-related factor men-

tioned above will transform protective ER stress into a fatal 

stress response. Hence, increasing the ER stress level has 

become a viable strategy for improved TMZ sensitivity. For 

example, sphingosine kinase inhibitors (SKIs) can increase 

TMZ toxicity through increasing ER stress, while the ER 

stress inhibitor 4-PBA reverses this sensitization effect.28 

Fluoxetine, an antitumor-associated depression drug, works 

synergistically with TMZ through a CHOP-dependent apop-

totic pathway mediated by ER stress. The new ER stress 

inducer, JLK1486, the systemic cancer chemotherapeutic 

drug, perillyl alcohol, and the novel trinorguaiane-type ses-

quiterpene, Radicol, can increase TMZ sensitization through 

CHOP by inducing lethal ER stress.29–31 Perillyl alcohol and 

TMZ have been conjugated to synthesize a new compound, 

NEO212, which shows stronger antiglioma properties, prob-

ably because of the enhanced apoptotic pathway of lethal ER 

stress.32 However, Xipell et al have found that ER stress-

inducing agents can also increase the sensitivity of glioma 

cells to TMZ by downregulating MGMT, MPG, and Rad51.33

In conclusion, when ER stress is too severe, the UPR 

cannot restore homeostasis, and thus induces cell apoptosis 

through ATF4, CHOP, and other factors. Hence, increased 

ER stress may be an efficient target to enhance TMZ sen-

sitivity. However, the specificity of its targets remains to 

be resolved.

ER stress-induced autophagy: the two 
faces of TMZ sensitivity regulation
At present, a variety of antitumor treatment methods (such as 

those that increase ER stress) cause autophagy in tumor cells. 

Autophagy is an important downstream ER stress event that 

has a double-edged sword role in ER stress largely through 

the regulation of apoptosis. Under ER stress, apoptosis occurs 

mainly through the mitochondrial pathways (endogenous) 

and death receptor pathways (exogenous). Numerous studies 

have shown that autophagy has a role in inhibiting or promot-

ing apoptosis by participating in the critical steps of these two 

apoptosis pathways and in the regulation of crucial proteins.

Autophagy as a protective mechanism
Thus far, studies have shown that autophagy mainly acts as 

a pro-survival mechanism in the treatment of glioma with 

TMZ. Inhibition of autophagy can significantly increase 

TMZ-induced apoptosis at the clinical treatment concentra-

tion (#100 µM), indicating that inhibition of autophagy is 

an effective strategy for improving the therapeutic effect of 

TMZ.34,35 Knockout of critical autophagy genes (eg, ATG5, 

ATG7, BECN1) or autophagy blockers (eg, chloroquine and 

its derivatives) can increase ER stress-related apoptosis, 

leading to increased CHOP expression and caspase-3 and 

PARP cleavage.36,37 This evidence suggests that autophagy 

has an important role in degrading unfolded proteins, reduc-

ing protein load, and promoting cell survival. In addition, ER 

stress can induce mitochondrial autophagy, degrade damaged 

mitochondria, and protect cells from death.38

Autophagy can protect cells from apoptosis by clearing 

unfolded proteins, reducing protein load, and eliminating 

damaged organelles (mainly mitochondria), as well as 

reduce apoptosis by regulating the activity of caspase fam-

ily proteins. Studies have shown that inhibiting autophagy 

by knockdown of BECN1 (which encodes Beclin1) and 

VPS34 obviously increased the activation of caspase-8, the 

release of cytochrome C, and the proportion of Annexin 

V-positive cells in apoptosis-deficient cell lines HCT116 

(BAX-/-) and MCF-7 (CASP3-/-) treated with the exogenous 

apoptosis pathway-inducing drug, TRAIL, and the classic 

chemotherapy drug, cisplatin. This effect was counter-

acted by caspase-8 inhibitors and caspase-8-targeting 

RNAi.39 These findings suggest that inhibiting autophagy 

mediated by ER stress and induced by the inhibition of 

the death receptor and chemotherapeutic drugs increases 

caspase-8 activation in apoptotic cell lines. Similarly, 

Amir et al have demonstrated that autophagy occurs during 

hepatocyte apoptosis induced by D-galactosamine (GalN) 

and lipopolysaccharide (LPS) in mice, and inhibiting 

autophagy by hepatic tissue-specific inhibition of ATG7 

increased hepatocellular caspase-8 activity and apoptosis.40 

Zhang et al have demonstrated that autophagy protected 

U87MG glioma cells from H
2
O

2
-induced oxidative stress 

by degrading caspase-8.41 Taken together, these findings 

suggest that autophagy contributes to avoidance of apop-

tosis by blocking caspase-8 activation.
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It has been demonstrated that blocking autophagic flux 

can increase TMZ sensitization,36–38,42 and combination TMZ 

adjuvant therapy has entered Phase I/II clinical trials.43 In 

addition, several experiments have demonstrated that ataxia 

telangiectasia mutated (ATM) kinase inhibitors and plant 

extracts (eg, resveratrol) inhibited autophagy in both cellular 

models and mouse xenograft tumor models, and markedly 

enhanced TMZ cytotoxicity, reduced tumor volume, and 

increased mouse lifespan.44–48 However, these experiments 

did not involve analysis of caspase family proteins. Whether 

autophagy is involved in the regulation of caspase activity 

under the action of TMZ requires further study.

