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Abstract: Renal cell carcinoma (RCC) is the most common form of kidney malignancy. RCC is more
common among men with a 2/1 male/female incidence ratio worldwide. Given the underlying
epidemiological differences in the RCC incidence between males and females, we explored the gender
specific 1H NMR serum metabolic profiles of RCC patients and their matched controls. A number of
differential metabolites were shared by male and female RCC patients. These RCC specific changes
included lower lactate, threonine, histidine, and choline levels together with increased levels of
pyruvate, N-acetylated glycoproteins, beta-hydroxybutyrate, acetoacetate, and lysine. Additionally,
serum lactate/pyruvate ratio was a strong predictor of RCC status regardless of gender. Although
only moderate changes in metabolic profiles were observed between control males and females
there were substantial gender related differences among RCC patients. Gender specific metabolic
features associated with RCC status were identified suggesting that different metabolic panels could
be leveraged for a more precise diagnostic.

Keywords: renal cell carcinoma; RCC; metabolomics; serum; NMR; gender; male; female

1. Introduction

The renal cell carcinoma (RCC) is the most common form of kidney malignancy con-
stituting more than 90% of all kidney cancer cases [1]. The most frequently occurring forms
of RCC are clear cell renal cancer carcinoma (ccRCC), papillary renal cancer cell carcinoma
(pRCC), and chromophobe cancer cell carcinoma (crRCC) [1]. The established risk factors
for RCC include genetic background, cigarette smoking, obesity, hypertension, and ac-
quired cystic kidney disease [2,3]. The incidence of kidney cancer shows a relationship
with the degree of country or region development, with the highest incidence rates being
recorded in North America, Western Europe, and Australia, while South America, Africa,
and Asia display relatively low number of cases [4–6]. Additionally, gender was reported
to influence incidence, histology, and response to medical therapy in RCC as well [7].

Kidney metabolism may differ between men and women, as many gender related
differences in renal function and resulting blood pressure have been observed in animals
and in humans [8,9]. Furthermore, RCC has a consistent 2/1 (male/female) incidence
ratio worldwide [10–12], with the lowest variability of this ratio comparing to other solid
tumors [13]. While differences in cancer incidence between men and women are com-
monly attributed to different exposure to risk factors, this does not explain the observed
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2/1 sex ratio for kidney cancer, which remains unchanged regardless of age, time period,
and geographical region [13]. Men were reported to have greater risk of developing
RCC than women [14] and tumors in men tend to be larger [15]. Moreover, men usually
have more advance disease at the time of first diagnosis, while in case of metastatic RCC
women seem to have a worse response to therapy and shorter survival time [7]. Currently,
the gender related differences observed in RCC are incompletely understood. Particularly,
an evaluation of the degree to which alterations in metabolic pathways contribute to gender
related variability in RCC remains to be elucidated.

The current standard for RCC diagnosis is based on abdominal ultrasound scanning,
MRI, CT PET, and intravenous pyelogram [16], while the invasive diagnostic methods
include angiography and the fine needle biopsy [17]. However, currently there are no
simple and cheap laboratory tests that can be used for the rapid diagnosis of early stage
RCC and thus enable early treatment. Metabolomics is a comprehensive analytical ap-
proach for monitoring metabolite changes in biofluids and tissues, which over last two
decades was progressing toward becoming a clinically useful tool for cancer diagnosis.
It enables molecular studies for biomarker discovery and has potential to be used as a tool
of personalized medicine allowing monitoring of disease progression or treatment [18].

A number of excellent metabolomics studies on RCC have already been conducted.
These investigations were performed with the use of various analytical platforms such as
NMR and MS using blood [19–22], urine [23,24], tissue samples [25,26], or a combination
of different types of samples [27–29], and they indicate that metabolomics not only can
enable RCC diagnosis but also could be useful for staging of the disease and selection of
therapeutic targets. However, while very valuable for general RCC biomarker discovery,
these studies rarely focused on gender related differences in metabolic profiles associated
with RCC. Few reports have thus far investigated gender related metabolic profiles in
RCC; however, even in these studies male and female groups were not always balanced
resulting in ambiguous interpretations. Given the existence of differences in RCC incidents,
prognosis, and molecular characteristics of some kidney tumors in this study we undertook
an effort to quantify serum metabolic profiles of RCC patients and specifically evaluate the
common and differential metabolites between male and female RCC patients.

2. Results

2.1. Serum 1H NMR Profiles of RCC Patients

Across all 100 serum samples analyzed using 1H NMR, 44 metabolite resonances were
consistently detected and showed sufficient signal to noise and resolution to be quantified
(Table S1). Among these resonances, lipid signals were analyzed by means of chemical
group. Two small molecule resonances remained unidentified: Unk1 (1.399 ppm) and
Unk2 (1.424 ppm), while still being quantitatively analyzed. Initial data quality evaluation
consisted of an unsupervised analysis, and Grubbs test which detected one sample with
characteristics of a substantial outlier (Figure S1A). Upon closer evaluation, this sample
was identified as a male control subject and was subsequently excluded due to a 3-fold
upregulated lipid signals comparing to the average in control group (Figure S1B). At this
stage a total of 99 samples, (control 26 males and 23 females; RCC 30 males and 20 females)
were subjected to appropriate chemometric and univariate statistical analysis.

