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Abstract
Epiphyllous liverworts form a special group of bryophytes that primarily grow on the 
leaves of understory vascular plants in tropical and subtropical evergreen broadleaf 
forests. Being sensitive to moisture and temperature changes, epiphyllous liverworts 
are often considered to be good indicators of climate change and forest degradation. 
However, they are a poorly collected and taxonomically complicated group, with an 
only partly identified distribution pattern. In this study, we built four models based 
on 24 environmental variables at four different spatial resolutions (i.e., 1 km, 5 km, 
10 km, and 15 km) to predict the past distribution of epiphyllous liverworts in China, 
using Maxent model and 63 historical location records (i.e., presence- only data). Both 
area under the curve of the receiver operating characteristic (AUC) and true skill 
statistic (TSS) methods are used to assess the model performance. Results showed 
that the model with the predictors at a 15- km resolution achieved the highest predic-
tive accuracy (AUC=0.946; TSS=0.880), although there was no statistically signifi-
cant difference between the four models (p > 0.05). The most significant 
environmental variables included aridity, annual precipitation, precipitation of wet-
test month, precipitation of wettest quarter, and precipitation of warmest quarter, 
annual mean NDVI, and minimum NDVI. The predicted suitable areas for epiphyllous 
liverworts were mainly located in the south of Yangtze River and seldom exceed 
35°N, which were consistent with the museum and herbarium records, as well as the 
historical records in scientific literatures. Our study further demonstrated the value 
of historical data to ecological and evolutionary studies.
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1  | INTRODUC TION

Epiphyllous liverworts, a special group of bryophytes that grow 
on the leaves of understory vascular plants, often inhabit con-
stantly moist and warm forests in tropical and subtropical regions  
(Chen & Wu, 1964; Figure 1). There are three types of epiphyllous 
liverworts: obligate, facultative, and occasional. The obligate epi-
phyllous liverworts occur exclusively on living leaves. The facul-
tative epiphyllous liverworts occur predominantly on living leaves 
but can grow on other substrates. While the occasional epiphyllous 
liverworts seldom occur on living leaves, but predominantly present 
on other substrates. Both obligate and facultative species belong to 
typical epiphyllous liverworts (Zhu & So, 2001). They are particularly 
sensitive to moisture and temperature changes and are regarded 
as potential indicators of climate change and forest degradation 
or integrity (Jiang et al., 2014; Pócs, 1996). Epiphyllous liverworts 
have been mainly found in Asia, Australia, Africa, Central and South 
America, and Macaronesian islands in Europe at latitudes of about 
30 degrees north and south of the equator. At times, they have been 
found in regions at much higher latitudes such as Madeira (32.5°N) 
(Sjögren, 1975) and the Azores (38.5°N) (Sjögren, 1997) in Portugal, 
the Appalachians (35.0°–37.97°N) (Davison, 1997; Risk, Richardson, & 
Davison, 2011; Schuster, 1959), Caucasus Mountains (43.5°N) in 
Russia (Pócs, 1982), Sikoku (33.75°N) (Kamimura, 1939) and Niigata 
Prefecture (38°N) (Shirasaki, 1997) in Japan, Chiltern Hills (51.75°N) 
in Britain (Porley, 1996), and British Columbia (49.42°N) in Canada 
(Vitt, Ostafichuk, & Brodo, 1973).

In China, field surveys and studies on epiphyllous liverwort 
have been conducted for almost a century (Chen & Wu, 1964). 
Approximately 168 epiphyllous liverwort species have been found 
in China due to its diverse topography and climatic conditions, with 

a relatively high endemism rate and high conservation status (Zhu 
& So, 2001). These species are widely distributed in tropical rain-
forests and subtropical evergreen broad- leaved forests throughout 
the Chinese provinces within 30 degrees north latitude, including 
Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hainan, Hongkong, 
Hubei, Hunan, Jiangxi, Sichuan, Taiwan, Tibet, Yunnan, and Zhejiang  
(Chen & Wu, 1964). However, recent studies also found them in re-
gions even further north (i.e., 31°N), including Guanxian county in 
Sichuan province (Luo, 1990) and Houhe Nature Reserve in Hubei 
province (Peng, Liu, & Wu, 2002). The spatial distribution of epiphyl-
lous liverworts may vary over time because of changes in climate 
and habitat conditions.

