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Abstract: The effects of immunization with subunit inactivated quadrivalent influenza vaccine (QIV)
are not generally well assessed in the elderly Polish population. Therefore, this study evaluated
vaccine-induced antibody response and its determinants. Methods: Consecutive patients≥ 55 years old,
attending a Primary Care Clinic in Gryfino, Poland, received QIV (A/Michigan/ 45/2015(H1N1)pdm09,
A/Singapore/INFIMH-16-0019/2016 (H3N2), B/Colorado/06/2017, B/Phuket/ 3073/2013) between
October-December 2018. Hemagglutination inhibition assays measured antibody response to
vaccine strains from pre/postvaccination serum samples. Geometric mean titer ratio (GMTR),
protection rate (PR) and seroconversion rate (SR) were also calculated. Results: For 108 patients
(54.6% males, mean age: 66.7 years) the highest GMTR (61.5-fold) was observed for A/H3N2/,
then B/Colorado/06/2017 (10.3-fold), A/H1N1/pdm09 (8.4-fold) and B/Phuket/ 3073/2013 (3.0-fold).
Most patients had post-vaccination protection for A/H3N2/ and B/Phuket/3073/ 2013 (64.8% and
70.4%, respectively); lower PRs were observed for A/H1N1/pdm09 (41.8%) and B/Colorado/06/ 2017
(57.4%). The SRs for A/H3N2/, A/H1N1/pdm09, B Victoria and B Yamagata were 64.8%, 38.0%, 46.8%,
and 48.2%, respectively. Patients who received QIV vaccination in the previous season presented
lower (p < 0.001 and p = 0.03, respectively) response to B Victoria and B Yamagata. Conclusions:
QIV was immunogenic against the additional B lineage strain (B Victoria) without significantly
compromising the immunogenicity of the other three vaccine strains, therefore, adding a second B
lineage strain in QIV could broaden protection against influenza B infection in this age group. As the
QIV immunogenicity differed regarding the four antigens, formulation adjustments to increase the
antigen concentration of the serotypes that have lower immunogenicity could increase effectiveness.
Prior season vaccination was associated with lower antibody response to a new vaccine, although not
consistent through the vaccine strains.

Keywords: influenza; vaccination; quadrivalent influenza vaccine; QIV; immunogenicity; elderly

1. Introduction

Influenza is a contagious, acute respiratory disease, usually caused by Influenza A or B viruses,
with seasonal infections that can lead to numerous complications, hospitalization and even death.
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Children under the age of 5, adults over 50 years of age, pregnant women and those with certain
chronic medical conditions are most at risk [1–5].

According to the World Health Organization (WHO) influenza occurs globally, with the annual
attack rate estimated at 5–10% in adults and 20–30% in children; there are about 290,000–650,000 deaths
reported annually [6,7]. In Poland, The Department of Influenza Research, the National Influenza
Center at the National Institute of Public Health—The National Institute of Hygiene (NIPH-NIH)
collects and publishes virological and epidemiological data on incidences and suspected cases of
influenza. The incidence of influenza and influenza-like illness has been increasing over the past
decade. A rise in the number of referrals for hospitalization, due to influenza and post-influenza
complications has also been noted. In the 2017/2018 season, the number of cases and suspected cases
of influenza in Poland was 5,337,619 (10% more than the previous season), with 48 deaths reported.
These could be due to the B-strain divergence. The high peak season had an average daily incidence
exceeding 100/100,000 of the population [8]. Of note, according to the NIPH-NIH, although the number
of cases decreased in the following season, 147 casualties were reported between 1 October 2018 to
31 April 2019 [8].

The US Centers for Disease Control and Prevention and CDC’s Advisory Committee on
Immunization Practices recommended annual influenza vaccination for all persons aged ≥6 months
who do not have contraindications [5]. Although influenza vaccines are not the most effective when
compared to other types of vaccines, especially in the elderly, they are still the cheapest and most
effective way to prevent infections and complications caused by influenza and are vital for individuals
at high-risk of serious post-influenza complications [5]. An additional, supportive strategy with
accumulating evidence is the extra protection of non-immune high-risk persons with an increase in
immunity among the vaccinated and healthier individuals; this prevents the circulation of influenza in
the community (the vaccine herd effect) [9].

