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Drug repositioning provides a promising and efficient strategy to discover potential
associations between drugs and diseases. Many systematic computational drug-
repositioning methods have been introduced, which are based on various similarities of
drugs and diseases. In this work, we proposed a new computational model, DDA-SKF
(drug–disease associations prediction using similarity kernels fusion), which can predict
novel drug indications by utilizing similarity kernel fusion (SKF) and Laplacian regularized
least squares (LapRLS) algorithms. DDA-SKF integrated multiple similarities of drugs and
diseases. The prediction performances of DDA-SKF are better, or at least comparable, to
all state-of-the-art methods. The DDA-SKF can work without sufficient similarity
information between drug indications. This allows us to predict new purpose for
orphan drugs. The source code and benchmarking datasets are deposited in a GitHub
repository (https://github.com/GCQ2119216031/DDA-SKF).

Keywords: drug repositioning, drug–disease association, similarity kernel fusion, Laplacian regularized least
squares, orphan drugs

1 INTRODUCTION

In recent decades, although investment in pharmaceutical research and development has increased
substantially, the discovery of a new drug is still a time-consuming, risky, and challenging process
(Chong and Sullivan, 2007; Paul et al., 2010; Pammolli et al., 2011; Li et al., 2016). The
pharmaceutical industry did not receive rational benefits from investments (Kola and Landis,
2004; Munos, 2009; Schuhmacher et al., 2016). A large number of new drug candidates failed in the
FDA evaluations, thereby preventing their applications in therapies (Weng et al., 2013; Mullard,
2017; Mullard, 2018; Mullard, 2019; Mullard, 2020; Mullard, 2021). Today, drug repositioning has
gained importance in identifying new therapeutic purposes for already-approved drugs
(Parvathaneni et al., 2019). Repositioning of “old” drugs to treat both common and rare diseases
is becoming an attractive proposition because it involves the use of safe compounds, with potentially
lower overall development costs and shorter development cycles (Pushpakom et al., 2019). So far,
drug repositioning has achieved many successes (Swanson, 1990; Soignet et al., 1998; Ashburn and
Thor, 2004). Currently, rare diseases are a serious threat to human health (Wästfelt et al., 2006;
Harari, 2016). Several orphan drugs are intended to treat rare diseases. Developing a new drug
intended to treat a rare disease is costly and time-consuming (Attwood et al., 2018). Drug repositioning
is considered as a more efficient strategy than traditional drug development (Scherman and Fetro,
2020). In fact, some successfully repurposed orphan drugs (Gordon et al., 2018; Kurolap et al., 2019;
Scherman and Fetro, 2020) have attracted much attention. Therefore, systematic computational drug
repositioning is an important research topic in both medical science and computational life science.
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Many computational methods have been proposed to predict
potential drug–disease associations for drug repositioning. Machine
learning approaches play important roles in predicting associations
between drugs and diseases. For example, Gottlieb et al. (2011)
integrated several drug similarities and disease similarities to score
the novel drug–disease associations by learning a logistic regression
classifier. Recently, a method, which is called DRIMC (Zhang et al.,
2020), introduced a drug-repositioning approach by using Bayesian
inductive matrix completion. Xuan et al. (2019) presented
DisDrugPred method based on nonnegative matrix factorization
to predict the drug-related candidate indications. SCMFDD (Zhang
et al., 2018b) proposed a similarity-constrained matrix factorization
method for the drug–disease association prediction. PREDICT
(Gottlieb et al., 2011) integrated several similarities to score the
novel associations by learning a logistic regression classifier. LRSSL
(Liang et al., 2017) proposed a Laplacian regularized sparse subspace
learning method to identify novel indications.

Recently, the systems biology–based methods have been
overwhelmingly studied in predicting drug–disease associations.
Most methods of this kind constructed a heterogenous network
model before calculating prediction scores. TheMBiRWmodel (Luo
et al., 2016) utilized bi-random walk (BiRW) algorithm to predict
unknown drug–disease associations on a heterogenous network. Luo
et al. (2018) designed a drug repositioning recommendation system
(DRRS) based on the singular value decomposition to complete the
potential association matrix of the heterogenous network. BNNR
(Yang et al., 2019a) employs a bounded norm regularization method
to complete the drug–diseasematrix under the low-rank assumption.
NTSIM (Zhang et al., 2018a) used the network topological similarity-
based inference method. Yu et al. (2021) proposed a novel
computational method, which is named as a layer attention graph
convolutional network, to predict unobserved associations.