The temporal patterns of species distribution can be examined 
by drawing a biological inference from species locational data of 
various periods via a GIS- based species distribution model (Butcher 
et al., 2014; Guisan & Thuiller, 2005; Guisan & Zimmermann, 2000). 
Species distribution models (SDMs) are widely used in ecology and 
conservation, which relate species occurrence data to environmen-
tal predictor variables on the basis of statistically or theoretically 
derived response surfaces (Guisan & Zimmermann, 2000). Species 
occurrence data can be categorized as simple presence or pres-
ence–absence observations based on random or stratified field sam-
pling or records obtained from natural history collections (Graham, 
Ferrier, Huettman, Moritz, & Peterson, 2004). Environmental vari-
ables can directly or indirectly affect species. Biologists have long 
been attempting to identify where a species will be in the future and 
to predict its temporal and spatial distribution in unknown regions 
on the basis of geographical distribution data of species in the past 
and present (Moya, Jacome, & Yoo, 2017; Ning, Wei, & Feng, 2017). 
Understanding the spatial dynamics of species over time and their 
driving factors has a critical role in resource utilities, potential risk 

F IGURE  1 Epiphyllous liverworts 
growing on leaves of various vascular 
plants. Photographs by Yanbin Jiang
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assessment, and conservation planning (Guisan & Thuiller, 2005; 
Johnson, Ober, & Adams, 2017). SDMs have already been applied for 
predicting the current distribution of epiphyllous liverworts (Jiang 
et al., 2014). However, the spatial and temporal dynamics of epiphyl-
lous liverworts remain unknown. Epiphyllous liverworts are likely to 
be among the groups of organisms that would benefit most strongly 
from the use of historical records for ecological and conservation re-
search, because these species have fast generation times and tightly 
coupled with the local environment. Therefore, natural history col-
lections housed in museums and herbaria, as well as bibliographic 
records of historical data, may be used to predict their distribution 
and change.

A significant limitation of historical records of epiphyllous liver-
worts is the uncertainty about where the occurrences are located. 
The local name, altitude, habitat, and collection time are the only 
valuable information available in most of the presence data. How 
historical records can be used to characterize the propagation pat-
terns of epiphyllous liverworts, therefore, needs to be determined 
to examine the distribution range at the regional scale. A set of 
predictors available at fine resolution (grain size) may also need 
to be aggregated to coarser resolutions (Guisan, Graham, Elith, & 
Huettmann, 2007). Thus, this study aims to examine the past dis-
tribution of epiphyllous liverworts in China based on historical re-
cords of epiphyllous liverworts as well as environmental variables 
at different spatial resolutions. In particular, we set out to address 
the following questions: (a) How do spatial resolution (grain size) 
changes affect model performance using historical records for mod-
eling the distribution of epiphyllous liverworts? (b) How wide is the 
modeled distribution of epiphyllous liverworts across China under 
the different spatial resolutions? (c) Which abiotic or biotic factors 
(e.g., topography, temperature, precipitation, and vegetation) limit 
the geographical distribution of epiphyllous liverworts at various 
spatial resolutions (e.g., 1 km, 5 km, 10 km, and 15 km) ?

2  | METHODS

2.1 | Species data

Typical epiphyllous liverworts, including both obligate and faculta-
tive species, were considered as the target species of the current 
study. In total, about 140 epiphyllous liverworts species belonging 28 
genera of 11 families were involved. We considered all these species 
as a “species group.” These species occurrence data were composed 
of historical records collected before 2000 (Appendix 1). These re-
cords were derived from publications (1964–2001) and natural his-
tory collections from the Herbarium, Institute of Botany, Chinese 
Academy of Sciences (1954–1994). Most of the location information 
of the historical species data was presented as descriptions of locali-
ties with variable accuracy. Records with the vague location infor-
mation, such as province, county, or locations that cannot be found, 
were excluded in this study. We approximated geo- referenced 
point localities through Google Earth and the Vegetation Map of 
China (1:4,000,000) (http://westdc.westgis.ac.cn), considering the 

following three factors: (a) local name; (b) elevation; and (c) forest 
distribution. The geo- referenced historical data may have variable 
location accuracy, while accurate occurrence records are available at 
high resolutions (Engler, Guisan, & Rechsteiner, 2004). Occurrence 
localities with a distance of at least 15 km were retained to lessen 
spatially autocorrelated effect. A total of 63 historical records with 
the estimated location in the range of the study area were obtained 
and plotted in Figure 2.

2.2 | Environmental variables

Three categories of environmental variables, including bioclimatic 
data, topographic data, and satellite- derived vegetation indices, 
were used to predict the epiphyllous liverworts distribution in this 
study.

We downloaded 19 bioclimatic variables from the WorldClim 
website (http://www.worldclim.org/). WorldClim is a set of global 
climate layers (climate grids) at a 1- km resolution, which was gener-
ated by interpolating observations from over 4,000 weather stations 
around the world between 1950 and 2000 (Hijmans et al., 2005). We 
also downloaded the potential evapotranspiration (PET) and Aridity 
Index (AI) datasets from the CGIAR- CSI GeoPortal (http://csi.cgiar.
org). Both PET and AI grid layers are available at 1- km spatial reso-
lution representing the annual average over the 1950–2000 period. 
PET is a measure of the ability of the atmosphere to remove water 
through evapotranspiration processes. AI defined as the ratio of 
annual potential evapotranspiration to annual precipitation, which 
can be used to quantify precipitation availability over atmospheric 
water. AI values increase for more humid conditions and decrease 
with more arid conditions.