Vaccinations against influenza are still neglected, and the vaccination rates remain low worldwide.
According to the WHO, influenza vaccination uptake in Poland is in one of the lowest in Europe
(3.6%). In patients with chronic diseases, as well as the elderly, immunization coverage is higher than
in the general population; however, this still remains well below the recommended level, which is
the vaccination of 75% of the key risk groups [6,10–12]. As an example, Nitzch-Osuch et al. found
the following influenza vaccination coverage in the respective groups of Polish patients with chronic
diseases—58% in pulmonary, 34% in hemodialyzed, 32% in cardiovascular and 9% in thyroid cancer
patients [10]. With regards to the elderly, uptake is around 35%, the highest reported among those
living in urban areas, well-educated regarding the influenza vaccination, having a vaccinated family
member and immunized in the previous season(s) [11].

Two types of influenza vaccine are available, an inactivated preparation and an attenuated
influenza vaccine. The inactivated vaccines come in three major formulations: Whole-virus, split virus
or subunit vaccines, prepared from embryonated chicken eggs, inoculated individually with each virus
type. The whole-virus vaccine is prepared from harvested allantoic fluid, chemically inactivated and
subsequently purified to remove non-viral protein contaminants. In the split virus vaccine, the virus
is disrupted by a detergent. In subunit vaccines, hemagglutinin (HA) and neuraminidase (NA) are
further purified by the removal of other viral components. Live, attenuated influenza vaccines are
based on temperature-sensitive variant vaccine virus strains that replicate well in the nasopharynx,
but poorly in the lower respiratory tract [13].

For conventional influenza vaccines to be maximally effective, the vaccine viruses have to be
antigenically matched to the influenza viruses circulating in humans [13]. In the last decade, two
influenza A subtypes (H1N1 and H3N2) have predominated in Europe and worldwide, but influenza
B viruses have recently become increasingly prominent [14]. In the 1970s, influenza B viruses diverged
into two major antigenically distinct lineages, B/Victoria and B/Yamagata [15]. Since then, these two
genetic lineages have co-circulated, which makes it difficult to predict which one will pre-dominate next
season [14,15]. The most widely used seasonal influenza vaccine was the trivalent inactivated vaccine
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(TIV), composed of the three seasonal influenza virus strains currently circulating: Two influenza A
virus types (H3N2 and H1N1), but only one B lineage (either B/Victoria or B/Yamagata). However, the
B-lineage strain in TIVs and the dominant circulating B-lineage strain have differed in about 25% of the
influenza season [16]. To reduce the chance of vaccine mismatch, a quadrivalent influenza vaccine
(OIV) has been recently approved that includes an additional type B strain to represent both antigenic
lineages [13,17,18]. Its immunogenicity and a safety profile, comparable to those of TIV, have the
potential to overcome the drawbacks of erroneously predicting which B lineage will predominate in a
given year [19–21]. Quadrivalent influenza vaccine (QIV) is expected to provide significant public
health and economic benefit, as shown in recent studies [21].

The WHO recommended QIV for the northern hemisphere for the 2018/2019 influenza
epidemic season which consists of A/Michigan/45/2015 (H1N1)pdm09-like virus, A/Singapore/

INFIMH-16-0019/2016 (H3N2)-like virus, B/Colorado/06/2017-like virus (Victoria lineage) and
B/Phuket/3073/ 2013-like virus (Yamagata lineage) [22]. Influenza vaccination with QIV was
recommended for 2018/2019 season in the Polish National Immunization Program for all citizens aged
>55 years [23].

One commonly accepted approach is the measurement of influenza-specific antibody titers
as a correlate of protection. Titers are traditionally measured using a hemagglutination inhibition
(HAI) assay, which quantifies the ability of hemagglutinin (HA)-specific antibodies to block the
N-acetyl-neuraminic acid-mediated viral agglutination of red blood cells [24,25]. Using the set
guidelines of this assay, vaccine immunogenicity can be measured based on HAI antibody titers
obtained on day ≥28. Parameters commonly used to expresses seroresponse to influenza vaccination
are mean fold increase, seroprotection and seroconversion rates [26–28]. While discrepancies can be
found in surveys focusing on antibody response to influenza vaccine in the elderly, a quantitative
review concluded that host-related factors, such as gender, BMI, preexisting immunity, genetic
polymorphisms, and the presence of chronic underlying conditions could compromise influenza
vaccine responsiveness [29,30]. HAI antibodies are significantly lower in older adults who were
vaccinated, than compared to younger adults [30]. Although limited data exist, gender-differences
have also been reported in response to diverse influenza vaccines with females having greater antibody
responses than males following vaccination [29]. Obesity has also been associated with a decreased
immune response to influenza vaccination. In addition, several studies document the influence of host
genetic background on the immune response to influenza vaccination [29]. There is also a correlation
between health status in older adults and HAI titers, i.e., healthy individuals having significantly
higher levels of titers than those with chronic diseases [29,31].