In conclusion, autophagy has a protective role in ER 

stress by clearing misfolded proteins and damaged organelles 

(mainly mitochondria) and by inhibiting caspase-8 activity.

Autophagy as a pro-death mechanism
Although autophagy under ER stress can degrade misfolded/

unfolded proteins to maintain cellular homeostasis and 

inhibit cell death, it can also participate in ER stress-induced 

 apoptosis.49 Autophagy-associated cell death is currently 

thought to result from complete degradation of cellular 

components caused by excessive autophagy. In T98G glioma 

cells, silencing of the critical autophagy genes BECN1 and 

ATG7 by siRNA partially decreased the cytotoxicity of 

TMZ.50 In addition, drugs that promote autophagy-mediated 

apoptosis such as Δ9-tetrahydrocannabinol51 and oncolytic 

adenovirus CRAd–Surivin–pk7,52 in combination with 

TMZ, significantly reduced the volume of xenograft tumors. 

Furthermore, dasatinib,53 rapamycin,50 the dual class IA 

inhibitor of PI3K/mTOR, PI-103,54 pan BCL-2 inhibitors,55 

and VPA56 improved the TMZ effect through autophagy in 

different GBM cell lines.

Studies on ER stress have indicated that the autopha-

gosomal membrane serves as a platform for intracellular 

death-inducing signaling complex (iDISC), which mediates 

caspase-8 activation and apoptosis. In 1998, Martin et al 

found that forced membrane localization and self-association 

of caspase-8 promoted apoptosis.57 Furthermore, it has been 

demonstrated that caspase-8 can be recruited to the ATG12–

ATG5 complex by FADD and that the autophagic machinery 

has an important role in caspase-8 activation.58–60 Moreover, 

Young et al found that the caspase-8–FADD complex colo-

calized with ATG5 in ATG16- and LC3-positive structures 

upon treatment with SKI-I (a pan-sphingosine kinase inhibi-

tor) and bortezomib (a proteasome inhibitor), indicating that 

the autophagosomal membrane serves as a platform for this 

complex and demonstrated that the recruitment of caspase-8 

to this complex depends on p62/SQSTM1.61 Inhibition of 

the early stage of autophagy through knockdown of ATG5 

or ATG3 significantly reduced caspase-8 activation and 

apoptosis, whereas inhibiting late-stage autophagic flux with 

bafilomycin A1 increased caspase-dependent cell death.61 

Furthermore, using HAMLET treatment, Zhang et al dem-

onstrated that p62/SQSTM1 is involved in the regulation 

of apoptosis by regulating caspase-8 activation in U87MG 

glioma cells and that the p62/SQSTM1 UBA domain is 

required for it to activate caspase-8.62 And another study 

showed that E3 ubiquitin ligase TRIM13 could regulate 

caspase-8 ubiquitination and translocation to autophagosomal 

membranes under ER stress.63 And in mitochondrial apoptotic 

pathway-deficient cell lines, ER stress inducers tunicamy-

cin and thapsigargin promoted the formation of ATG5–

FADD–caspase-8 complexes and caspase-8 activation.39 

Furthermore, Tang et al found that caspase-8 dimerization 

and activation based on iDISC formation occur on accumu-

lated immature autophagosomal membranes and require the 

LC3 conjugation machinery.64 Inhibiting the initial stages 

of autophagy by knocking out ATG5 and ATG7 decreased 

caspase-8-dependent apoptosis.39,65 Conversely, increased 

induction of autophagy would make the cell sensitive to 

autophagy blockers such as chloroquine and bafilomycin A1 

through p62/SQSTM1-dependent caspase-8 activation.66–68 

However, autophagy could also play a cytoprotective role 

by degrading caspase-8 or blocking intrinsic or extrinsic 

apoptosis pathways, and inhibiting autophagy initiation by 

siRNA or inhibitors enhances the activation of caspase-8 

and apoptosis.40,41,69 However, the factors that determine 

the completion of the autophagy process or that serve as 

a platform for caspase-8 activation and iDISC formation 

remain unknown.