Topography is a relatively static variable compared with other 
biophysical factors, including climate, functioning as a key driver of 
biodiversity (Rosenzweig, 1995). We downloaded the GTOPO30 
digital elevation model (DEM) data from the U.S. Geological 
Survey website (https://lta.cr.usgs.gov/GTOPO30), which has a 
30- arc- seconds (approximately 1 km) spatial resolution. Then, we 
generated slope and aspect data layers from the GTOPO30 DEM 
using ArcGIS 10.1.

Satellite- derived Normalized Difference Vegetation Index 
(NDVI) data contributed significantly to the distribution of epiphyl-
lous liverworts (Jiang et al., 2014). As the species occurrence data 
were derived from 1936 to 1999 (Appendix 1) and the climatic data 
were derived from 1950 and 2000, the only time- equivalent NDVI 
data source was the GIMMS NDVI (http://glcf.umiacs.umd.edu/
data/gimms/). The GIMMS NDVI is originated from 1981, with a res-
olution of ~8 km. A time series of 20 yearly (1981 to 2000) averaged 
images was generated and used to calculate meaningful NDVI in-
dices: annual maximum NDVI, annual mean NDVI, annual minimum 
NDVI, and NDVI standard deviation.

All the environmental variables were firstly resampled and pro-
jected as GIS raster layers in GCS_WGS_1984 at ca. 1- km resolution. 
Then, the 1- km variables were aggregated to coarser resolutions of 
5 km, 10 km, and 15 km, and converted all layers to ASCII format 

http://westdc.westgis.ac.cn
http://www.worldclim.org/
http://csi.cgiar.org
http://csi.cgiar.org
https://lta.cr.usgs.gov/GTOPO30
http://glcf
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for use in Maxent. Projection and aggregation were implemented in 
ArcGIS 10.1. Table 1 shows the details of all the environmental vari-
ables used for modeling.

2.3 | Species distribution modeling

Maximum entropy (Maxent) modeling is a general- purpose method 
for characterizing probability distributions from incomplete in-
formation (Phillips, Anderson, & Schapire, 2006). The Maxent 
method does not require absence data, making it appropriate for 
modeling species distributions based on presence- only histori-
cal species records. We used Maxent software (version 3.3.3e, 
http://www.cs.princeton.edu/~schapire/maxent/) to generate 
the species distribution model. Recommended default values of 
convergence threshold (10−5) and maximum number of iterations 
(500) were used when building the model. We generated 10,000 
random points (i.e., background or pseudo- absence sample points) 
from the whole study area. Suitable features and regularization 
values used can reduce model overfitting and complexity (Warren 
& Seifert, 2011). According to Phillips and Dudik (2008), combina-
tions of features including linear (L), quadratic (Q), and hinge (H) 
were set by default in Maxent when species occurrence samples 

were 15 to 79. We thus practiced the L, LQ, H, and LQH features, 
with regularizations of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, and 4, respectively, 
in order to select the optimal settings of features and regulariza-
tion. The selection of features and regularization was carried out 
based on the sample size corrected Akaike information criteria 
(AICc) (Warren & Seifert, 2011). The default logistic output of 
Maxent is continuous variables ranging from 0 to 1, where high 
values indicate high relative suitability.

2.4 | Model scenarios, evaluation, and 
statistical analysis

To determine the proper resolution of accurately modeling the past 
distribution of epiphyllous liverworts, we developed four model 
scenarios using the same species dataset (63 historical records). 
The spatial resolution of these environmental layers was at 1 km, 
5 km, 10 km, and 15 km, and each level of layers together with spe-
cies dataset was a model scenario. To avoid sampling bias of species 
occurrence data, we used a bias file in each model scenario. The 
bias file was generated based on the point localities of historical re-
cords by applying kernel density function (Elith, Kearney, & Phillips, 
2010).

F IGURE  2 Study area and locations of the 63 occurrence records of epiphyllous liverworts in China used in the species distribution 
models

http://www.cs.princeton.edu/~schapire/maxent/
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To facilitate model evaluation, we used the cross- validation 
approach with 10 replicates in the Maxent for each model sce-
nario. During the cross- validation, the species dataset was di-
vided into 10 random partitions, and the model was operated 10 
times with each of the 10 partitions as a testing set (six or seven 
occurrence localities); the other nine partitions were used as a 
training set (57 or 56 occurrence localities) in a replicate. As a re-
sult, 10 datasets, including predicted values of training and test-
ing localities and 10,000 background (pseudo- absence) localities, 
were generated automatically. We integrated 10 replicates for 
model evaluation, with a testing prediction and a corresponding 
background prediction by each replicate. Each locality in an eval-
uation replicate has two values: One is the observed occurrence 
value (background points = 0; test presence points = 1), and the 
other is the predicted value derived from the logistic output of 
the Maxent model.