There are methodological discrepancies among the meta-analyses of seasonal influenza vaccines
efficacy and effectiveness for the elderly [32]. Although most vaccines show statistically significant
efficacy, this is within a highly variable range [32,33]. The results of the measurement of influenza-specific
antibody titers have been described previously; however, these mainly referred to older adults from the
US and Western Europe [16,19,20]. Polish data on QIV immunogenicity in this age group are lacking.
Therefore, the objective of this study was to evaluate the immunogenicity of a subunit inactivated QIV
vaccine in Polish adults ≥55 years of age.

2. Materials and Methods

2.1. Setting, Study Population, and Sampling

The study was conducted among consecutive patients reporting to the primary care clinic (PCC)
in Gryfino, Poland, in the vaccination season between October 2018–January 2019. The study group
consisted of consecutive patients vaccinated with a QIV recommended by the WHO for that season.
Inclusion criteria: Age ≥ 55 years, lack of co-existing diseases that could affect the cognitive functions
of the subject, lack of contraindications to vaccination and informed written consent. Participation
was voluntary.
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2.2. Vaccine and Vaccination

Subunit, inactivated QIV (Abbott Biologicals, Olst, The Netherlands) was provided in prefilled
syringes and administered by injection intramuscularly, using a 19 mm needle into the deltoid muscle to
all subjects during the 2018–2019 influenza season. The cold chain was preserved, and the vaccines were
stored at 2–8 °C. A standard dose of QIV (0.5 mL) contained 15 µg of hemagglutinin per strain (total HA
concentration of 60 µg): A/Michigan/45/2015 (H1N1)pdm09-like strain (A/Singapore/GP1908/ 2015,
IVR-180), A/Singapore/INFIMH-16-0019/2016 (H3N2)-like strain (A/Singapore/INFIMH-16-0019/2016,
NIB-104), B/Colorado/06/2017-like strain (B/Victoria/2/87 lineage) (B/Maryland/15/2016, NYMC BX-69A)
and B/Phuket/3073/2013-like strain (B/Yamagata/16/88 lineage) (B/Phuket/3073/ 2013, wild type).

2.3. Serological Testing

Blood samples were collected twice, once before vaccination and four weeks after. Samples (1 mL)
were centrifugated (15 min/4500 r.p.m.), stored at ≤−20 ◦C and then transported to the laboratory at
the Department of Influenza Research (National Influenza Center, the NIPH-NIH) in Warsaw where
they were tested. Briefly, sera were inactivated to remove non-specific hemagglutination inhibitors,
which may affect a false positive result in an HAI test. Therefore, sera were treated with Receptor
Destroying Enzyme (RDE), obtained from the Vibrio cholerae cell filtrate, and incubated at +37 ◦C.
The test consisted of determining antibody titers (anti-HA) in serum by means of an HAI using a
0.75% solution of turkey red blood cells and reference strains of influenza virus, multiplied in chicken
embryos, according to WHO recommendations [34].

Each study participant was given a code number, also placed both on the questionnaire and on a
test tube. On 31 January 2019, participants were able to obtain information about their before/after
vaccination serological tests results.

2.4. Vaccination Immunogenicity Assessment

On the basis of the results obtained after sero-testing, relevant parameters were calculated to
assess the immunogenicity of a QIV. The current study assessed QIV-induced HAI antibody geometric
mean titers (GMTs), seroconversion and seroprotection rates. Humoral responses were assessed on
the basis of guidelines developed by the Committee for Proprietary Medicinal Products (CPMP) and
the European Agency for the Evaluation of Medicinal Products (EMEA, now the European Medicine
Agency, EMA) [1,26]. The following parameters were evaluated:

• GMT (geometric mean titers) calculated at baseline (day 0) and 28–36 days after vaccination,
• Average increase in antibody titers: GMTR (geometric mean titers ratio)—geometric mean of the

individual post-vaccination/pre-vaccination titer ratios,
• PR (protection rate)—the proportion of subjects with an HAI antibody titer ≥ 1:40,

For the purpose of this study, the widely accepted HAI antibody titer of at least 1:40 was used
to define seroprotection [16,35,36]. However, there is an ongoing debate whether this definition and
serum antibody titers, in general, are valid correlates of protection [37–41]. According to Greenberg [36]
and Chang [16] who evaluated the immunogenicity of a QIV in independent RCTs, as well as to current
US guidelines [42], the HAI antibody titer remains an acceptable surrogate marker that is likely to
predict clinical benefit.

• Seroconversion—either (1) an HAI titer < 10 at day 0 and a post-vaccination (day 28–36) HAI
titer ≥ 40 or (2) an HAI titer ≥10 at day 0 and a ≥4-fold increase in HAI titer between day 0 and
post-vaccination [16].