2.2. Discriminatory Potential of Serum in RCC Diagnosis Independent of Gender

First, we analyzed male and female patients jointly to identify gender independent
metabolic features and their relation to RCC status. When the 99 samples were subjected
to the unsupervised PCA analysis, the dataset showed moderate separation between the
Control and RCC groups while maintaining partial overlap (Figure 1A). A more detailed
analysis of different combinations of principal components indicated that separation was
mostly associated with the first two dimensions of PCA, suggesting the existence of partial,
although not overwhelming, metabolic differences between RCC patients and Controls.
In order to evaluate the ability of 1H NMR serum metabolic profiles to discriminate between



Metabolites 2021, 11, 767 3 of 19

Control group and RCC patients a supervised analysis was conducted. PLS-DA model with
satisfactory cross validation parameters (R2 = 0.61 and Q2 = 0.47) resulted in a substantial
separation between groups (Figure 1B) and was highly statistically significant based on
permutation test (p < 0.0005) (Figure 1C). Yet, still scores plot was characterized by some
degree of overlap between the groups indicating high degree of variability particularly
across RCC patients (Figure 1B).
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Figure 1. Chemometric analysis based on metabolites detected in serum of Control and RCC patients. (A) PCA scores plot,
(B) PLS-DA scores plot, and (C) permutation test with respect to separation distance (2000 permutations).

The ability of individual metabolite signals to differentiate between groups was
evaluated based on their Variable Importance Projections (VIPs) scores. Metabolites charac-
terized by high VIP values were additionally subjected to single logistic regression (SLR)
analysis, in order to evaluate their individual predictive power regarding RCC status.
All metabolites with VIP score > 1 from PLS-DA and p value < 0.01 from logistic regression
are reported in Table 1 along with their respective AUC, p-value, and percentage change.
No lipids were found in this list and neither creatinine nor creatine were statistically dif-
ferent between the RCC and Control groups, which was somewhat unexpected given the
fact that creatinine is a marker of renal function. Among the most significantly changed
metabolites we found lactate, N-acetylated compounds (NAC2 δ = 2.05 ppm), threonine,
and histidine, followed by ketones and choline (Table 1).

Table 1. Differential metabolites between Controls and RCC patients.

Metabolite VIP a Change (%) b AUC c p Value c

Lactate 2.4590 −29.2% 0.8518 <0.0001
NAC2 2.1876 +30.7% 0.7971 <0.0001

Threonine 2.0266 −20.8% 0.7951 <0.0001
Histidine 1.7171 −16.2% 0.7322 <0.0001

Unk1 1.7071 +10.9% 0.7318 <0.0001
BHB 1.5806 +18.8% 0.7298 <0.0001

AcAc1 1.5401 +41.4% 0.7155 0.0002
AcAc2 1.4778 +46.4% 0.7049 0.0004

Pyruvate 1.3728 +21.9% 0.698 0.0007
Choline 1.3658 −12.8% 0.6869 0.0013
Lysine 1.1665 +4.2% 0.6796 0.0021
NAC1 1.1630 +8.6% 0.6563 0.0074

a Variable Importance Projections (VIPs) scores obtained from PLS-DA model. b Percentage change of metabolite
levels. c Area under curve (AUC) and p value obtained from single logistic regression for individual metabolites.

The top three most important metabolites except threonine are presented in detail
in Figure 2. Threonine was not considered for further analysis, due to its very strong
correlation with lactate, which is most likely caused by substantial degree of signal overlap
between these two metabolites (data not shown). Based on the SLR results, a decrease in
serum lactate was the strongest single metabolite variable predictor of RCC status and
showed a robust ROC curve with AUC of 0.85 (Figure 2A). An increase in NAC2 was
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characterized by a good ROC performance and AUC of 0.80 (Figure 2B), while a decrease
in histidine, even though significant, was characterized by moderate ROC performance
with AUC of 0.73 (Figure 2C). Importantly, the combination of these three most differ-
ential metabolites using multiple logistic regression (MLR) model generated superior
performance with AUC of 0.91 and positive predictive power of 89% (Figure 2D).
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Figure 2. Statistical and predictive performance of three most differential metabolites. Normalized signal area ROC curve
from SLM for (A) lactate, (B) N-acetylated compounds (NAC2 δ = 2.05 ppm), and (C) histidine. (D) Combined predictive
power of lactate, NAC2 and histidine using MLR.

Interestingly, metabolite signals associated with ketone body metabolism were also de-
tected as significantly increased in serum of RCC patients comparing to Controls (Table 1).
This was surprising, given the fact that liver is considered to be the major site of ketoge-
nesis. While changes in both beta-hydroxybutyrate (BHB) and acetoacetate (AcAc) were
statistically significant, their abundance was characterized by substantial scattering in the
RCC group and few very high readings—otherwise there was major overlap between the
groups (Figure S2A). Worth noting is the fact, that high ketone abundance was detected
only in RCC patients and only in this group AcAc was correlated with acetone (Figure S2B).
However, there was no synergistic effect when BHB and AcAc signals were combined in
a multiple logistic regression model indicating that both ketones carry redundant infor-
mation. Furthermore, addition of BHB and AcAc to the previously constructed multiple
logistic regression model, based on lactate, NAC2, and histidine, had only minimal effect
on the performance, again indicating that ketones are not a strong predictor of RCC status
(data not shown). Therefore, while it seems that some changes in circulating ketones may
occur in RCC, they have limited predictive power, and may be associated with secondary
effects such as dietary habits and fasting duration.

Taken together, this data indicates, that quantification of serum metabolic profiles
using 1H NMR provide sufficient amount of information for identification of RCC patient
either based on multivariate PLS-DA or multiple logistic regression model.
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2.3. Gender-Specific Differences in Control Group

In order to investigate gender-specific differences and their potential relationship
with RCC status, we next focused on the Control group alone. Control males and females
overlapped in the PCA scores plot (Figure 3A) indicating a high degree of similarity
between the two genders. However, by utilizing discriminant analysis we were able to
partially separate the Control males from the Control females (Figure 3B). The obtained
PLS-DA model was borderline statistically significant (p = 0.0245) and showed moderate
performance in the permutation test (Figure 3C). Nevertheless, four metabolites selected
based on VIP scores were statistically significant (VIP score > 1), when analyzed by means
of univariate analysis, while isoleucine had p value of 0.06 little above statistical significance
(Figure 3D). Creatinine, methanol, and isoleucine were higher, while glycine and Unk1 were
lower among males (Figure 3D). Importantly, a combination of these five metabolites
resulted in a good MLR model with AUC of 0.88 (Figure 3E).
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Figure 3. Chemometric analysis based on metabolites detected in serum of Control males and females. (A) PCA scores plot,
(B) PLS-DA scores plot, and (C) permutation test with respect to separation distance (2000 permutations). (D) Five most
differential metabolites selected based on their VIP score. (E) Combined predictive power of creatinine1, methanol,
isoleucine, glycine, and Unk1 using MLR. M—Male; F—Female.