To evaluate the predictive accuracy of models, we used both 
threshold- independent and threshold- dependent methods. The 
area under the curve (AUC) of the receiver operating character-
istic (ROC) is a dominant tool in evaluating the accuracy of mod-
els predicting distributions of species because the ROC has the 
advantage of being threshold- independent. The resulting AUCs 
range from 0 to 1, with 1 indicating a perfect fit of the model, 
> 0.9 signifying excellent model performance, 0.7–0.9 as moder-
ately useful models, < 0.7 for poor model performance, and “0.5” 
indicating randomness (Pearce & Ferrier, 2000). Considering that 
AUC cannot be used as a standard and sufficient measurement of 
accuracy in species distribution models (Austin, 2007), we also 
used the true skill statistic (TSS), a threshold- dependent method. 
TSS is calculated by adding sensitivity and specificity together and 
subtracting 1. The TSS values range from −1 to 1, and 1 indicates a 
perfect fit and values of 0 or less indicate a performance no better 

TABLE  1 Environmental variables used for modeling the distribution of epiphyllous liverworts

Data source Category Variables Abbreviation Units

WorldClim Bioclimatic Annual Mean Temperature Bio1 oC × 10

Mean Diurnal Range (Mean of monthly (max 
temp -  min temp))

Bio2 oC × 10

Isothermality (BIO2/BIO7) (* 100) Bio3 %

Temperature Seasonality (standard deviation 
*100)

Bio4 oC × 10

Max Temperature of Warmest Month Bio5 oC × 10

Min Temperature of Coldest Month Bio6 oC × 10

Temperature Annual Range (BIO5- BIO6) Bio7 oC × 10

Mean Temperature of Wettest Quarter Bio8 oC × 10

Mean Temperature of Driest Quarter Bio9 oC × 10

Mean Temperature of Warmest Quarter Bio10 oC × 10

Mean Temperature of Coldest Quarter Bio11 oC × 10

Annual Precipitation Bio12 mm

Precipitation of Wettest Month Bio13 mm

Precipitation of Driest Month Bio14 mm

Precipitation Seasonality (Coefficient of 
Variation)

Bio15 %

Precipitation of Wettest Quarter Bio16 mm

Precipitation of Driest Quarter Bio17 mm

Precipitation of Warmest Quarter Bio18 mm

Precipitation of Coldest Quarter Bio19 mm

CGIAR- CSI Bioclimatic Potential Evapotranspiration PET mm

Aridity index AI /

USGS GTOPO30 Topographic Altitude Altitude m

Aspect Aspect degree

Slope Slope degree

GIMMS Vegetation Annual minimum NDVI NDVI_min /

Annual mean NDVI NDVI_mean /

Annual maximum NDVI NDVI_max /

Standard deviation NDVI NDVI_std /
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than the random model (Allouche, Tsoar, & Kadmon, 2006). AUC 
and TSS were calculated for this 10- fold of evaluation dataset and 
averaged. Considering that the TSS values were calculated for all 
possible thresholds ranging from 0 to 1, only the maximum TSS 
(TSSmax) value for species prediction was reported. To measure 
the effect of resolution on model performance, we compared 
the average AUC and TSS of each resolution through one- way 
ANOVA. We also calculated Akaike information criterion (AICc) 
values for all model scenarios to evaluate the suitability of model 
selection. The model selection and evaluation statistics were car-
ried out using the “ENMeval” and “PresenceAbsence” packages in 
R v 3.4.4 (R Development Core Team 2017).

To assist model interpretation, each model scenario was 
also operated on the full set of occurrence localities, taking ad-
vantage of all available data to provide the optimal estimates of 
the potential species distribution and the relative importance of 
the environmental variables. Assessing the best cutoff value for 
discriminating estimated presence and absence is usually ideal. 
Several approaches have frequently been used to determine op-
timal threshold. The lowest predicted value was associated with 
any one of the observed presence records, named lowest presence 
threshold (LPT) (Jackson & Robertson, 2011; Pearson, Raxworthy, 
Nakamura, & Peterson, 2007; Saatchi, Buermann, Ter Steege, Mori, 
& Smith, 2008; Sérgio, Figueira, Draper, Menezes, & Sousa, 2007). 
The fixed thresholds that reject only the lowest 10% of possible 
predicted values (T10) were then examined (Pearson et al., 2007). 
The additional one is the value that corresponds to the point on the 
ROC curve where sensitivity and specificity are maximized (Max 
Sensitivity + Specificity) (Braunisch & Suchant, 2010). We selected 
the second one because the thresholds of four model scenarios 
from the LPT were small and the maximum Sensitivity + Specificity 
significantly differed (Appendix 2). On the basis of the determined 
thresholds, we compared the spatial distribution range of epiphyl-
lous liverworts at four spatial resolution levels. We applied the 
Jackknife test to diagnose which environmental variables were the 
key predictor variables to create the models (Prates- Clark, Saatchi, 
& Agosti, 2008). The importance of an environmental variable is 
determined on the basis of obtaining a large training gain when 
the variable is used alone in the model and a subsequent decrease 
in training gain when removed from the model. The response 
curves were also plotted to demonstrate how variables affected 

the presence probability of epiphyllous liverworts being present. 
The response curves used all point localities and the respective 
environmental variable in isolation, and, thus, do not include inter-
actions with other environmental variables (Phillips et al., 2006).