Vaccination response in individuals aged >60 years is confirmed as effective when GMTR ≥ 2.0,
PR ≥ 60%, SR ≥ 30% [26,31].
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2.5. Ethical Approval

The project received consent from the Bioethical Committee of Pomeranian Medical University in
Szczecin (KB-0012/109/18).

2.6. Statistical Analysis

Data were analyzed using a customized program STATISTI-CA PL, Version 12.5 (StatSoft, Kraków,
Poland). Categorical data were presented as frequencies with percentages and continuous data as
means. The primary endpoints, HAI antibody titer, GMTR, seroconversion and seroprotection rate,
were analyzed. HAI antibody titers were analyzed using geometric mean titer (GMT) and geometric
standard deviations. GMTR, seroprotection and seroconversion were defined as in 2.4 sub-section.
Protective HAI antibody titers before vaccination in the 2018/2019 season by the previous season
vaccination were compared using the Fisher exact test.

Regarding determinants influencing seroconversion categorical (binary) variables (such as age:
Up to 67/≤ 67 years; gender: Male/female; BMI: < 25/≥ 25 kg/m2; smoking: Yes/no; alcohol consumption:
Yes/no; chronic diseases: Yes/no; the self-reported occurrence of symptoms of upper respiratory tract
infection in the current epidemic season: Yes/no; previous influenza vaccinations: Yes/no; vaccination
in the previous season: Yes/no) groups were compared using the Fisher exact test.

A p-value was statistically significant if ≤0.05.

3. Results

3.1. Characteristics of Study Participants

Of 121 patients invited to participate, 108 (89.3%) agreed (mean age: 66.7 years, SD 6.7; range:
55–85 years), 54.6% were males; Table 1. Regarding BMI, 39.8% were overweight, and 38.0% were
obese. Smoking at the time of vaccination was declared by 18.5% participants, 41.7% had quit smoking,
and 39.8% declared that they had never smoked. More than half of the respondents (57.4%) declared
alcohol consumption 1–2 times a month, 16.7% never consumed alcohol, 16.7% had drunk in the past.
The vast majority of respondents (83.3%) had not had respiratory symptoms during the current season,
13.0% self-reported respiratory symptoms and 3.7% did not know. About one-third of patients (34.3%)
reported comorbidities, mainly diabetes (25.0%), followed by cancers (7.4%), autoimmune diseases
(4.6%) and renal failure (3.7%).

Table 1. Characteristic of study participants, Gryfino, 2018/2019; (n = 108).

Variable N %

Age [years] mean 66.7 (SD 6.7)
55–67 59 54.6
68–85 49 45.4

Gender
Female 49 45.4
Male 59 54.6

BMI [kg/m2] mean 28.1 (SD 4.9)
<18.5 3 2.8

18.5–24.99 21 19.4
25.0–29.99 43 39.8
≥30.0 41 38.0

Smoking
current 20 18.5

quit 45 41.7
never 43 39.8
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Table 1. Cont.

Variable N %

Alcohol Consumption
1–2 times a month 62 57.4
1–2 times a week 7 6.5

≥2 times a week/daily 3 2.8
non-drinker 18 16.7

had been drinking in the past 18 16.7

Self-Reported Respiratory Symptoms in the Current Season
yes 14 13.0
no 90 83.3

did not know 4 3.7

Comorbidities
yes 37 34.3
no 71 65.7

Vaccinated in the Previous Season
yes 17 15.7
no 88 81.5

did not remember 3 2.8

Vaccinated in Lifetime
never 68 63.0
once 15 13.9
>1 25 23.1

3.2. Influenza Vaccination

About two-thirds of the participants (63.0%) had never been vaccinated against influenza, 13.9%
were vaccinated only once in their lifetime, 23.2%—more than once. Only 15.7% of respondents
reported being vaccinated in the previous season; their vaccination records showed they were vaccinated
with QIV.

3.3. Serologic Antibody Response after Influenza Vaccination

Paired pre- and ≥28 days (28–36 days) post-vaccination sera were available from 108 vaccinated
patients. Serologic antibody response after QIV vaccination in terms of GMT, GMTR, PR and SR are
presented in Table 2.

HAI antibody titers at baseline were the highest for B Yamagata lineage strain and similar
regarding the rest studied strains (Table 2). Immunization with a QIV increased HAI antibody titers by
62-fold against the A/H3N2/ strain and by 3.0 to 10.3-fold against the B strains. Post-vaccination PRs
were 42–65% against the A strains and 57% to 70% against the A/H1N1/pdm09 and B strains, and SRs
occurred in 38–65% of participants for the A strains and in 47% to 48% for the B strains.