2.4. Gender-Specific Discriminatory Potential of Serum in RCC Diagnosis

Given the underlying epidemiological differences in the RCC incidence ratio between
males and females, we moved to explore the gender specific serum metabolic profiles.
First, we repeated the chemometric analysis using all 99 samples but this time 4 groups
were specified by breaking down Controls and RCC patients into male and female subjects
(Figure 4A). In the PLS-DA scores plot both Control groups overlapped to a large extent,
but male and female RCC patients partially separated from each other, suggesting existence
of gender-specific metabolic signatures in RCC (Figure 4A). In order to further explore
whether gender affect the discriminatory ability of the model, the individual PLS-DA
models discriminating between RCC and Controls were built for male and female sub-
groups (Figure 4B,C). A similar level of separation in PLS-DA scores plot was recapitulated
between Control and RCC patients when male (Figure 4B) or female (Figure 4C) subgroups
were analyzed independently. Importantly, gender-specific PLS-DA models provided
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greater level of separation comparing to previous results where groups were analyzed
jointly, suggesting existence of unique metabolic features in individual gender cohorts.
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Figure 4. Gender-specific discriminant analysis based on metabolites detected in serum of Control and RCC patients.
(A) PLS-DA scores plot of male and female Controls and RCC patients, (B) PLS-DA scores plot of male subgroup,
and (C) PLS-DA scores plot of female subgroup. (D) Venn diagram highlighting the statistically significant metabo-
lites differentiating between Controls and RCC patients selected based on VIP > 1 from PLS-DA models reported in
panels Figure 4B,C and Figure 2B. (E) PLS-DA scores plot of the RCC patients’ subgroup discriminating based on gender.
All PLS-DA models were statistically significant based on permutation test.

The most differential gender specific metabolites were selected based on their VIP
scores. In order to investigate the similarities between metabolites selected by the gender
specific PLS-DA models we generated Venn diagram highlighting the statistically signifi-
cant metabolites (Figure 4D). There were no metabolites only detected jointly, while also
not being detected in at least one other comparison, indicating that there was no synergistic
effect when analyzing both genders together. On the other hand, five and two metabolites
were detected only in female and male specific comparisons, respectively (Figure 4D).
Consistently with these differences, we were also able to obtain a good separation between
male and female RCC patients, when controls were excluded from the analysis (Figure 4E).

Importantly, nine metabolites were detected as significantly different between RCC
patients and Control by three PLS-DA models (Figure 4D). These metabolites, were consid-
ered strong overall candidates for prediction of RCC status, and mostly recapitulated the
list presented in Table 1. At the same time, both female and male specific models had three
unique metabolites, which were also captured by joint comparison, suggesting that these
metabolites are very strongly associated with gender specific comparisons (Figure 4D),
as they remain influential in the joint analysis. For males these were glucose, lysine, and be-
taine, while for females these were glycine, pyruvate, and NAC1. We combined these
gender-specific variables into two separate MLR models and tested their performance
with respect to both genders. This way we were able to evaluate how specific these MLR
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models are, and if they lose predictive potential when applied to the opposite gender.
MLR based on male specific metabolites resulted in AUC of 0.79 and p = 0.0002 in the male
cohort, indicating that combination of glucose, lysine, and betaine had moderate predictive
power for RCC diagnosis among males (Figure 5A). Importantly, when the same set of
metabolites was used in female cohort, the MLR model did not reach statistical significance
(p = 0.0575), indicating that indeed these three metabolites were only associated with RCC
status in male subjects (Figure 5B) and showed poor performance in females. The opposite
pattern was observed for MLR model based on female specific metabolites, which resulted
in a good predictive power (AUC = 0.87, p < 0.0001) for RCC diagnosis among females
(Figure 5C), while in males this model was borderline significant with p = 0.02 and AUC of
0.68 (Figure 5D). Taken together, these data indicate existence of specific metabolic features
in serum of female and male RCC patients, suggesting that different metabolic panels could
potentially be used for each gender separately.
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Figure 5. Statistical and predictive performance of MLR based on three most differential metabolites that were specific to
either male or female RCC patients. (A,B) Combined predictive power of Male specific RCC metabolites (glucose, lysine,
and betaine) when applied to (A) male cohort and (B) female cohort. (C,D) Combined predictive power of Female specific
RCC metabolites (glycine, pyruvate, and NAC1) when applied to (C) female cohort and (D) male cohort.