Previous studies have achieved many successes. It should be
noted that most existing methods employ only one type of drug or
disease similarity rather than integrating multiple similarities (Yang
et al., 2019a; Yang et al., 2019b). Some models utilized linear
combinations to integrate multiple similarities (Jiang et al., 2019;
Yan et al., 2019), which loses the high-order interactions between
different similarities.

In this work, we proposed the similarity kernel fusion (SKF) to
integrate different similarity kernels with Laplacian regularized
least squares (LapRLS) algorithms. We named our method as the
DDA-SKF method. The overall workflow of DDA-SKF was
illustrated in Figure 1. First, we constructed multiple similarity
kernels for drugs and diseases. These similarity kernels were
integrated by the SKF iterative process into two comprehensive
similarity kernels. Finally, the Laplacian regularized least squares
(LapRLS) algorithms were used to obtain the prediction association
matrix. To demonstrate the effectiveness of our model, we
compared it with several state-of-the-art methods.

2 MATERIALS AND METHODS

2.1 Drug–Disease Association Dataset
We adapted two benchmarking datasets in this article, which are
the PREDICT dataset and the LRSSL dataset. The PREDICT

dataset was obtained from the literature (Gottlieb et al., 2011),
which was originally collected from the DrugBank database
(Wishart et al., 2018) and the OMIM (Online Mendelian
Inheritance in Man) database (Hamosh et al., 2005). It
contains 1933 known drug–disease associations between 593
drugs and 313 diseases. The LRSSL dataset was extracted from
the literature (Liang et al., 2017). It contains 3,051 drug–disease
associations between 763 drugs and 681 diseases.

Without losing generality, we take the PREDICT dataset as an
example to describe our method. Let pi (i � 1, 2, . . . , 313) be the
i-th disease and dj (j � 1, 2, . . . , 593) the j-th drug. We defined the
relationship between pi and dj as:

aij � { 0 pi and dj have no association,
1 otherwise

. (1)

An adjacency matrix was then created to describe the
drug–disease associations in the whole dataset which can be
noted as A ∈ R313×593.

2.2 Similarity Kernels for Drug and Disease
The basic assumption of this work is that drug-related diseases
are more likely to be similar when the drugs are more similar.
Three different similarity kernels of drugs and two different
similarity kernels of diseases were applied. By fusing these
similarity kernels, our method can identify potential
associations between drugs and diseases.

2.2.1 Drug Chemical Similarity
We obtained the drug chemical similarity kernel from the
literature (Zhang et al., 2020). PaDEL software (Yap, 2011)
was used to compute PubChem fingerprint descriptors for
each drug. The pairwise similarity between drugs was
measured by the Jaccard coefficient between PubChem
fingerprints. The drug chemical similarity kernel was
noted as a 593 × 593 matrix Md,1. Md,1 (i, j), which is the
element in the i-th row and the j-th column of Md,1,
represents the chemical similarity between the i-th and the
j-th drug. Because of the Jaccard coefficient definition, 0 ≤
Md,1 (i, j) ≤ 1.

2.2.2 Drug Functional Similarity Kernel
The drug function was described by the Gene Ontology terms of
the target genes. The Jaccard coefficient was used to measure the
similarity between the Gene Ontology annotations of two
different target genes. We obtain the similarity values from the
literature (Zhang et al., 2020). The drug functional similarity was
noted also as a 593 × 593matrixMd,2. The elementMd,2 (i, j) is the
functional similarity between the i-th drug and the j-th drug.