In detail, no protection against A/H3N2/ was observed in the study group before vaccination
(PR 0.0%), however, the percentage of participants with antibody titers ≥ 1:40 increased significantly
(PR 64.8%) after immunization and the proportion of participants with seroconversion also equaled
64.8%; the GMTR was 61.5 (Table 2). Regarding protection against A/H1N1/pdm09, before vaccination
it was observed in only 5.6% of patients, however, the percentage of patients with protective anti-HAI
titer increased significantly after immunization (to 41.8%) with the SR 38%; the GMTR ratio in this
group was 8.35. More than 46% of vaccinated subjects seroconverted following vaccination regarding
B Victoria lineage strain and the proportion of subjects with anti-HAI titer ≥ 1:40 was 57.4%; the mean
fold increase was 10.3. A moderate response was observed for the B Yamagata lineage strain, i.e.,
seroconversion regarding vaccination was 48%; 17.6% of patients had protective anti-HAI titer before
vaccination, this increased significantly (70.4%) after immunization. However, the mean fold increase
was low (3.0).
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Table 2. Serologic antibody response after quadrivalent influenza vaccination by antigen used; Gryfino,
Poland, 2018/2019 (n = 108).

Antigen GMT 1 GMTR 2 PR (%) 3 SR (%) 4

* Pre- ** Post- ** Post- * Pre- ** Post- * Post-

A/Michigan/45/2015
[A/H1N1/pdm09] 1.74 14.54 8.35 5.6 41.8 38.0

A/Singapore/INFIMH-16-0019/2016
[A/H3N2/] 1.00 61.53 61.53 0.0 64.8 64.8

B/Colorado/06/2017
[Victoria lineage] 3.08 31.76 10.29 8.3 57.4 46.8

B/Phuket/3073/2013
[Yamagata lineage] 14.18 43.02 3.03 17.6 70.4 48.2

1 Geometric mean of antibody titers; 2 Geometric mean titers ratio; 3 Protection rate—proportion of participants
with HAI antibody titer ≥ 1:40; 4 Seroconvertion rate—proportion of participants with either (1) an HAI titer < 10 at
day 0 and a post-vaccination (day 28–56) HAI titer ≥ 40 or (2) an HAI titer ≥ 10 at day 0 and a ≥4-fold increase in
HAI titer between day 0 and post-vaccination; * Pre-vaccination; ** Post-vaccination.

3.4. Determinants of Seroconversion

Determinants of seroconversion after QIV vaccination by viral strain are presented in Table 3.
Significant between-group differences were found with regards to seroconversion for B/Phuket/
3073/2013 and BMI (p = 0.02), and influenza vaccination in the previous season/vaccination in life time
(p = 0.03; p = 0.046). Similarly, for B/Colorado/06/2017 statistically significant differences were found
in relation to proportions of patients who seroconverted and influenza vaccination in the previous
season, as well as vaccination in life time (both: p < 0.0001).

No significant between-group differences were found for any of 4 strains regarding sero-conversion
after QIV vaccination and gender (p > 0.12), age (p > 0.33), alcohol uptake (p > 0.26), comorbidities
(p > 0.23) and self-reported respiratory symptoms in the current season (p = 1.00).
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Table 3. Determinants of seroconversion * after quadrivalent influenza vaccination by viral strain; n = 108, Gryfino, Poland, 2018/2019.

Variable
Viral Strain

A/Michigan/45/2015 a A/Singapore/INFIMH-16-0019/2016 b B/Colorado/06/2017 c B/Phuket/3073/2013 d