2.5. Discriminatory Potential of Serum Metabolie Ratios

Since, lactate was the strongest predictive metabolite for RCC status (Table 1) and was
detected as differential by three PLS-DA models (Figure 4D), we additionally investigated
its related metabolites pyruvate and glucose. Glucose, was detected to be slightly higher
(Figure 6A), while lactate was decreased in RCC patients (Figure 6B) and both metabolites
had no interaction with gender. Lactate and pyruvate exchange with each other at the
lactate dehydrogenase (LDH) reaction and lactate/pyruvate ratio is commonly used as a
surrogate of cytosolic redox in cells and tissues [30]. Although serum lactate/pyruvate
ratio is not specific to any given tissues, we hypothesized, that it could reflect global
whole-body changes in substrate dynamics and cellular energetics. Contrary to lactate,
pyruvate levels were increased in RCC patients (Figure 6C) and its interaction with gender
almost reached statistical significance (p = 0.07), which was consistent with pyruvate being
selected by female specific PLS-DA model (Figure 4D). As a result of these opposite trends,
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the lactate/pyruvate ratio was a very strong measure of RCC status (Figure 6D). Unlike
glucose, which had very poor predictive potential (Figure 6E), serum lactate/pyruvate
ratio showed even better predictive performance than lactate itself. This was true with
regard to the joint analysis (Figure 6F), as well as individual male (Figure 6G) and female
(Figure 6H) analysis (in all these cases, AUC exceeded 0.9). Additionally, we investigated
metabolite ratios for ketones BHB/AcAc and creatinine/creatine anticipating that they
may provide synergistic effect for discrimination of RCC patients (Figure S3). RCC patients
had lower BHB/AcAc ratio (Figure S3A) while creatinine/creatine ratio was not different
from controls, but showed interaction with gender (Figure S3B). Taken together, these data
suggest that, metabolic ratios may be a useful way for discrimination of RCC, despite their
physiological meaning being challenging to interpret.
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Figure 6. Statistical analysis by gender-specific two-way ANOVA of (A) glucose, (B) lactate, (C) pyruvate,
and (D) lactate/pyruvate ratio. ROC curve from SLM for (E) glucose or (F–H) lactate/pyruvate ratio based on (F) joint
analysis or individual (G) male and (H) female analysis.

2.6. Gender-Sepcific Correlation Analysis

To further investigate the relationships between metabolites among gender-specific
groups we performed correlation analysis (Figure 7). Individual heat maps reveled strong
correlations within lipids across all Control (Figure 7A,B) and RCC groups (Figure 7C,D).
Additionally, in both RCC male and female patients, we observed strong inner-correlation
between ketones (Figure 7C,D), while this was only partially true in Controls that showed
weak correlation between acetone and AcAc signals. Given the lipid origin of ketones, these
two groups of metabolites are expected to be correlated with each other, but interestingly
these relationships were different between Control and RCC group, again highlighting,
that RCC status may somehow affect ketone dynamics in serum. Both N-acetylated
compound signals were strongly correlated with lipids in Control male (Figure 7A) and
female (Figure 7B) groups, but this correlation was very weak in male (Figure 7C) and was
completely lost in female RCC patients (Figure 7D).

Overall, the metabolite correlation map was similar between male and female Controls,
consistent with the poor predictive performance of PLS-DA model generated between
these groups (Figure 1B,C). Conversely, there were few distinct correlation patterns within
female and male RCC patients, mostly related to the interaction between lipids, ketones,
creatine/creatinine and amino acids. For example, unlike in the Controls, the creatine and
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creatinine signals were positively correlated in RCC groups. Despite these differences,
the majority of the correlation map remained similar between genders among RCC patients.
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Figure 7. Pearson correlation map of metabolites quantified in individual gender subgroups: (A) Control males, (B) Control
females, (C) RCC male patients, and (D) RCC female patients.

2.7. Serum Metabolic Profile Is Affected by T Stage in RCC Patients

Once we established that RCC patients have differential metabolic profiles from
Controls, we explored grade related changes. Although most of RCC patients analyzed in
the current study were classified at the T1 stage, there were enough samples to explore stage
related trends in the data. However, this analysis was conducted independent of gender
due to low number of samples at higher T stage in gender specific groups. Importantly all
T4 stage patients in our current study were male.

First, we performed series of PCA analysis where we analyzed all Controls and
RCC patients at individual T stages (Figure 8). There was some degree of separation
in PCA scores plot between T1 stage RCC patients and Controls, but many samples
overlapped with Controls (Figure 8A). Similarly, stages T2 and T3 trended to separate in
PCA (Figure 8B,C), but samples from T4 stage patients were clearly distinguishable from
Control (Figure 8D). Next, we conducted subsequent PLS-DA modeling at all four T stages.
Similarly, to the joint model (Figure 1B), the scores plot obtained for T1 RCC patients was
characterized by some degree of overlap with Controls (Figure 8E). However, from stage
T2 up to T4 (Figure 8F–H), all three PLS-DA models provided complete separation between
RCC patients and Controls indicating, that T1 stage is the most challenging to discriminate.
This data indicated that metabolic signatures of RCC may vary with T stage and are most
clear at stage T4 consistent with the advanced degree of the disease and increased burden
of the tumor on the whole-body homeostasis.
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In order to further explore stage related trends in the data we broke down the RCC
group into subgroups determined by T stage and investigated individual metabolites
for statistical significance based on the one-way ANOVA. This particular analysis was
conducted excluding the Control group; however, Controls are presented in Figure 9 for
reference. Although, staging analysis was conducted jointly, we additionally investigated
metabolites in terms of their RCC status and gender interaction by means of two-way
ANOVA in order to evaluate if gender could be a confounding factor in the T stage analysis.
We assumed that metabolites without gender interaction should provide a straightforward
interpretation with regard to staging when samples were analyzed jointly.
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respect to T stage by one-way ANOVA. (A) Choline, (B) NAC1, (C) lysine, (D) glycine, (E) tyrosine, and (F) creatinine.
Controls are presented in the staging panes (right) only for reference, the one-way ANOVA statistical analysis was performed
using only samples from RCC patients (stages T1–T4).

Among the metabolites that showed significant differences based on univariate statis-
tics regardless of stage, some of them showed additional trends when stratified by T stage.
In particular choline in which downregulation was detected by the overall analysis and
had no interaction with gender, showed a very significant (p = 0.0001) trend in relation to
the T stage (Figure 9A). Conversely, NAC1, which was upregulated in joint analysis and
showed no interaction with gender (although was different between males and females
in both Control and RCC groups), presented a statistically significant trend dependent
on T stage (Figure 9B). Lysine was also increased in RCC group regardless of gender but
exhibited significant increasing trend with respect to T stage (Figure 9C).