2.2.3 Association Similarity Kernels for Drugs and
Diseases
The association profile of the i-th drug is defined as the i-th
column of the association matrix A, which can be noted as A*i.
The drug association similarity kernel was represented by a 593 ×
593 matrix Md,3; the element Md,3 (i, j) is the association
similarity between di and dj, which can be defined as:
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Md,3(i, j) � exp( − γd
����A*i − Apj

����2), (2)

where

γd � 593/∑593
i�1

‖Api‖2, (3)

and ||.|| is the 2-norm operator.
Similarly, the association profile of the i-th disease is defined as

the i-th row of the association matrixA, which can be noted asAi*.
The disease association similarity kernel was represented by a 313×
313 matrixMp,1; the elementMp,1 (i, j) is the association similarity
between disease pi and disease pj, which can be calculated as:

Mp,1(i, j) � exp( − γp
����Aip − Ajp

����2), (4)

where

γp � 313/∑313
i�1

‖Aip‖2, (5)

2.2.4 Disease Semantic Similarity Kernel
A disease semantic similarity kernel is a 313 × 313 matrix Mp,2.
The element Mp,2 (i, j) is the similarity between disease pi and
disease pj. The disease semantic similarity is accessible by
MimMiner (van Driel et al., 2006), which is a text mining
approach to quantify phenotype relationships between human
disease phenotypes from the OMIM database. We obtain the
values of Mp,2 from the literature (Zhang et al., 2020).

2.3 Similarity Kernel Fusion
The similarity kernel fusion (SKF) algorithm was applied to
integrate three drug similarity kernels into a drug
comprehensive similarity kernel and two disease similarity
kernels into a disease comprehensive similarity kernel.
Without losing generality, we take the drug similarity kernels
as an example to explain this fusing process.

First, we normalize the aforementioned three drug similarity
kernels (Md,u, u � 1, 2, 3) by using the following formula:

θd,u(i, j) � Md,u(i, j)
∑
v�1

593 Md,u(v, j), (6)

where θd,u (i, j) represents a normalized similarity corresponding
to Md,u (i, j). The matrix composed by the normalized kernel is
noted as:

Θd,u � {θd,u(i, j)}593×593, (7)

Second, we established a neighbor-constrained normalization
kernel for each drug similarity kernel. Given the drug di andMd,u,
we collected the k most similar drugs as a set Nd,u (i, k). The
neighborhood-constrained normalization of the Md,u can be
defined as follows:

φd,u(i, j) � Md,u(i, j)Id,u,k(i, j)
∑
v�1

593 Md,u(i, v)Id,u,k(i, v), (8)

where

Id,u,k(i, j) � { 1 dj ∈ Nd,u(i, k)
0 dj ∉ Nd,u(i, k) , (9)

The matrix composed by the neighborhood-constrained
normalization is noted as:

Φd,u � {φd,u(i, j)}593×593, (10)

Finally, the normalized kernel Θd,u and the neighbor-
constrained normalization kernel Φd,u were fused by using the
following iterative process:

Θd,u(t + 1) � 1
2
α⎛⎝Φd,u ∑

r≠u
Θd,r(t)ΦT

d,u
⎞⎠ + 1

2
(1 − α)∑

r≠u
Θd,r(0),

(11)

where t is the number of iterations, α, a weight parameter between
0 and 1, T, the transpose operator in matrix algebra, and

Θd,r(0) � Θd,r. (12)

TABLE 1 | Performance comparison analysis using both the novel association test and novel drug test.

Methoda AUROC-Ab AUPR-A AUROC-Dc AUPR-D

BNNRd 0.932 0.589 0.776 0.136
DisDrugPrede 0.890 0.070 0.835 0.243
DRRSe 0.929 0.140 0.765 0.114
SCMFDDe 0.712 0.004 0.733 0.048
MbiRWe 0.911 0.129 0.798 0.156
DRIMCe 0.956 0.299 0.873 0.278
DDA-SKF 0.937 ± 0.0003f 0.533 ± 0.0039 0.845 ± 0.0007 0.270 ± 0.0013

aAUROC: area under receiver operating characteristics; AUPR: area under precision-recall.
bThe suffix “-A” indicates that the AUROC and AUPR are obtained using the novel association prediction.
cThe suffix “-D” indicates that the AUROC and AUPR are obtained using the novel drug prediction.
dThe performance values are taken from Yang et al. (2019a).
eThe performance values are taken from Zhang et al. (2020).
fThe value is represented as “average ± standard deviation” form for 5 times of repeated cross-validations.
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After z rounds of iterative computations, we obtained the
integration kernel as follows:

Θd � 1
3
(Θd,1(z) +Θd,2(z) +Θd,3(z)), (13)