n/N % P n/N % p n/N % p n/N % p

Gender
Males 18/59 30.5

0.11
39/59 66.1

0.84
30/59 50.8

0.34
25/59 42.4

0.25Females 23/49 46.9 31/49 63.3 20/49 40.8 27/49 55.1

Age (years) 55–67 25/59 42.4
0.32

37/59 62.7
0.69

25/59 42.4
0.44

29/59 49.15
0.8568–85 16/49 32.7 33/49 67.4 25/49 51.0 23/49 46.94

BMI (kg/m2)
<25 10/24 41.7

0.81
13/24 54.2

0.23
15/24 62.5

0.10
17/24 70.8

0.02
≥94 31/84 36.9 57/84 67.9 35/84 41.7 35/84 41.7

Smoker
Current 9/20 45.0

0.61
13/20 65.0

1.00
11/20 55.0

0.46
14/20 70.0

0.05in the
past/never 32/88 36.4 57/88 64.8 39/88 44.3 38/88 43.1

Alcohol uptake ≤1–2/month 33/80 41.3
0.27

49/80 61.3
0.25

37/80 46.3
1.00

38/80 47.5
0.83

>1–2/month 8/28 28.6 21/28 75.0 13/28 46.4 14/28 50.0

Comorbidities
Yes 13/37 35.1

0.68
26/37 70.3

0.52
14/37 37.8

0.23
16/37 43.2

0.54No 28/71 39.4 44/71 62.0 36/71 50.7 36/71 50.7

Self-reported respiratory
symptoms in the current season

Yes 5/14 35.7
1.00

9/14 64.3
1.00

6/14 46.9
1.00

7/14 50.0
1.00No 36/94 38.3 61/94 64.9 44/94 46.8 45/94 47.9

Vaccination ever in life time
Yes 11/40 27.5

0.10
21/40 52.5

0.06
5/40 12.5 <

0.0001
**

14/40 53.0
0.046 **No 30/68 44.1 49/68 72.152.5 45/68 66.2 38/68 55.9

Vaccination in the previous
season

Yes 3/17 17.6
0.05

10/17 58.8
0.38

2/17 11.8 <
0.0001

**

4/17 23.5
0.03 **No 30/68 44.1 49/68 72.1 45/68 66.2 38/68 55.9

a A/H1N1/pdm09 b A/H3N2/ c Victoria lineage d Yamagata lineage; * Seroconversion - pre-vaccination HI titer < 1:10 and a post vaccination HI titer > 1:40 or a pre-vaccination HI titer≥ 1:10
and a minimum four-fold rise in post-vaccination HI antibody titer; ** statistically significant
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Proportions of participants with protective HAI titers before vaccination in the 2018/2019 season
by the previous year vaccination are presented in Table 4. Only for B/Colorado/06/2017 strain the
difference was significant (29.4% vs 4.4%, p = 0.005)

Table 4. Participants with protective HAI antibody titers before vaccination in the 2018/2019 season by
the previous season vaccination. Gryfino, Poland, 2018/2019 (n = 108).

Antigen Not Vaccinated in the
Previous Year n = 91

Previous Year Vaccination
n = 17 p

n % N %

A/Michigan/45/2015
[A/H1N1/pdm09] 5 5.5 1 5.9 1.00

A/Singapore/INFIMH-16-0019/2016
[A/H3N2/] 0 0.0 0 0.0 n.a.

B/Colorado/06/2017
[Victoria lineage] 4 4.4 5 29.4 0.005

B/Phuket/3073/2013
[Yamagata lineage] 14 15.4 5 29.4 0.18

4. Discussion

4.1. Results Overview

The results of this study showed a remarkably high GMTR after vaccination (61.5-fold) in the
case of the A/H3N2/ strain. A much lower GMTR (3 to 10-fold) was observed regarding A/H1N1/

pdm09, B Victoria, and B Yamagata strains. About two-thirds of patients had post-QIV immunization
protection for A/H3N2/ and B Yamagata vaccine strains; the lower rates (about 50%) were observed
for A/H1N1/pdm09 and B Victoria. The SR was high for A/H3N2/ (64.8%) and relatively lower for B
Yamagata (48.2%), B Victoria (46.8%) and A/H1N1/pdm09 (38%). Vaccination in the previous season
significantly impaired the SR regarding both B strains.

4.2. Serologic Antibody Response after Influenza Vaccination

In this study anti-HAI titers against A (A/H1N1/pdm09 and A/H3N2/), and B (Victoria and
Yamagata) influenza viruses were low among unvaccinated individuals (GMT: 1.7, 1.0, 3.1, and 14.2,
respectively). However, despite the weakening of numerous components of the immune system in
the study group, due to the natural aging process [21,43], substantial antibody response following
vaccination was observed. This referred to all four vaccine antigens, particularly to A/H3N2. Thus,
adding a second B strain to a subunit, QIV did not compromise the immunogenicity induced by the other
three strains. This outcome corresponds to the results of previous studies in elderly patients [29,30],
including randomized controlled trials (RCTs) [16,36].

As an example, the results of phase III, randomized, double-blind, active-controlled, multi-center
trial performed during the 2010/2011 influenza season in the US showed that - in adults ≥ 65 years
of age - QIV induced non-inferior antibody titers compared with control TIVs for all four vaccine
strains [36]. This finding is in line with the more current, similar randomized, multicenter trial
conducted in the US in the same group of age, in the 2017 /2018 season [16]. The results showed that
a quadrivalent high-dose (HD) vaccine-induced HAI antibody responses that were non-inferior to
responses induced by a trivalent-HD vaccine for the three shared strains and superior HAI antibody
titers for the additional B-lineage strain.