Interestingly, few metabolites that had poor performance in the joint analysis (or even
missed threshold of significance based on VIP value or univariate statistics), exhibited
strong T stage related characteristics. For example, glycine, which had p value of only 0.011,
was also statistically significant with respect to T staging (Figure 9D). Although glycine
exhibited a statistically significant interaction between RCC status and gender, it showed
a very strong decreasing trend in relation to T stage, which did not seem to be affected
by gender (Figure 9D). Tyrosine on the other hand, was not statistically significant when
analyzed jointly or by gender specific groups, yet was associated with T stage (Figure 9E).
Perhaps most striking observation was made with regard to creatinine, which was not
different when RCC group was analyzed jointly, but it showed significance based on
ANOVA. In particular, all three samples from patients at stage T4 showed significantly
elevated levels of creatinine comparing to samples obtained from patients at lower stages
or controls. Although creatinine was overall significantly higher in males than in females,
this striking difference presented at stage T4 seemed to be associated with the disease
status independent of gender, as these samples separated also from other male patients
(Figure 9F).

Taken together these data indicate that metabolic signatures of RCC progression
are present in serum and can be detected by 1H NMR; however, the degree with which
these changes occur could be dependent on gender, as some of these metabolites were
significantly different between males and females.

3. Discussion

In the current study, we evaluated serum metabolic profiles of RCC patients in joint
and gender-specific manner. The goal of this investigation was to select differential metabo-
lites for RCC status and to assess whether gender-specific metabolic signatures of RCC can
be leveraged for a more precise diagnostic.

3.1. Metabolic Differences Associated with Gender and RCC

Our analysis revealed existence of moderate metabolic differences between male and
female controls. Among identified differential metabolites some has previously been asso-
ciated with gender and showed same trends in our study. In particular, serum creatinine is
commonly reported to be higher among men based on differences in muscle mass [31–34].
At the same time, serum amino acid profiles are consistent with our finding of lower
isoleucine and increased glycine in females [35]. On the other hand, serum fatty acids and
various lipids (including LDL and VLDL) were previously reported to be higher among
females [34,36,37], yet we were unable to detect differences in lipids among Controls in
our study. Since we did not control our analysis for BMI it is possible that similarity in
lipids was due to variable level of adiposity. However, in some studies that controlled
for BMI, adjusting for BMI did not affect overall observed gender related differences [38],
thus suggesting a potentially different nature of our observations.
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Although we detected only moderate changes in metabolic profiles of Control males
and females, there were substantial gender related differences among RCC patients. Simi-
larly, to the Control group, male RCC patients had higher creatinine levels comparing to
female RCC patients, indicating, that some of gender related differences are maintained
despite RCC status. However, the strongest changes were associated with increased lipids
among RCC females, which is consistent with typically observed trend of higher fatty acids
and lipid among healthy women [34,36,37]. At the same time, male RCC patients had
significantly reduced lipids comparing to male Controls, while female RCC patients had
unchanged lipids compared to female Controls. Therefore, at the current state it is hard to
interpret the changes in lipid signals observed in RCC females as they could be either due
to common sex differences or may be associated with changes in lipid profile in male RCC
patients. Confirmation of this finding by future studies will be required.

Importantly, although a number of differential metabolites was common for male and
female RCC patients, there were some gender specific metabolic features associated with
RCC status. A proof-of-concept MLR models based on three gender specific metabolites
(glycine, pyruvate, and NAC1 for females and glucose, lysine, and betaine for males)
provided good predictive power for their respective genders, and had limited utility
when applied for other patients. Therefore, gender specific metabolic models could be
advantageous for RCC diagnosis.

3.2. Low Circulating Lactate in Relationship with Warburg Effect in RCC

Lactate, pyruvate, and their ratio as well as glucose were strongly associated with
RCC status in our study. In kidney cancer, mutations in the enzymes of the TCA cycle
such as succinate dehydrogenase (SDH) and fumarate hydratase (FH) lead to impairment
of oxidative metabolism [39]. This suggests that RCC may exhibit classic Warburg effect,
where glucose is incompletely oxidized by the tumor in the presence of oxygen and conver-
sion of glucose to lactate is being favored. Indeed, using hyperpolarized pyruvate coupled
with real-time detection of 13C NMR signals Keshari et al. showed that RCC cells had
a significantly higher conversion rate of pyruvate to lactate compared to normal renal
tubular cells [40,41]. Similarly, infusion of 13C glucose in ccRCC patients followed by the
isotopomer analysis of metabolites extracted from tumor tissues, indicated increased flux
from glucose to lactate with impairment in oxidation of glucose derived carbon in the TCA
cycle, demonstrating that ccRCC is the first among human tumors that exhibit convincing
shift toward glycolytic metabolism [42]. Based on these studies one could expect the circu-
lating levels of lactate to be increased among RCC patients. However, the metabolomics
data on this are contradictory. For example, higher levels of lactate were detected in RCC
patients [19,21], yet at the same time lower lactate levels were associated with advanced
RCC compared to low grade RCC patients without metastases [19]. Conversely, other
studies reported overall decrease in blood lactate among RCC patients comparing to con-
trols [20,22]. Consistent with latter reports, our results indicated that the decrease in serum
lactate was one of the strongest predictors of RCC status regardless of gender. On the
other hand, pyruvate, tends to be consistently detected in higher concentrations among
RCC patients [19,25,28], which agrees with our results particularly with respect to female
RCC patients. Finally, blood glucose levels are variable in RCC patients with some studies
reporting it to be lower [19], unchanged [22] or increased [20]. Our study agrees with the
latter studies and detected increased blood glucose in both genders, although effect was
more obvious in males.