Although useful information was extracted in the fusion
process, noise is inevitable simultaneously. The information of
k most similar drugs for each drug was further extracted to
suppress the noise influence by defining a weight matrix; we
defined an indicator function as follows:

wd,k(i, j) � ⎧⎪⎨⎪⎩
1 Id,1,k(i, j) � Id,2,k(i, j) � Id,3,k(i, j) � 1
0 Id,1,k(i, j) � Id,2,k(i, j) � Id,3,k(i, j) � 0
0.5 otherwise

, (14)

Finally, the drug comprehensive similarity kernel was defined
as the following formula:

Sd,k � {θd(i, j)wd,k(i, j)}593×593, (15)

where θd (i, j) is the element in the i-th row and the j-th column of
the matrix Θd.

By applying Eqs 6–15 and employing two disease similarities,
we obtained the disease comprehensive similarity kernel Sp,k. The
value of k in the computing disease comprehensive similarity
kernel is not necessarily the same as that of the drugs.

2.4 Laplacian Regularized Least Squares
In this work, Laplacian regularized least squares (LapRLS) were
employed to build the prediction model to uncover the potentialT
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TABLE 3 | Top five candidate diseases for typical drugs.

Drug Disease OMIM ID Evidence

Vincristine B-cell chronic lymphocytic leukemia 151400 NAa

Vincristine Small-cell carcinoma 182280 CTDb

Vincristine Mycosis fungoides 254400 CTD
Vincristine Testicular neoplasms 273300 CTD
Vincristine Urinary bladder neoplasms 109800 CTD
Cisplatin Alveolar rhabdomyosarcoma 268220 NA
Cisplatin Wilms’ tumor 194070 CTD
Cisplatin Stomach neoplasms 137215 CTD
Cisplatin Acute lymphoblastic leukemia 247640 NA
Cisplatin Colorectal neoplasms 114500 CTD
Fluorouracil Esophageal neoplasms 133239 CTD
Fluorouracil Renal cell carcinoma 144700 CTD
Fluorouracil Acute lymphoblastic leukemia 247640 NA
Fluorouracil Prostatic neoplasms 176807 CTD
Fluorouracil Acute myelocytic leukemia 246470 NA
Methotrexate B-cell chronic lymphocytic leukemia 151400 CTD
Methotrexate Neuroblastoma 256700 NA
Methotrexate Wilms’ tumor 194070 NA
Methotrexate Lung neoplasms 211980 CTD
Methotrexate Glioma 137800 CTD
Paclitaxel Mismatch repair cancer syndrome 1 276300 NA
Paclitaxel Prostatic neoplasms 176807 CTD
Paclitaxel Testicular germ cell tumor 273300 CTD
Paclitaxel Stomach neoplasms 137215 CTD
Paclitaxel Cutaneous malignant melanoma, 1 155600 NA

aNA: not available on the Comparative Toxicogenomics Database.
bCTD: Available on the Comparative Toxicogenomics Database.
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drug–disease associations. Based on the characteristics of the
model, we could predict the drug–disease associations from either
the drug subspace or disease subspace.

In terms of the drug subspace, the Laplacian similarity matrix
Ld was represented as follows:

Ld � D−1/2
d (Dd − Sd,k)D−1/2

d , (16)

where Dd is a diagonal matrix whose diagonal elements are the
sum of the corresponding row elements of the matrix Sd,k.

The drug–disease association prediction matrix Fd was
calculated by minimizing the following loss function:

min
Fd

(‖A − Fd‖2F + βd
����FT

dLdFd

����2F), (17)

where A is the original drug–disease association matrix, Fd, the
predicted association matrix in the drug subspace, βd, the
weighting coefficient, and ||.||F, the F-norm operator. The first

term of the loss function aims to reduce the difference between
the original matrix and prediction matrix. The second term is
used to avoid the over-fitting problem.

The derivation of the optimization algorithm of LapRLS was
introduced in Xia et al. (2010). We can calculate the predicted
association matrix in the drug subspace by using the following
formula:

Fd � Sd,k(Sd,k + βdLdSd,k)−1A. (18)

Similarly, by using Eqs 16–18 on the disease subspace, the
predicted association matrix Fp in the disease subspace was
calculated as follows:

Fp � Sp,k(Sp,k + βpLpSp,k)−1A, (19)

where Lp is the normalized similarity matrix in the disease
subspace. Lp was defined as follows:

TABLE 4 | Top five candidate diseases for typical orphan drugs.