In this study, a moderate response was observed for the B Yamagata lineage strain. The relatively
low average post-vaccination increase in antibody titers (3.0) and seroconversion rate (47%) might
be partly influenced by the fact that the same lineage strain was used in a QIV for the 2017/2018
season. Of note, about 16% of the study participants reported being vaccinated in the previous season
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with a QIV, which reflects the generally low uptake of influenza vaccines in Poland, especially in
the elderly [11]. Previous exposure to influenza vaccine could have an impact on reduced antibody
titers and SRs. Almost one in six patients showed protective antibody titers before vaccination, which
increased significantly (70.4%) after immunization; QIV induced superior PR for the B Yamagata-lineage
strain when compared with the other strains.

The relative proportion of circulating influenza A/H1N1/pdm09 and influenza A/H3N2/ viruses in
the European region varied by country in the 2018/2019 season. The proportion of influenza A viruses
subtyped in patients from EU PCCs was≥ 95%; about 60% were influenza A/H1N1/pdm09 viruses;
however, this proportion was > 80% in Denmark, the UK and Poland [44].

Based on this mix of circulating influenza subtypes and variation within the antigenic likeness
of circulating viruses with the egg-propagated vaccine component, vaccine effectiveness might vary
across Europe [44]. Although, according to current research, the vaccine was less effective against
A/H3N2/ influenza viruses in recent years [45], in the 2018/2019 season, the protection rate against
the A/H3N2/ strain among elderly Polish patients from a PCC was higher than A/H1N1/pdm09 and
influenza B Victoria. The same was noted in the A/H3N2/ strain and GMTR, showing over a sixty-fold
increase after vaccination.

Until 2017/2018 season the WHO recommended TIV, and since 2018/2019 QIV have been
recommended. From the 2017/2018 season the A/H1N1/pdm09 component, A/California/07/2009
- was replaced with the A/Michigan/45/2015 (H1N1) pdm09-like antigen. In the 2018/2019 season
the A/H3N2/ component was changed from A/HongKong/4801/2014(H3N2) to A/Singapore/INFIMH-
16-0019/2016. For the Victoria lineage strain, B/ Brisbane/60/2008, was added to the vaccine in the
2017/2018 epidemic season, it was replaced in the 2018/2019 epidemic season with B/Colorado/06/

2017. In 2013/2014 and 2014/2015 epidemic seasons B/Massachusetts/2/2012 (Yamagata lineage) was
the vaccine strain, and this was replaced in the 2015/2016 epidemic season with the B/Phuket/
3073/2013 [22,46–48].

In the current study, protection after QIV immunization, with an HAI antibody titer of ≥ 40, was
found to be acceptable, particularly regarding A/H3N2/ and B viral strains; however, it was much lower
for A/H1N1/pdm09. Interestingly, the high post-vaccination protection rate against A/H3N2/ was not
the result of a high pre-protection rate, as none of the patients had protection before vaccination. Some
previous observations also found that the A/H3N2/ vaccine antigen was able to induce a satisfactory
immune response [49]. The reason for potential differences observed between studies in PRs and SRs
could be related to the vaccine, the viruses or population exposure history [50].

Remarkably, the vast majority of the studied patients who had a QIV consisting of the same
A/H1N1/pdm09 and B Yamagata antigens as in the previous season did not have protective antibody
titers. This was also observed by Loebermann et al., who evaluated the immunogenicity of aTIV
produced in mammalian cell culture administered to elderly adults. This may suggest that either
antibody titers decline rapidly or that individuals did not develop a protective antibody titer earlier.
Due to the fact that protective antibody titers from the QIV received the previous season could only be
detected in a minority of immunized elderly patients, to recommend annual vaccination in this cohort,
even if the antigen composition did not change from the previous season would be of value [51].

In the 2018/2019 influenza season, the B Yamagata vaccine strain had not been changed [22].
Therefore, one of the reasons for the relatively high pre-protection rate against B Yamagata (Table 4)
might have been the long-term vaccine antigen stimuli. Another cause could be a pre-existing immunity
derived from previous natural infection. However, the relatively low percentage of participants having
protective HAI titers before vaccination in the 2018/2019 season in the group which had not been
vaccinated previously indicates the first scenario is more likely.

The response rate to QIV antigens, measured by the percentage of participants showing at
least a 4-fold increase in the HAI antibody titer after vaccination, as well as an average increase in
antibody levels, was excellent regarding A/H3N2/, and relatively lower in the case of the other antigens.
Therefore, formulation adjustments to increase the antigen concentration of the serotypes that have
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lower immunogenicity could increase effectiveness. It has been shown in the case of the elderly that
for both, TIV and QIV, higher doses of antigens are associated with higher antibody responses to a
vaccine [16,29].