Besides the liver, the kidney is the only organ capable of meaningful gluconeogenesis.
Based on increased levels of circulating glucose in combination with decreased concentration
of lactate it is tempting to suggest upregulation of gluconeogenesis in RCC patient group.
However, it is unlikely that a renal tumor would produce glucose by itself. First, the genes
controlling renal gluconeogenesis (G6PC, PCK1, and FBP1) were found to be the most under
expressed metabolic gene set based on analysis of RNA-sequencing data of ccRCC [43]
and secondly, overexpression of gluconeogenic enzyme FBP1 significantly inhibited 2D
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culture and xenograft tumor growth [43]. On the other hand, renal gluconeogenesis can
occur under normal physiological conditions, yet is typically considered to be an important
source of glucose only during acidosis and after prolonged fasting [44]. This could be
important for the interpretation of serum metabolomics data, where low levels of lactate
are being detected. Renal gluconeogenesis is negatively correlated with the pH, and thus
is increased under acidosis [45]. Moreover, kidney can use lactate similar to liver for
gluconeogenesis [44]. Lactate uptake is greater with lower pH [46] and under conditions
of exogenous hyperlactatemia kidney could be responsible for up to 25–30% clearance of
lactate from the blood [46]. Uptake of lactate is mostly metabolic with excretion accounting
for only 10–12% of renal lactate disposal, but is not necessarily only gluconeogenic, as it
was found that kidney can take up lactate and secrete portion of it as pyruvate [47,48].

Production of lactate by kidney tumor could lower the local pH [49] and thus affect
metabolism of the otherwise healthy rest of the kidney (Figure 10). As a result, lactate
would not be secreted to circulation but rather could be converted to pyruvate, and either
secreted, or used for gluconeogenesis. The net increase in circulating glucose, could be a
result of tumor metabolism of other lactate precursors such as amino acids (e.g., glycine)
or conversion of circulating lactate (not derived from tumor metabolism) by the same
mechanism, since the local kidney metabolism already underwent a shift due to pH
changes. Indeed, although rare, the case studies of RCC patient experiencing unexplained
hyperglycemia exist [50,51]. Importantly, in most of these patients no major changes in
hormones were detected and hyperglycemia resolved after partial nephrectomy allowing
discontinuation of insulin therapy and thus suggesting that onset of hyperglycemia could
have been metabolic in nature.
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Figure 10. Scheme of potential metabolic changes occurring in the tumor and how tumor metabolism
can affect renal metabolism. Red—arterial metabolites, violet—tumor metabolites, and blue—venous
metabolites. Gender symbols refer to the primary driver of metabolic changes, for example, female
increased means metabolite is increased in RCC but had significant interaction with gender which
was primarily driven by females.

3.3. Ketones in RCC

Ketones, BHB, and AcAc as well as acetone were all detected in greater concentration
among RCC patients than in controls. Ketogenesis is generally thought to occur solely in
the liver [52,53] and this would indicate that changes in ketones among RCC patients may
be associated with secondary effects such as dietary habits, and fasting duration. However,
the kidney also expresses 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), the key
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enzyme of ketogenesis [54]. Furthermore, although kidney act as a net consumer of
ketones [55], it has been reported that kidney can produce ketones in isolation [56], in vivo
during starvation [57] or in diabetic nephropathy [58]. Therefore, although unlikely, it is
worth mentioning that observed elevated levels of ketones in RCC could theoretically be
associated with renal and not hepatic metabolism. Additionally, it is worth noting that
AcAc was correlated with acetone only in RCC patients. A decrease in local pH caused by a
tumor releasing lactate could contribute to elevated levels of acetone. AcAc is unstable and
can spontaneously decarboxylate to acetone but this process is more rapid in lower pH [53].
Therefore, regardless of the source of AcAc, formation of acetone could be associated with
the tumor itself (Figure 10).

3.4. Serum Creatinine Is a Poor Marker of Early RCC

Filtration is one of the most important roles performed by kidneys to maintain whole
body homeostasis. Changes in filtration rate could affect concentration of metabolites in the
blood. However, metabolites identified to be differential for RCC showed both increasing
and decreasing changes, which suggest that they were not caused by only impaired renal
filtration. A common although limited indicator of kidney function is serum creatinine
level [32]. Creatinine is formed from creatine as a waste product of muscle metabolism and
it is removed from the bloodstream by kidneys and disposed into the urine. Interestingly,
neither creatinine nor creatine were changed in serum of RCC patients when analyzed
jointly. However, when RCC group was broken down based on the T grade, additional
insights into the dataset were obtained, while no differences in carnitine level could be
observed when all RCC patients were analyzed together, we found that samples from
T4 patients were characterized by significantly upregulated creatinine compared not only
to the control group, but also to all other RCC patients. Although the number of subjects
in each group differed, the data indicated an increasing creatinine trend with increasing
T grade. Since, the rise in blood carnitine is associated with damage to nephrons it is a late
marker of renal disease. Therefore, our data suggest that most RCC patients in this study
maintained renal function, yet at the same time our data is consistent with the damage to
kidney occurring at late stages of the disease and thus limits the applicability of serum
carnitine as an early marker of RCC.

4. Materials and Methods
4.1. Research Material Description

The study group consisted of 50 RCC patients aged 39–87 (mean age: 64.4 years),
including 20 women and 30 men. All participants agreed to participate in the study by
signing an appropriate form approved by the Bioethics Committee of the Wroclaw Medical
University (Opinion No. KB-102/2012 of 10 April 2012). The patients diagnosed with
kidney tumor were eligible for surgical treatment based on imaging examinations such
as abdominal CT and MRI scans. The clinical stage was determined according to the
2012 IUAC TNM classification. The RCC patients’ characteristics are shown in Table 2.