3  | RESULTS

3.1 | Model performance

According to AICc criteria, models with LQH features and regu-
larization of 0.5 were selected. For all model scenarios, the AUC 
values were significantly higher than those of the random model 
(p = 0.000). The high AUC (all > 0.9) and TSSmax (all > 0.7) values 
implied a robust performance of the Maxent model in capturing 
the variation in environmental variables over historical presence 
localities of epiphyllous liverworts. Coarsened resolution trends 
exhibited insignificant degradation or improvement of model per-
formance according to AUC and TSS (p > 0.05, one- way ANOVA). 
The 15- km resolution models obtained the highest AUC and maxi-
mum TSS when compared with the three other models. By assess-
ing the AICc values, the 15- km resolution model also exhibited the 
best performance with the lowest AICc (Table 2).

3.2 | Comparison of predictive performance

We derived four distribution maps of epiphyllous liverworts over 
entire China from four model scenarios on the basis of the en-
vironmental variables at 1 km, 5 km, 10 km, and 15 km resolu-
tions, respectively. Logistic presence probability of epiphyllous 
liverworts is depicted in Figure 3. They exhibited similar distribu-
tion range; the north distribution extension did not exceed 35°N, 
and the most likely occurrence area was located in the south of 
Yangtze River. The variability between predictions by visual in-
spection, however, demonstrated that the distribution pattern 
of epiphyllous liverworts was yet influenced by resolution, and 
the probabilities spatially differed at various resolutions. Along 
the coarsening of resolution, the distribution patches of epiphyl-
lous liverworts were more fragmented, and the high suitable area 
(presence probability > 0.5) was decreasing. To facilitate compari-
son of the visual output maps, a threshold that rejected the low-
est 10% of training presence was used to indicate the probability 

TABLE  2 Performance of models in predicting the distribution of epiphyllous liverworts at 1- km, 5- km, 10- km, and 15- km resolutions, 
showing threshold- independent and threshold- dependent model evaluation results by AUC and maximum TSS (TSSmax) in R (10,000 
background points used as pseudo- absence for AUC and TSSmax)

Model AUC TSSmax AICc

1 km 0.926 ± 0.062 0.760 ± 0.155 1840.243 ± 12.401

5 km 0.936 ± 0.029 0.834 ± 0.075 1472.627 ± 4.320

10 km 0.932 ± 0.039 0.740 ± 0201 1291.717 ± 4.682

15 km 0.946 ± 0.027 0.880 ± 0.011 1173.088 ± 5.283

p- value 0.750 0.082 0.000

Note. One- way ANOVA was performed to assess the effect of spatial resolution on model performance.
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of presence or absence, as shown in Table 3. At this threshold, 
the fractional predicted area demonstrated the fraction of all pix-
els predicted suitable for the species. The overall predicted area 
was low, with an average of 7.3% area of entire China, indicating 
that epiphyllous liverworts only occur in a limited range in China. 
The 1- km resolution model obtained the highest predicted area 
(8.1%), while the 15- km resolution model had the lowest (6%), 
with the AUC and TSS rankings reversed.

3.3 | Relative importance of environmental 
variables in determining species occurrence

Jackknife tests were performed to determine key variables in-
fluencing epiphyllous liverworts distribution at different spa-
tial scales. The environmental variable with the highest training 
gain, when used in isolation, is considered to contain the most 

predictive ability of any variables. The environmental variable 
reduces the gain the most when it is omitted, which therefore 
appears to possess the highest amount of information that is not 
present in the other variables. Figure 4 shows the results of the 
jackknife experiments, which reveals that the factors that de-
termined the distribution of epiphyllous liverworts for the four 
resolution models were similar. The total training gain with all 
variables included for modeling ranged from 1.601 to 1.623, with 
the gain order of the model scenarios of resolution 15 km > 5 km 
> 1 km > 10 km. Among the environmental variables involved in 
the model, the climatic variables including aridity (AI), tempera-
ture seasonality (Bio4), temperature annual range (Bio 7), annual 
precipitation (Bio12), precipitation of wettest month (Bio13), pre-
cipitation of wettest quarter (Bio16), and precipitation of warm-
est quarter (Bio18), and vegetation variables including annual 
mean NDVI (NDVI_mean) and minimum NDVI (NDVI_min) were 
among the most important variables contributing to the two mod-
els, which possess a training gain of more than 0.7 in all model 
scenarios. By contrast, topographic variables were not important 
indicators for a suitable habitat because all training gains were 
less than 0.5 when the variables were used in isolation, and the 
gain decreased to less than 0.05 when the variables were omitted 
(Figure 4).