4.3. Determinants of Serologic Antibody Response

Repeated vaccination, as well as obesity, are well-known factors affecting the immune response
after influenza vaccination [52–54].

In the case of influenza B, vaccination in the previous season, as well as vaccinations in the earlier
seasons, had a negative impact on vaccine response among our participants; this was also observed by
others [55–57]. As an example, Nebeshima et al. found that the HAI antibody titers to both influenza
B strains in the repeated vaccination group of hospital workers were significantly lower than in the
single vaccination group. This phenomenon had no relation to the pre-vaccination HAI titer, which
suggested that the decreased HAI response to repeated influenza vaccination was mainly affected by
the previous vaccination per se, rather than by the pre-existing antibody titer [57]. Similarly, to our
findings, Sasaki et al. demonstrated that prior year vaccination was associated with sustained high
HAI antibody titer one year on, but lower antibody response to the new vaccination [58]. In the current
study vaccine responses were also impaired by pre-existing HAI titers regarding influenza B strains:
29.4% of patients vaccinated with a QIV in the previous season presented protective HAI-antibody
titers for B Yamagata vs 15.4% not vaccinated patients; however, only 23.5% previously vaccinated
patients seroconverted vs 55.9% in the not vaccinated group.

Human studies regarding obesity and its association with a decreased immune response to
influenza vaccination have presented conflicting results [29]. The findings of the current study show
that for B Yamagata strain significantly more normal weight patients seroconverted when compared
to overweight and obese patients. This was also observed recently by Frasca et al. [59] who found
reduced antibody responses to influenza vaccination in both young and elderly obese individuals.

A correlation between health status in the elderly and HAI titers, with healthy older adults
having significantly higher HAI titers after influenza vaccination than those with comorbidities was
reported by other authors [29,43,60,61]. However, this was not observed in this study, possibly due
to the relatively small sample size. Additional strategies that provide better protection of at-risk
populations will be required to reinforce the efficacy of QIV in chronically ill elderly patients [29].
The immunization of family members, including children, and the vaccination of medical personnel,
should be highly advocated.

4.4. Limitations

Several limitations exist in this study. Firstly, the sample size was relatively small, and power
was limited. Therefore, the results obtained, particularly those from subgroup analyses, should be
interpreted with caution. Secondly, information about the vaccination/infection history in the current
season was obtained through a questionnaire, not from vaccination or medical records. Therefore,
undocumented influenza exposure was likely, particularly among patients unvaccinated in the previous
season, who presented a high pre-vaccination titer [60]. In addition, information reported as grams
of pure alcohol consumption per week would be more instructive than the frequency of alcohol
intake. However, to minimize potential measurement errors regarding cumulative measures of alcohol
consumption, especially in the older age group, participants were queried on the frequency of alcohol
intake. Other (unmeasured) factors could have also affected serologic response to QIV. Further studies
on larger populations are needed to assess the response and its determinants better. Finally, only HAI
titers were used to assess the immune response to vaccination. This might be challenging for influenza
A/H3N2/, due to their fluctuating capacity to agglutinate red blood cells [34]. Consequently, to assess
other measures of the immune response, such as anti-neuraminidase antibody levels or cell-mediated
the immunity would be of great value.
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5. Conclusions

Even though the influenza vaccination is reported to be less effective in the elderly compared
to young individuals, partly due to decreased generation of specific serum antibodies and switched
memory B cells [21,46], the QIV-induced antibody response in the study cohort was satisfactory.
While the QIV vaccine had a tendency to work better against A/H3N2/ and influenza B viruses than
A/H1N1/pdm09 in the elderly Polish population, this introductory vaccine immunogenicity study
supports its use.

The results show that a subunit QIV was immunogenic against the additional B lineage strain
(B Victoria) without significantly compromising the immunogenicity of the other three vaccine strains.
Adding a second B lineage strain in QIV could, therefore, provide broader protection against influenza
B infection in this age group. As the QIV immunogenicity differed regarding the four antigens,
formulation adjustments to increase the antigen concentration of the serotypes that have lower
immunogenicity could increase effectiveness.

The study adds important data on the immunogenicity of influenza vaccines in Poland which
have been lacking, even though QIVs have been available on the Polish market since the 2017/2019
season. These results should help encourage the switch to subunit QIV or other QIVs to protect Polish
elderly patients against influenza.

The reduced response to immunization with influenza B strains in patients who had previously
had influenza vaccinations, not consistent through the vaccine strains, needs further research to better
understand influencing factors.
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