Table 2. Patient characteristics.

Jointly Male Female

No. patients 50 30 20
Mean age 64.4 64.3 64.7

(range)
Median BMI

Diabetes

(32–87)
-
5

(32–82)
24.8

2

(51–87)
23.6

3

Tumor stage (pT)

pT1 35 20 15
pT2 5 2 3
pT3 7 5 2
pT4 3 3 0
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Table 2. Cont.

Jointly Male Female

RCC subtype

Clear cell RCC 41 23 18
Papillary RCC 5 5 0

Chromophobe RCC 4 2 2

Fuhrman Grade

1 18 10 8
2 21 14 7
3 10 6 4
4 1 0 1

The control group consisted of 50 patients with no evidence of kidney tumor whom
volunteered to participate in the study conducted by the Department of Ophthalmology.
Blood serum was the material used for metabolomic analysis. It was collected on the
day before surgery during standard laboratory tests. Blood was collected into 10 mL BD
Vacutainer tubes with Becton Dickinson clot activator. After the blood clot was obtained,
the serum was centrifuged at 3000× g for 10 min. The obtained serum was frozen at −70 ◦C.
The frozen samples obtained from the study group and the control group were used for
the metabolomic analysis using 1H NMR spectroscopy.

4.2. Sample Preparation

Prior to the metabolomics experiments, serum samples were thawed and vortexed.
Subsequently, 200 µL aliquot was taken from each sample and mixed with 400 µL of saline
solution (0.9% NaCl; 15% D2O; 3 mM TSP). After centrifugation (12,000× g for 10 min),
a 550 µL of each sample supernatant was subsequently transferred to a 5-mm NMR tube.
Samples were maintained at 4 ◦C prior to measurement.

4.3. 1H NMR Spectroscopy Measurements and Metabolite Assignments

All 1H NMR spectra were recorded at 300 K using an Avance II spectrometer (Bruker,
GmbH, Bremen, Germany) operating at proton frequency of 600.58 MHz. A one-dimensional
Carr–Purcell–Meiboom–Gill (CPMG) spin echo pulse sequence with water suppression
was utilized (Burker library: cpmgpr1d). This allowed removal of broad spectral reso-
nances originating from macromolecules and improved the visibility of low molecular
weight metabolites. For each sample, 128 consecutive scans were collected with a 400 µs
spin-echo delay, 80 loops, a 3.5 s relaxation delay, 64 K TD, and 20.01 ppm SW. The spectra
were Fourier transformed with 0.3 Hz line broadening, manually phased and baseline
corrected using Topspin 1.3 software (Bruker, GmbH, Bremen, Germany), and referenced
to an α-glucose signal (δ = 5.225 ppm). Metabolites were identified based on previously
reported assignments in serum [59,60], ChenomX metabolite library, our in-house spectral
library, and statistical total correlation spectroscopy analysis.

4.4. Data Processing and Chemometric Data Analysis

All spectra were exported to Matlab (Matlab v. 8.3.0.532) for pre-processing. Re-
gions affected by solvent suppression were excluded (4.32–5.15 ppm). Signals alignment
was performed by the correlation of optimized warping (COW) and interval correlation
shifting (icoshift) algorithms [61]. The spectra consisted of 8910 data points and were
normalized using the probabilistic quotient method (PQN) where all spectra were used as
reference group [62]. This allowed to overcome signal variability caused by different level
of sample dilution.

The multivariate and statistical data analysis was performed on a set of the 42
(+2 unknown) assigned metabolites. The relative concentration of metabolite measured
by NMR was obtained as the sum of data points in data matrix for the no overlapping
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resonances (or a part of partly overlapping resonances) range. Principal component anal-
ysis (PCA) and partial least squares discrimination analysis (PLS-DA) were conducted
in Metaboanalyst v5.0 using log transformed and autoscaled data. The PLS-DA models
statistical significance was tested based on the permutation test with respect to separation
distance (2000 permutations).

4.5. Statistical Analysis

Student’s t-test, analysis of variance (ANOVA), as well as simple and multiple logistic
regression analysis were conducted in GraphPad Prism version 9.1.1. For univariate
Student’s t-test equal variance was assumed. For logistic regression, the RCC status
was set as a categorical variable Y encoding outcome, while either single or multiple
metabolite abundances were set as continuous variables with main effects. One-way
analysis of variance (ANOVA) was used to determine statistical significance of metabolites
with respect to T stage, with α = 0.05 for statistical significance. Two-way ANOVA with
interaction was used to determine statistical significance of metabolites with respect to
gender and RCC status.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11110767/s1, Figure S1: Chemometric analysis based on metabolites detected in serum
of 50 control and 50 RCC patients, Figure S2: Statistical analysis of ketones., Figure S3: Statistical
analysis of metabolite ratios based on different resonances with respect to gender, Table S1: List of
detected, assigned and quantified metabolite signals in 1H NMR spectra of serum.

Author Contributions: Conceptualization, S.D., A.L., T.S., and P.M.; methodology, S.D., A.L.,
and W.W.; software, W.W. and K.A.M.; validation, K.A.M.; formal analysis, S.D., A.L., K.A.M.,
N.P.-M., W.W., and A.Z.; investigation, S.D. and A.L.; resources, P.M. and T.S.; data curation, S.D.,
A.L., K.A.M., W.W., and A.Z.; writing—original draft preparation, S.D. and P.M.; writing—review
and editing, A.L., K.A.M., N.P.-M., W.W., A.Z., and T.S; visualization, S.D.; supervision, S.D, T.S.,
and P.M.; project administration, S.D., A.L., and P.M.; funding acquisition, P.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by an internal subsidy of Wrocław University of Science
and Technology.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Wroclaw Medical University Ethics Committee.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Original data are available from the authors on request bacause of its
usage in the ongoing study.

