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Abstract Electrochemical impedimetric biosensors (EIBs)

have a simple structure and can be used to rapidly and

sensitively detect and measure hazards in food. EIBs detect

and measure target molecules by transducing biochemical

reactions on their surface to electrical signal outputs

responding to a sinusoidal electrical signal input. Due to

their structural simplicity and analytical sensitivity, EIBs

are regarded as the most potent method of food hazard

monitoring that can be implemented in the food supply

chain. This paper discusses the theoretical background,

structure, and construction of EIB and its applications in

food safety.
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List of symbols

V The sinusoidal voltage input

V0 The maximum amplitude of V

I The current output

I0 The maximum amplitude of I

f The linear frequency

t Time

x The radial frequency

/ The phase shift of I

Z The impedance

|Z| The absolute value of Z

Zre The real part of Z

Zim The imaginary part of Z

Zre
min The minimum value of Zre

Zre
max The maximum value of Zre

Rs The electrolyte resistance

Cdl The double-layer capacitance

Rct The charge-transfer resistance

e The dielectric constant

d The thickness of the electrical double layer

Introduction

Food safety is a key public health issue that begins with

monitoring food hazards in including pathogens and

chemical contaminants, and is achieved by eliminating or

reducing food hazards to acceptable levels. As food haz-

ards can enter the food supply chain at any point from farm

to table, monitoring should be implemented at all points.

Therefore, methods for monitoring food safety that can be

easily implemented within the food supply chain are

required. There have been marked advances in food safety

monitoring technology over the past two decades, and

various monitoring methods have been developed and are

currently in use. In particular, electrochemical impedi-

metric biosensors (EIBs) have attracted a great deal of

attention from food safety scientists and administrators.

EIBs directly detect and measure target molecules with no

sample preparation requirement, and can therefore be used

for inline monitoring of hazards in the food supply chain.

The sensitivity of EIBs for the detection and measurement

of food hazards is comparable to or better than that of other

biosensors and traditional methods (Ahmed et al., 2014;

Bahadır and Sezgintürk, 2016; Malvano et al., 2019). EIBs

can detect and measure food hazards in less than 1 h
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(Ahmed et al., 2014; Chai et al., 2010; Malvano et al.,

2019). In combination with the Internet of Things (IoT),

EIBs may evolve into real-time food safety monitoring

systems (Durresi, 2016). Currently, the integration of EIBs

into smart devices for food hazard detection has been

intensively investigated (Huang et al., 2018; Rosati et al.,

2019a). However, further research is required for incor-

poration of EIBs into the food supply chain. This review

discusses the theoretical background, structure, and con-

struction of EIBs, and their potential applications for food

safety, to stimulate interest in their development for use in

real-time inline food hazard monitoring.

Theoretical background of EIBs

EIBs probe their target molecules by measuring impe-

dance, which is enhanced by the formation of antibody–

antigen or ligand–receptor complexes on their surface.

Electrochemical impedance is the amount of opposition

that an electrochemical cell (e.g., the EIB) presents to the

flow of an electrical current on application of a small-

amplitude sinusoidal voltage. The sinusoidal voltage input

(V) as a function of time (t) can be expressed using the

maximum amplitude of voltage (V0) and radial frequency

(x; x = 2pf, where f is the linear frequency, represented by

the number of cycles per second), and is also expressed as a

complex number in Eq. 1:

V ¼ V0 � sinðwtÞ ¼ V0 � ejwt ð1Þ

Current output (I) from EIB responding to the sinusoidal

voltage input will be a sinusoid at the same x, but shifted

in phase (/) and altered in terms of the maximum ampli-

tude of the current (I0). Thus, I can be expressed as Eq. 2.