Response curves greatly facilitate the interpretation of how en-
vironmental factors determine the distribution of a species. The 
responses of the favorable variables in the prediction for the epi-
phyllous liverworts in the best performed model, which was 15- 
km resolution model, are indicated in Figure 5. According to the 
response curves, higher values of the AI, Bio4, Bio7, Bio12, Bio13, 

TABLE  3 Threshold for determining epiphyllous liverwort 
presence and corresponding fractional predicted area identified as 
presence for each model

Model
Logistic 
threshold

Fractional 
predicted area p- value

1 km 0.210 0.081 <0.001

5 km 0.242 0.073 <0.001

10 km 0.206 0.080 <0.001

15 km 0.276 0.060 <0.001

Note. Thresholds were determined by rejecting the lowest 10% of  
possible predicted values.

F IGURE  3 Maps showing the spatial 
distribution pattern of epiphyllous 
liverworts in China from four different 
model scenarios of 1 km, 5 km, 10 km, and 
15 km resolutions
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F IGURE  4  Importance of environmental variables to model the distribution of epiphyllous liverworts from different resolutions: (a) 1 km, 
(b) 5 km, (c) 10 km, and (d) 15 km. The graphs depict the training gains when a variable is used in isolation, when the variable is excluded, and 
when all variables are utilized. The gain is a measure of how better the Maxent probability distribution fits the distribution of occurrence 
data. A variable has useful information when the gain is high as it is used in isolation and has unique information when it reduces the gain 
most when it is excluded
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Bio16, Bio18, NDVI_mean, and NDVI_min were preferable to epi-
phyllous liverworts presence and only if these variables reached 
or less than a particular value, epiphyllous liverworts probably oc-
curred. For example, temperature annual range was less than 31°C, 
annual precipitation was higher than 1000 mm, and annual mini-
mum NDVI exceeded 0.15, and the presence probability of epiphyl-
lous liverworts could reach to 0.2.

4  | DISCUSSION

4.1 | Factors determining model performance and 
distribution range

Spatial scale is a fundamental issue in the construction of the species 
distribution model. Sampling resolution should optimally be selected 
to be as coherent with the resolution of the predictor variables and 

to correspond to the scale relevant for habitat selection (Guisan & 
Thuiller, 2005). If species records are of vague locations, then a set of 
predictors available at a fine resolution may need to be aggregated 
to a coarse resolution (Guisan et al., 2007). Changing the resolution 
can result in two directions of model performance, that is, slight av-
erage toward model degradation at coarse resolution (Guisan et al., 
2007) or model improvement at the coarse resolution compared 
with the fine resolution (Tobalske, 2002). In the present study, model 
performance exhibited an insignificant trend along resolution coars-
ening according to AUC and TSS. The effect of the resolution on 
the model performance could be species- specific (Gottschalk, Aue, 
Hotes, & Ekschmitt, 2011; Guisan et al., 2007; Seo, Thorne, Hannah, 
& Thuiller, 2009). For species in our study, the resolution did not sig-
nificantly influence model fitting at the regional scale. Nevertheless, 
15 km was suggested to be the optimal resolution of all the four 
resolutions to model epiphyllous liverwort distribution, because it 

F IGURE  5 Response curves illustrating the relationship between presence probability of epiphyllous liverworts and environmental 
variables. These curves show how the response changes for a particular variable used in isolation. The response curves were derived from 
the 15- km model in Maxent
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showed the highest model fit and training gain among all model sce-
narios. Also, the distribution map derived from the 15- km resolution 
model showing less suitable area and more fragment distribution 
patches was more consistent with the observed or real species distri-
bution according to expert knowledge of epiphyllous liverworts and 
our previous study (Jiang et al., 2014). The higher accuracy achieved 
by the coarse resolution model indicated that a proper spatial resolu-
tion of environmental variables in accordance with the accuracy of 
occurrence location should be taken into consideration.

As studied by numerous ecologists, sample size is another key 
issue on the performance of species distribution models (Hernandez, 
Graham, Master, & Albert, 2006; Stockwell & Peterson, 2002; Wisz 
et al., 2008). Models with a large number of occurrences in the training 
set generally performed better and had smaller variances than mod-
els built with few occurrences (Guisan et al., 2007). Accurate predic-
tions of species distributions were also based on adequate sampling 
of environmental variation, because any two geographical regions will 
differ in the distribution and range of their environmental variation 
(Graham et al., 2008). Although variability exists across species and 
between model methods, model accuracy generally decreased with 
the decrease in sample size. By bad luck, we have not addressed the 
influence of sample size on the model accuracy, as models of all resolu-
tions were constructed based on the same historical records, in order 
to detecting the resolution effect directly. Further research is required 
on this topic, for example, examining changes in model performance 
by altering sample size. Even so, we are aware of that if the location 
can be accurately obtained from historical records and sufficient field 
presence points are observed, then high- accuracy model performance 
and species distribution range can be achieved.