Acknowledgments: Illustrations were created with BioRender.com (accessed on 9 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muglia, V.F.; Prando, A. Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiol. Bras. 2015,

48, 166–174. [CrossRef]
2. Linehan, W.M.; Bratslavsky, G.; Pinto, P.A.; Schmidt, L.S.; Neckers, L.; Bottaro, D.P.; Srinivasan, R. Molecular Diagnosis and

Therapy of Kidney Cancer. Annu. Rev. Med. 2010, 61, 329–343. [CrossRef] [PubMed]
3. Terris, M.; Klaassen, Z.; Kabaria, R. Renal cell carcinoma: Links and risks. Int. J. Nephrol. Renov. Dis. 2016, 9, 45–52. [CrossRef]
4. Li, P.; Znaor, A.; Holcatova, I.; Fabianova, E.; Mates, D.; Wozniak, M.B.; Ferlay, J.; Scelo, G. Regional Geographic Variations in

Kidney Cancer Incidence Rates in European Countries. Eur. Urol. 2015, 67, 1134–1141. [CrossRef]
5. Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of

Renal Cell Carcinoma. Eur. Urol. 2018, 75, 74–84. [CrossRef] [PubMed]
6. Du, Z.; Chen, W.; Xia, Q.; Shi, O.; Chen, Q. Trends and projections of kidney cancer incidence at the global and national levels,

1990–2030: A Bayesian age-period-cohort modeling study. Biomark. Res. 2020, 8, 1–10. [CrossRef]
7. Mancini, M.; Righetto, M.; Baggio, G. Gender-Related Approach to Kidney Cancer Management: Moving Forward. Int. J. Mol.

Sci. 2020, 21, 3378. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo11110767/s1
https://www.mdpi.com/article/10.3390/metabo11110767/s1
BioRender.com
http://doi.org/10.1590/0100-3984.2013.1927
http://doi.org/10.1146/annurev.med.042808.171650
http://www.ncbi.nlm.nih.gov/pubmed/20059341
http://doi.org/10.2147/IJNRD.S75916
http://doi.org/10.1016/j.eururo.2014.11.001
http://doi.org/10.1016/j.eururo.2018.08.036
http://www.ncbi.nlm.nih.gov/pubmed/30243799
http://doi.org/10.1186/s40364-020-00195-3
http://doi.org/10.3390/ijms21093378


Metabolites 2021, 11, 767 17 of 19

8. Wiinberg, N.; Høegholm, A.; Christensen, H.R.; Bang, L.E.; Mikkelsen, K.L.; Nielsen, P.E.; Svendsen, T.L.; Kampmann, J.P.;
Madsen, N.H.; Bentzon, M.W. 24-h ambulatory blood pressure in 352 normal Danish subjects, related to age and gender*. Am. J.
Hypertens. 1995, 8, 978–986. [CrossRef]

9. Layton, A.T.; Sullivan, J.C. Recent advances in sex differences in kidney function. Am. J. Physiol. Physiol. 2019, 316, F328–F331.
[CrossRef] [PubMed]

10. Lucca, I.; Klatte, T.; Fajkovic, H.; De Martino, M.; Shariat, S.F. Gender differences in incidence and outcomes of urothelial and
kidney cancer. Nat. Rev. Urol. 2015, 12, 585–592. [CrossRef]

11. Hew, M.N.; Zonneveld, R.; Kümmerlin, I.P.E.D.; Opondo, D.; De La Rosette, J.J.M.C.H.; Laguna, M.P. Age and Gender Related
Differences in Renal Cell Carcinoma in a European Cohort. J. Urol. 2012, 188, 33–38. [CrossRef]

12. Siegel, R.L.; Mph, K.D.M.; Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 2020, 70, 7–30. [CrossRef]
13. Scelo, G.; Li, P.; Chanudet, E.; Muller, D.C. Variability of Sex Disparities in Cancer Incidence over 30 Years: The Striking Case of

Kidney Cancer. Eur. Urol. Focus 2018, 4, 586–590. [CrossRef]
14. Gelfond, J.; Al-Bayati, O.; Kabra, A.; Iffrig, K.; Kaushik, D.; Liss, M.A. Modifiable risk factors to reduce renal cell carcinoma

incidence: Insight from the PLCO trial. Urol. Oncol. Semin. Orig. Investig. 2018, 36, 340.e1–340.e6. [CrossRef] [PubMed]
15. Aron, M.; Nguyen, M.M.; Stein, R.J.; Gill, I.S. Impact of Gender in Renal Cell Carcinoma: An Analysis of the SEER Database.

Eur. Urol. 2008, 54, 133–142. [CrossRef]
16. Capitanio, U.; Montorsi, F. Renal cancer. Lancet 2015, 387, 894–906. [CrossRef]
17. Patel, H.D.; Johnson, M.H.; Pierorazio, P.M.; Sozio, S.; Sharma, R.; Iyoha, E.; Bass, E.; Allaf, M.E. Diagnostic Accuracy and Risks of

Biopsy in the Diagnosis of a Renal Mass Suspicious for Localized Renal Cell Carcinoma: Systematic Review of the Literature.
J. Urol. 2016, 195, 1340–1347. [CrossRef]

18. Jacob, M.; Lopata, A.L.; Dasouki, M.; Rahman, A.M.A. Metabolomics toward personalized medicine. Mass Spectrom. Rev. 2017, 38,
221–238. [CrossRef]

19. Gao, H.; Dong, B.; Liu, X.; Xuan, H.; Huang, Y.; Lin, D. Metabonomic profiling of renal cell carcinoma: High-resolution proton
nuclear magnetic resonance spectroscopy of human serum with multivariate data analysis. Anal. Chim. Acta 2008, 624, 269–277.
[CrossRef] [PubMed]
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