I ¼ I0 � sinðwt � f Þ ¼ I0 � ejðwt�f Þ ð2Þ

According to Ohm’s law, impedance (Z) as a function of

x is V divided by I and can be represented as a complex

number. Based on Euler’s relationship, Z can be expressed

as a polar and rectangular coordinate form of a complex

number, as shown in Eq. 3. Z in rectangular coordinate

form can be characterized as a real part (Zre) and imaginary

part (Zim), referred to as resistance and reactance, respec-

tively. Zim is enhanced due to / and accounts for capaci-

tance and inductance. However, the biological recognition

elements and target molecules of EIBs, such as antibodies,

antigens, receptors, DNAs, aptamers, etc., are not suffi-

ciently electrochemically active to significantly alter the

inductance (Rishpon and Buchner, 2005).

Z ¼ V

I
¼ V0 � ejxt

I0 � ejðxt�/Þ ¼ jZj � ej/ ¼ jZjðcos/þ j sin/Þ

¼ Zre þ jZim

ð3Þ

Electrolyte resistance (Rs), double-layer capacitance

(Cdl), and charge-transfer resistance (Rct) at the elec-

trode/electrolyte interface may be involved in the alteration

of Z on application of a sample to EIBs. The electrolytes in

a sample solution govern Rs. Rs is independent of the target

molecules in the sample solution, and can be determined by

measuring Zre of the sample solution at high f, from 0.1 to

10 MHz (Carminati et al., 2015; Itagaki et al., 2007;

Manickam et al., 2012). Cdl depends on the thickness (d) of

the electrical double layer (EDL) formed at the elec-

trode/electrolyte interface, as well as the dielectric constant

of the sample solution. The formation of antibody–antigen

or ligand–receptor complexes on the EIB surface may alter

the physicochemical characteristics of the interface

between the EIB surface and sample solution, and may

increase d in particular. If the effect of immunoreaction on

the EIB surface on inductance is negligible, Cdl dominates

Zim. Zim is linearly related to the inverse of Cdl (Eq. 4), and

Cdl is inversely proportional to d (Eq. 5). Thus, the for-

mation of antibody–antigen or ligand–receptor complexes

on the EIB surface decreases Cdl with increasing d

(Carminati et al., 2015; Prodromidis, 2010). Changes in Cdl

that are specific to immunoreactions on the EIB surface can

be identified by measuring Z at f from 10 to 1000 Hz

(Carminati et al., 2015; Prodromidis, 2010).

Zim � 1

xCdl
ð4Þ

Cdl �
e
d

ð5Þ

where e is the dielectric constant of the sample solution.

Rct accounts for the diffusion of electrolytes from the

bulk solution to the EIB surface, which is expected, espe-

cially when redox reactions occur (Carminati et al., 2015;

Prodromidis 2010). Redox reactions can be enhanced by

introducing redox probes, such as ferricyanide, into the

sample solution or coupling redox reporters, such as gra-

phene oxide, gold nanoparticle, and titanium carbide, with

EIBs (Carminati et al., 2015; Li et al., 2017; Liang et al.,

2019; Lu et al., 2012). Redox reactions affect current flow

and Rct (Carminati et al., 2015). With the formation of

antibody–antigen, ligand–receptor, protein–aptamer, and

DNA–DNA complexes on the EIB surface, d is increased

and ions near the complexes are relocated, thereby altering

Rct (Bard, 1980; Manickam et al., 2012; Prodromidis,

2010). In particular, Rct is altered more if the electrical

potential of the EIB versus an additionally implemented

reference electrode is maintained at a certain voltage (Bard,
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1980; Park et al., 2018; Prodromidis. 2010). Rct is an

electrical parameter consisting of Zre, and the changes

therein caused by immunoreactions on the EIB surface are

frequency-dependent. Rct can be characterized by Zre at

f from 0.1 to 1.0 Hz (Carminati et al., 2015; Prodromidis,

2010). Consequently, electrical parameters, including Rs,

Cdl, and Rct, can be characterized by electrochemical

impedance spectroscopy (EIS) of an EIB over a wide

f from 0.1 Hz to 10 MHz (Maalouf et al., 2007a; Rad-

hakrishnan et al., 2014).