4.2 | Environmental variables accounted 
for epiphyllous liverworts occurrence at the 
regional scale

Climate is often considered a predominant range- determining mech-
anism at large spatial scale (Blach- Overgaard, Svenning, Dransfield, 
Greve, & Balslev, 2010; Guisan et al., 2007; Pearson & Dawson, 
2003). The variables most often having the highest contributions in 
the Maxent model were variables related to precipitation and tem-
perature. For epiphyllous liverworts in China, high annual precipita-
tion and mean temperature increase the presence probability. As we 
analyzed that AI, Bio13, Bio16, and Bio18 were all closely correlated 
with annual precipitation, Bio4, and Bio7 were correlated with an-
nual mean temperature tightly. These results reflect that epiphyl-
lous liverworts favor habitats with humid and warm climate, which 
is consistent with past ecological studies on epiphyllous liverworts 
(Benavides & Sastre- De Jesus, 2011; Jiang et al., 2014; Kraichak, 
2014; Olarinmoye, 1974). These areas with humid and warm cli-
mate determine the geographical distribution of evergreen forests in 
China, which occur between 18 and 32°N and 98–123°E, within areas 
dominated by tropical and subtropical climate, with annual mean 
temperature between 14°C and 26°C, and precipitation ranging from 
1,000 to 5,000 mm (Wu, 1980). Annual mean and minimum NDVI 

also provided meaningful and significant contributions to defining 
the distribution range and spatial patterns of epiphyllous liverworts. 
However, the importance of the NDVIs was a bit less than climatic 
variables in this study, which is inconsistent with our previous study 
(Jiang et al., 2014). Some reasons could explained: First, it may at-
tributed to the uncertainty of the species occurrence data; second, 
the long- time span of historical records may be more sensitive to 
climate change other than vegetation cover; third, NDVIs originated 
from the GIMMS (8 km) were of much coarser resolution than that 
derived from SPOT sensor (1 km). By contrast, topographic variables 
had an insignificant influence on the regional presence of epiphyllous 
liverworts, which is consistent with the results of our previous study 
(Jiang et al., 2014). The descriptions of the known localities demon-
strate that epiphyllous liverworts are distributed in a broad range of 
altitude, from 300 to 2,800 m, and they are sensitive to microclimate 
and small terrain changes. The topographic effect considerably weak-
ens under a broad scale, with a resolution higher than 1 km.

4.3 | Importance of historical data

Systematic surveys with constant spatial scale as environmen-
tal variables are likely to be more powerful than haphazard his-
torical records in species distribution modeling (Aikio, Duncan, & 
Hulme, 2010). Historical distributions of organisms in recent and 
distant (paleontological) past however have provided a platform 
for assessing biodiversity dynamics with and without anthropo-
genic influence (Graham et al., 2004). Historical data are consid-
ered useful in improving insight into factors that control species 
distribution, modeling species distribution, predicting the future 
propagation pattern, and planning long- term management strate-
gies (Aikio et al., 2010; Kéry, Gardner, & Monnerat, 2010; Wollan, 
Bakkestuen, Kauserud, Gulden, & Halvorsen, 2008). Existing 
historical records of epiphyllous liverworts in China represents 
a time span of nearly 50 years, which is consistent with climatic 
variables derived from WorldClim reflecting average values of 
50 years. These records also cover a wide range across China 
where predicted high occurrence probability may represent suf-
ficient geographical conditions. Even spatial error exists due to the 
descriptive localities, which can be reduced after selecting an ap-
propriate spatial resolution of environment layers. Historical data 
are therefore useful in helping to construct a reliable model when 
accurate samples are insufficient.

5  | CONCLUSION

Successfully modeling the past distribution of epiphyllous liverworts 
based on historical records depended on several factors. Changes in 
resolution did not significantly affect model fitting performance, but 
influenced the suitable area and distribution pattern. 15 km was sug-
gested to be the optimal resolution of the four resolutions (1 km, 5 km, 
10 km, and 15 km) to model epiphyllous liverwort distribution, be-
cause this model possessed the highest model fit and training gain, and 
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more consistent with the real species distribution. Climatic variables, 
especially humidity- related variables, such as annual precipitation and 
aridity, together with vegetation indices contributed significantly in de-
fining species distribution range and spatial patterns. The low predicted 
area indicates that epiphyllous liverworts only occur in a restricted 
geographical range in China. The results of our study indicate that epi-
phyllous liverworts are suitable for the analyses of ecological and bioge-
ographical patterns over time and space, and certainly help in assessing 
the effect of human disturbance on the distribution and predict future 
distribution to climate change. The predicted approximate habitat suit-
ability and habitat loss also guide conservation and management.
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Province Site name Elevation (m) Survey time Sources

Anhui Zhawan, Qimen 200 1982 Wu and Guo (1986)

Fujian Wuyishan, Guadun 450–1300 1955, 1979–82 Chen and Wu (1964), Wu, Li, 
and Gao (1983)

Jiufengshan 400–900 1999 Zhu, Wang, Zhu, and Sun 
(2001)

Wanmulin 350–450 1986 Li (1997)

Nanjing, Shuhaijinshan 400 1963 Zhu and So (1997, 2001)

Longxishan, Jiangle 1450 1991 Herbarium, Institute of Botany, 
Chinese Academy of Sciences