In addition to the regulation of apoptosis through the 

interaction with caspases, autophagy may promote apoptosis 

by degrading endogenous antiapoptotic factors. Inhibitors 

of apoptosis (IAPs) are an evolutionarily conserved protein 

family that inhibit apoptosis by inactivating caspases.70 

Hou et al found that ATG1 and ATG7 mutations caused a 

decrease in DNA fragmentation, but did not affect nuclear 

condensation in degenerating mid-stage egg chambers, indi-

cating that autophagy is partially involved in the regulation 

of cell death. During this stage, the effector caspase, DCP-1, 

and the IAP protein, Bruce, closely interact with autophagy.71 

Subsequently, Nezis et al revealed that inhibiting autophagy 

by knocking out ATG1, ATG13, and type III PI3K (VPS34) 

blocks developmental apoptosis in the late-stage nurse cells of 

Drosophila melanogaster oogenesis. Furthermore, it has been 

shown that dBruce colocalized with the autophagy marker, 

ATG8-GFP, and accumulated in autophagy-mutated cells.72,73 
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Figure 2 Common upstream signaling pathways of autophagy and apoptosis under eR stress and the mechanisms of autophagy involved in determining cell fate under 
different intensities of eR stress.
Notes: Under eR stress, the unfolded protein response is activated, resulting in activation of PeRK and phosphorylation of eiF2α. Selective induction of ATF4 occurs, 
which can promote the transcription of genes involved in autophagy, apoptosis, molecule chaperoning, eR-associated degradation, and metabolism. Moreover, ATF4 can 
also activate apoptosis via degradation of XiAP and cooperation with CHOP under prolonged eR stress. iRe1 activates XBP1, ASK1, and molecules downstream of JNK that 
promote autophagy and apoptosis. Through XBP1 and CHOP, ATF6 can indirectly regulate autophagy or apoptosis. Thus, the effects of eR stress-induced autophagy on 
cell survival have dual roles including pro-survival and pro-death. On one hand, autophagy can inhibit apoptosis through clearing misfolded/unfolded proteins and damaged 
organelles and inhibiting or degrading caspases, resulting in protecting cells from damages induced by eR stress. On the other hand, autophagy can serve as a platform for 
caspase-8 activation and degrade IAPs, which amplifies cell injury induced by ER stress.
Abbreviations: eR, endoplasmic reticulum; TMZ, temozolomide.
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Xu et al demonstrated that CHAL-24 induced the degradation 

of c-FLIP (L) and c-IAP via autophagy, thereby significantly 

enhancing the antitumor activity of TRAIL.74 Additionally, it 

has been reported that the PERK–eIF2α–ATF4 pathway of 

the UPR is involved in the degradation of the antiapoptotic 

protein, XIAP.16 Although the PERK axis is closely related 

to autophagy, whether autophagy is directly involved in the 

degradation of XIAP protein still lacks direct experimental 

evidence. Taken together, this evidence demonstrates that 

autophagy can promote apoptosis by autophagic degradation 

of certain types of IAPs.

In summary, autophagy undertakes a cytoprotective role 

by eliminating misfolded/unfolded proteins and damaged 

organelles and inhibiting the activation of caspases under 

ER stress. It also serves as a platform for the activation of 

caspase-8 and degradation of IAPs, promoting ER stress-

induced apoptotic death.

However, the role of autophagy in the treatment of 

GBM with TMZ remains controversial, and the mechanism 

by which autophagy switches between a pro-survival and a 

pro-death role remains unclear. Combining the close rela-

tionship between ER stress and autophagy, it is likely that 

ER stress determines the role of autophagy in the regulation 

of cell survival and death. Hence, we propose the following 

model: in mild or moderate ER stress, the activated UPR 

maintains cellular homeostasis by inhibiting new protein 

synthesis and increasing protein folding capacity, in which 

autophagy has an important role by eliminating misfolded/

unfolded proteins and inhibiting or degrading caspases. In 

severe ER stress, the UPR activates the apoptotic process 

by CHOP and other proteins, while autophagy serves as a 

platform for the activation of caspase-8 to promote apoptosis. 

This hypothetical model considers that autophagy specifi-

cally determines the fate of cells under ER stress, and that 

ER function is mainly mediated through the modulation of 

autophagy function (Figure 2).

Conclusion and prospect
The resistance of GBM to TMZ treatment is the bottleneck 

in the clinical treatment of this disease. The off-target 

effects of ER stress have various and intricate outcomes 

on the sensitivity of GBM to chemotherapy (mainly TMZ). 

Undoubtedly, ER stress and autophagy are crucial regula-

tors of TMZ sensitivity but may be more likely to function 

in a cell-specific manner. Finally, the survival and death of 

GBM cells theoretically depend on the dose and duration of 

TMZ treatment, the DNA repair capacity of cells, the rate 

of proliferation, and the critical proteins that activate DNA 

repair, such as ATM. However, it is unclear to how the 

mechanism of ER stress and autophagy transition between 

pro-survival and pro-apoptosis roles to ultimately determine 

cell fate. Under low doses and short-term TMZ treatment, 

ER stress and autophagy may have a cytoprotective role; 

however, it is unknown if they have a role in promoting cell 

death. If this hypothesis is validated, the dose and duration 

of TMZ treatment will become an important factor affect-

ing prognosis after chemotherapy. The switch between the 

pro-survival and pro-death effects induced by ER stress and 

its downstream autophagy in different therapeutic environ-

ments requires further exploration. It is of great importance 

to develop more combinatorial solutions that will increase 

glioblastoma sensitivity to TMZ and reduce off-target effects.
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