The electrochemical impedance spectrum can be pre-

sented using Nyquist plots (- Zim versus Zre) and Bode

plots (Z, /, Zre, and Zim versus f). The electrical parameters

of a circuit model equivalent to the EIB system can be

characterized using a Nyquist plot. A classical circuit

model with an electrode/electrolyte interface is presented

in Fig. 1A. The Nyquist plot of the equivalent circuit in

Fig. 1A is presented in Fig. 1B. On the Nyquist plot, Z is

presented as a vector of length |Z|. The angle between the Z

vector and the axis of Zre is / (Fig. 1B). The Z of the

equivalent circuit in Fig. 1A can be expressed using Rs, Rct,

and Cdl, and follows Eq. 6. With Eq. 6, the Zre and Zim can

be expressed as Eqs. 7 and 8.

Z ¼ Zre þ jZim ¼ Rs þ
1

1
Rct

þ jxCdl

¼ Rs þ
Rct

1 þ x2CdlRct

� �
� j

xCdlR
2
ct

1 þ x2C2
dlR

2
ct

� �
ð6Þ

Zre ¼ Rs þ
Rct

1 þ x2C2
dlR

2
ct

ð7Þ

Zim ¼ � xCdlR
2
ct

1 þ x2C2
dlR

2
ct

ð8Þ

As x ? 0 and ?, limited forms of Zre can be obtained

as shown in Eq. 9. Thus, Rct can be obtained by subtracting

the minimum value of Zre (Zre
min) from the maximum value

of Zre (Zre
max), as shown in Eq. 10.

x ! 0; Zre ¼ Rs þ Rct and x ! 1; Zre ¼ Rs ð9Þ

Rct ¼ Zmax
re � Zmin

re ð10Þ

The Nyquist plot of the equivalent circuit produces a

semicircle with a radius of half Rct (Bard, 1980). Hence,

the maximum value of - Zim (- Zim
max) is centered at

Zre = Rs ? Rct/2. Using Eq. 7, Cdl can be obtained with

Eqs. 11 and 12.

Zre ¼ Rs þ
Rct

1 þ x2C2
dlR

2
ct

¼ Rs þ
Rct

2
ð11Þ

Cdl ¼
1

xRct
ð12Þ

However, experimentally obtained Zre and - Zim often

do not produce a complete semicircle in a Nyquist plot due

to the nonuniform current distribution on the electrode

surface (Cheng and Chen, 2013). The Nyquist plot obtained

by EIS measurement of EIBs must frequently be fitted.

Figure 2A shows Nyquist plots obtained experimentally

from EIS of the EIB for Staphylococcus enterotoxin B

(SEB), and Nyquist plots fitted mathematically using EIS

Spectrum Analyzer software v1.0 (Bondarenko and Rago-

isha, 2005). The Rs, Rct, and Cdl derived from the EIB for

SEB were calculated based on the equivalent circuit pre-

sented in Fig. 1A. It is obvious that Rct and Cdl derived

from the EIB for SEB increased and decreased with com-

plexation of SEB with anti-SEB antibodies immobilized on

the EIB surface (Fig. 1C). As the Cdl decreased, Zim also

increased. Although a Nyquist plot is critical to charac-

terize electrical parameters, Z, derived from an EIB, it is

difficult to determine the dependence of the electrical

parameters on the frequency. Bode plots provide frequency

information, and are useful to determine the frequency

range needed to obtain stable values of electrical

parameters.