Guangdong Dinghushan 800 1989 Zhu and Wang (1992)

Heishiding Nature 
Reserve

350–600 1992 Li (1992)

Babaoshan 550–1700 1989 Zhu, Hu, and Guo (1992);

Xinyi 1932 Chen and Wu, (1964)

Nankunshan, Zengcheng 1932, 53 Chen and Wu (1964)

Jiulongshan, Lianping 650 1987 Gao and Bi (1988)

Guangxi Huaping 960 1981 Hu, Jin, and Jin (1981)

Maoershan Nature 
Reserve

550 1974 Zhu and So (2001)

Shiwandashan 1989 Herbarium, Institute of Botany, 
Chinese Academy of Sciences

Jiuwandashan 1100 1993 Wang and Jia (1993)

Guizhou Maolan 420–800 1984 Wu (1988), Zhu and So (2001)

Fanjingshan 1500–2000 1983 Zhu and So (2001)

Kuankuoshui 1600 1983 Zhu and So (2001)

Xiaoqikong 600 1998 Zhu and So (2001)

Hainan Bawangling Nature 
Reserve

600–1100 1989 Zhu and So (2001)

Jianfengling Nature 
Reserve

320–1200 1941, 62, 84 Wu and Lin, (1994), Zhu and So 
(2001)

Diaoluoshan 400–1050 1974, 77, 84 Zhu and So (2001)

Wuzhishan 650–1200 1977 Zhu and So (2001)

APPENDIX 1 
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Province Site name Elevation (m) Survey time Sources

Hongkong Taimoshan 600–900 1995–97 Zhu and So (2001)

Taipokau 1996–98 Zhu and So (2001)

Wukaotang 50 1995–96 Zhu and So (2001)

Hunan Jinbianxi, Zhangjiajie 460 1992 Zhu and So (2001)

Mangshan, Yizhang 1974 Zhu and So (2001)

Jiangxi Jinggangshan 650–950 1984 Li and Wu (1988)

Wuyishan Nature 
Reserve

960 1993–94 Ji and Liu (1998b)

Guanshan Nature 
Reserve

300–900 1995, 96 Ji, Zheng, Xie, Wu and Qiang 
(2005)

Sanqingshan 660 1987 Ji, Liu, Zhang, Chen, and Luo 
(1999)

JiulingMufushan, Xiushui 350–400 1994, 95 Ji and Liu (1998a)

JiulingMufushan, 
Wuning

300 1994, 95 Ji and Liu (1998a);

Jiulianshan 450–700 1992, 95 Ji, Xie, Liu, Zhang, and Chen 
(1998)

Sichuan Ermeishan 900–1500 1979, 80 Zhu and So (2001)

Erlangshan 160–1800 1974 Zhu and So (2001)

Jinfoshan 2100 1984 Zhu and So (2001)

Moxi 1980 Zhu and So (2001)

Tiangtang 900–1200 1984 Zhu and So (2001)

Taiwan Zhibenzhushan 1932 Chen and Wu (1964)

Taipinghsan 1932 Chen and Wu (1964)

Alishan 1932 Zhu and So (2001)

Yuanyanghu, Xinzhu 1670 1998 Zhu and So (2001)

Xizang Medog 780–2450 1960, 82, 83 Chen and Wu (1964), Wu and 
Luo (1978)

Yunnan Daweishan Nature 
Reserve

1300–1960 1974, 88 Zhu and So (2001)

Tongbiguan, Longchuan 1100 1974 Zhu and So (2001)

Huanglianshan 1973 Zhu and So (2001)

Gongshan, Dulongjiang 1240–2800 1982 Zhu and So (2001)

Mengyang 850–1200 1936 Chen and Wu (1964)

Menglun Botanical 
garden

850–1100 1957, 74, 82 Zhu and So (2001)

Yiwu 750–1900 1936 Chen and Wu (1964), Zhu and 
So (2001)

Mengla 1000 1936, 64, 95 Chen and Wu (1964), Zhu and 
So (2001)

Menghai 1300 1936 Chen and Wu (1964)

Mengzhe 1900 1936 Chen and Wu (1964)

Zhejiang Wuyanling 600–1140 1987 Zhu and Hu (1991)

Baishanzu Nature 
Reserve

600–1200 1990 Zhu, Zhang, and Mao (1992)

Jiulongshan 400–1600 1981 Liu (1985)

Fengyangshan 350–1580 1992–1993 Zhu, Ye, and Cai (1994)

Gutianshan 360 1993 Zhu and So (2001)

APPEND IX  1   Continued
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APPENDIX 2 
Threshold determined by the lowest predicted value was associated with any one of the observed presence records (LPT), rejecting the 
lowest 10% of possible predicted values (T10), and maximum specificity plus sensitivity (Max Se+Sp).

Method 1 km 5 km 10 km 15 km

LPT 0.062 0.097 0.092 0.122

T10 0.210 0.242 0.206 0.276

Max Se+Sp 0.173 0.225 0.125 0.195