Fig. 1 (A) A classical circuit model of the electrode/electrolyte interface. (B) Nyquist plot of the classical circuit model
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Structure and construction of EIBs

An EIB consists of a signal transducer, an electrically

conductive electrode substrate, and biological recognition

elements (Fig. 3A) (Leca-Bouvier and Blum, 2005). For

EIBs, an EIS analyzer acts as a signal transducer. An

electrode substrate mediates biological recognition

(Fig. 3B). Mercury, platinum, graphite, gold, stainless

steel, silicon, and aluminum are the most frequently used

materials for the electrode substrate (Săndulescu et al.,

2015). There have been a number of studies on the use of

Fig. 2 (A) Nyquist plots for an EIB for SEB, and mathematically

fitted Nyquist plots. (B) Bode plots of |Z| versus f obtained from the

EIB for SEB. EIB for SEB was developed using an anodic aluminum

substrate and APTES. An anodic aluminum substrate with pores

approximately 30 nm in diameter was treated with APTES. Anti-SEB

was covalently immobilized on APES-SAMs deposited on the anodic

aluminum substrate using glutaraldehyde. EIS of the EIB for SEB was

performed at a biased potential of 0.1 V (vs. an Ag/AgCl reference

electrode), in the absence or presence of 10 mg/mL SEB in 0.3%

NaCl solution

Fig. 3 Schematic illustration of (A) the structure and construction, and (B) detection and measurement process, of EIB
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nanoporous metal oxides and orderly structured carbon

composites as the electrode substrate, to increase the sur-

face area and sensitivity of EIBs (Ali et al., 2014; Ania

et al., 2018; Bonanni et al., 2012; Chai and Takhistov,

2012). Metal nanoparticles have been used to intensify the

electrochemical signal outputs from EIBs (Derkus et al.,

2014; Lin et al., 2019; Peng et al., 2006).

Biological recognition elements include antibodies,

aptamers, and receptors (Fig. 3A). To obtain impedimetric

signal outputs specific for biological recognition at the

EIB/sample solution interface, biological recognition ele-

ments should be immobilized intimately on the electrode

substrate (Vashist et al., 2014). The electrode substrate may

need to be chemically functionalized, and biological

recognition elements can be chemically immobilized on the

substrate by crosslinkers (Fig. 3A) (Nicosia and Huskens

2014; Vashist et al., 2014). Gold is reactive to thiols (Ron

and Rubinstein, 1998). Thiol-based polymers, including

peptides, proteins, and alkanethiols, can covalently bind to

the gold surface and form self-assembled monolayers

(SAMs) (Abad et al., 2006; Nicosia and Huskens 2014; Niu

et al., 2012). Biological recognition elements can be

immobilized by covalent binding with the SAMs of thiol-

based polymers through the use of crosslinkers, such as

protein A, protein G, and bifunctional amide compounds

(Abad et al., 2006; Icoz et al., 2018). Metal oxides, such as

silicon oxide and aluminum oxide, have hydroxyl groups

on their surface and are reactive to silane compounds

(Plueddemann, 1991). 3-Aminopropyltriethoxysilane

(APTES) has been widely used to functionalize metal

oxide surfaces (Chai et al., 2012a, b; Huy et al., 2011;

Plueddemann 1991; Vashist et al., 2014). APTES bind

electrostatically to metal oxides and form SAMs (Plued-

demann, 1991). Antibodies and receptors can bind cova-

lently to APTES with crosslinkers, such as glutaraldehyde

(Fig. 3A) (Chai et al., 2012a, b; Vashist et al., 2014).

APTES is also useful for functionalization of the surface of

carbon composites (Luong et al., 2004; Zheng et al., 2013).

Unlike the case of immobilization of proteins on the

electrode substrate, DNA and aptamers must be conjugated

with the thiol or amine group at the 30 or 50 end for

immobilization on the electrode substrate (Lu et al., 2007;

Paniel et al., 2013). Depending on the conjugated groups,

DNA and aptamers can be immobilized directly on the gold

surface or crosslinked with APTES-SAMs deposited on the

electrode substrate (Keighley et al., 2008; Sauthier et al.,

2002; Tam et al., 2009; Walsh et al., 2001; Wang et al.,

2013).

EIBs for detection of food hazards

Food hazard detection methods should not only be simple

and easy to operate, thus allowing onsite monitoring, but

also sensitive and reliable to prevent the consumption of

contaminated and deteriorated foods. EIBs can identify

biochemical reactions of biological recognition elements

with their target molecules at the EIB/sample interface.

Furthermore, EIBs do not require additional sample

preparation steps, and are therefore among the most useful

analytical methods for onsite detection of food hazards.

This article discusses research regarding the use of EIBs

for the detection of major food poisoning bacteria and

mycotoxins.

Food poisoning bacteria are the most dangerous food

hazards, and pose a major threat to human health. A large

number of studies on the detection of food poisoning

bacteria in foods have been conducted (Bridier, 2018;

Hoorfar, 2011). Various antibodies that bind directly to

food poisoning bacteria, such as pathogenic Escherichia

coli and Salmonella spp., are commercially available, and

EIBs can serve as a universal platform for these pathogens.

An EIB with anti-E. coli O157:H7 on a gold-coated elec-

trode detected the presence of 7 CFU/mL of E. coli

O157:H7 in a ferrous solution (Joung et al., 2012). An

increase in Rct was observed as E. coli from a sample

bound to anti-E. coli on the EIB, in proportion to the

concentration of E. coli included in the sample (Joung

et al., 2012; Maalouf et al., 2007b). The sensitivity of the

EIB for E. coli O157:H7 was improved by attaching

electron transferring mediators; the limit of detection

(LOD) of the EIB was 3 CFU/mL (Malvano et al., 2018).

Similar to the results of the EIB for E. coli, the binding of

Salmonella spp. with anti-Salmonella immobilized on a

gold electrode caused an increase in Rct (Mantzila et al.,

2008; Pournaras et al., 2008). The EIB for Salmonella spp.,

constructed on a gold electrode using tyramine as a surface

modifier, exhibited a LOD of 20 CFU/mL Salmonella spp.

(Liu et al., 2018). Aptamers, as biological recognition

elements of EIBs, have been investigated due to their high

binding specificity and affinity to their target bacteria

(Teng et al., 2016). Aptamer-based EIBs for E. coli

O157:H7 and E. coli O111 showed a LOD at the level of

100 CFU/mL (Brosel-Oliu et al., 2018; Luo et al., 2012).

An aptamer-based EIB for Salmonella Typhimurium,

constructed on a gold electrode functionalized by conduc-

tive polymer, could detect the presence of this bacterium at

3 CFU/mL (Sheikhzadeh et al., 2016). Viable S. Typhi-

murium could be selectively measured with an EIB

developed using aptamers with high affinity to viable S.

Typhimurium but poor affinity to dead S. Typhimurium

(Labib et al., 2012). The EIB for viable S. Typhimurium
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had a LOD of 600 CFU/mL S. Typhimurium (Labib et al.,

2012).

Mycotoxins are poisonous substances produced by fungi

(Omotayo et al., 2019) that can cause disease and death in

humans, and are therefore under strict governmental reg-

ulation (European Commission, 2010; KFDA, 2020; US

FDA, 2016). The development of EIBs for mycotoxins has

focused on the detection of ochratoxin A and aflatoxins,

due to their prevalence and toxicity (Malvano et al., 2019;

Omotayo et al., 2019). An EIB with anti-ochratoxin A

immobilized on an indium oxide electrode showed a linear

response, in terms of Rct, to ochratoxin concentrations

ranging from 1 to 10 ng/mL (Khan and Dhayal 2009). An

EIB for ochratoxin A built on a gold electrode showed

similar results to one based on an indium oxide electrode

(Radi et al., 2009). The acceptable limit established for

ochratoxin A in food products is 5 ng/g (Codex STAN

1995). The sensitivity of the EIBs described above was not

sufficient to meet existing regulations established for

ochratoxin A. An EIB that could measure ochratoxin A at

concentrations in food products below 0.5 ng/g was

reported (Tang et al., 2016). That EIB, based on competi-

tive immunoreaction, had a reference ochratoxin A-im-

mobilized carbon electrode and signal tags (anti-ochratoxin

A-immobilized and manganese oxide-adsorbed graphene

oxide nanosheets), and measured impedance; signal tags

bound to the electrode could detect the presence of

0.055 pg/mL ochratoxin A (Tang et al., 2016).

Aflatoxins are a family of mycotoxins mainly produced

by Aspergillus species (Dutton et al., 1985). Four major

types of aflatoxins are found in food: aflatoxin B1, B2, G1,

and G2 (Bennett and Klich, 2003). Aflatoxin B1 is the most

common and toxic aflatoxin in food, but all aflatoxins are

toxic and carcinogenic (Wakenell, 2016). Aflatoxin regu-

lations are often based on the sum of aflatoxin B1, B2, G1,

and G2, and the maximum permissible level of total afla-

toxins in food established by the CODEX Alimentarius

Commission is 15 ng/g (Codex STAN 1995). Antibodies

specific to aflatoxin B1 are commercially available, and

many antibodies developed using aflatoxin B1 show good

cross-affinity to aflatoxin B2, G1, and G2 (Ertekin et al.,

2016; Gathumbi et al., 2001). An EIB with anti-aflatoxin

B1 immobilized on the carbon electrode, where carbon

nanotubes were physically adsorbed, showed a linear

increase in Rct with increasing level of aflatoxin B1 from

0.1 to 10 ng/mL (Yu et al., 2015). A highly sensitive EIB

that could directly measure aflatoxin B1 was developed by

immobilizing anti-aflatoxin B1 on carbon nanotubes cova-

lently anchored on the gold electrode. The carbon nan-

otubes were covalently anchored on the surface of a gold

electrode via formation of cysteine SAMs on the gold

surface and subsequent activation of cysteine SAMs using

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)

and N-hydroxysuccinimide (NHS). The EIB showed a

linear response, in terms of Rct, to aflatoxin B1 concen-

trations ranging from 0.1 to 20 pg/mL (Costa et al., 2017).

The sensitivity of the EIB for aflatoxin B1 was improved by

graphene oxide and conductive polymer (Wang et al.,

2015). Graphene oxide was deposited on a carbon electrode

and anti-aflatoxin B1 was cross-linked to the graphene

oxide with conductive polymer. The EIB for aflatoxin B1

developed using graphene oxide and conductive polymer

exhibited a significant increase in Rct even in the presence

of 10 fg/mL aflatoxin B1. The EIB also showed a linear

increase in Rct with increasing aflatoxin B1 concentration

from 10 fg/mL to 10 pg/mL (Wang et al., 2015). A cost-

effective, disposable but highly sensitive EIB for aflatoxin

B1 was developed using a gold CD-trode (the gold layer

used for recordable compact discs) (Foguel et al., 2016).

Anti-aflatoxin B1 was immobilized covalently on a gold

CD-trode by surface functionalization, using lipoic acid

and subsequent EDC/NHS activation. The Rct from the EIB

increased in proportion to the increase aflatoxin B1 con-

centration, from 1.56 to 31.2 ng/mL, and had a LOD of

0.11 ng/mL.

In conclusion, EIBs have a number of advantages over

conventional and optical biosensors. Unlike optical-based

biosensors, EIBs do not require excitation sources, filters,

or lenses. EIBs can directly qualify and quantify their

target molecules in food, and have comparable or better

sensitivity than optical biosensors. The EIB is a versatile

platform that can be modified to measure different food

hazards through replacement of biological recognition

elements. EIBs can be manufactured using consumer-grade

inkjet printers (Rosati et al., 2019a, b). The EIB for a

bacteriophage produced using an inkjet printer showed

better sensitivity than a traditional method for bacterio-

phage detection (Rosati et al., 2019a). EIBs appear to be a

sensitive and cost-effective means of food hazard detection

suitable for mass production. With advances in mobile

phone technology, there have been a number of studies

concerned with integration of EIBs into smartphones

(Huang et al., 2018; Rosati et al., 2019b). In the near future,

EIBs are expected to be implemented throughout the food

supply chain as for inline and real-time monitoring of food

hazards.
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