Orphan drug Disease OMIM ID Evidence

Celecoxib Osteoarthritis susceptibility 2 140600 CTDa

Celecoxib Osteoarthritis susceptibility 1 165720 CTD
Celecoxib Progressive pseudorheumatoid dysplasia 208230 NAb

Celecoxib Mitochondrial recessive ataxia syndrome 607459 NA
Celecoxib Osteoarthritis susceptibility 3 607850 CTD
Methotrexate Mismatch repair cancer syndrome 1 276300 NA
Methotrexate Breast neoplasms 114480 CTD
Methotrexate Acute lymphoblastic leukemia 247640 NA
Methotrexate Autoimmune diseases 109100 CTD
Methotrexate Pyogenic arthritis–pyoderma gangrenosum–acne 604416 NA
Doxorubicin Mismatch repair cancer syndrome 1 276300 NA
Doxorubicin Acute lymphoblastic leukemia 247640 NA
Doxorubicin Dohle bodies and acute leukemia 223350 NA
Doxorubicin Breast neoplasms 114480 CTD
Doxorubicin Acute myeloid leukemia 601626 CTD

aCTD: available on the Comparative Toxicogenomics Database.
bNA: not available on the Comparative Toxicogenomics Database.

TABLE 5 | Top five candidate drugs for complex diseases.

Disease Drug Evidencea

Alzheimer’s disease Pyridostigmine Agnoli et al. (1983)
Alzheimer’s disease Benzatropine NAb

Alzheimer’s disease Scopolamine Chen and Yeong, (2020)
Alzheimer’s disease Carbidopa El-Moursy et al. (2009)
Alzheimer’s disease Pramipexole Bennett et al. (2016)
Parkinson’s disease Biperiden Kostelnik et al. (2017)
Parkinson’s disease Levodopa LeWitt, (2015)
Parkinson’s disease Bromocriptine Lieberman and Goldstein, (1985)
Parkinson’s disease Trihexyphenidyl Jilani et al. (2021)
Parkinson’s disease Rivastigmine Espay et al. (2021)
Amyotrophic lateral sclerosis Baclofen Boussicault et al. (2020)
Amyotrophic lateral sclerosis Mexiletine Adiao et al. (2020)
Amyotrophic lateral sclerosis Colchicine Mandrioli et al. (2019)
Amyotrophic lateral sclerosis Ranolazine Djamgoz and Onkal, (2013)
Amyotrophic lateral sclerosis Prilocaine NA

aEvidence: Evidences from the literature.
bNA: Evidences are not available.
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Lp � D−1/2
p (Dp − Sp,k)D−1/2

p , (20)

where Dp is the diagonal matrix of the matrix Sp,k.
With the two predicted association matrices Fd and Fp, we

defined the final predicted association matrix as follows:

F � λFp + (1 − λ)Fd, (21)

where λ ∈ (0, 1) is a weighting parameter.

2.5 Performance Evaluation
We used novel association prediction and novel drug prediction
to estimate the prediction performance of our method. In the
novel association prediction, we applied both 5-fold and 10-fold
cross-validation schemes. For the 10-fold cross validation, all
drug–disease associations in the benchmarking dataset were
divided into 10 nonoverlapping subsets randomly with almost
the same size. While for the 5-fold cross validation, the number of
the nonoverlapping subsets is five. The novel drug prediction was

used to evaluate the prediction performance on new drugs. All
drugs, not the drug–disease associations, were randomly divided
into 10 subsets of approximately equal size. In each trial, one set
was used in turn to act as the testing set, and other sets were used
as the training set. In all aforementioned cross-validations, when
one subset was used as the testing set, all prior knowledge of the
testing set was removed before computing the association
similarity kernels for drugs and diseases. The known
associations corresponding to the testing set were reset to
unknown. This guarantees that there is no information leak in
the testing process.

All pairs of drug–disease associations were scored. Given a
threshold, the drug–disease pair with a score larger than the
threshold is predicted to be associated, otherwise
nonassociated.

Due to the requirement of performance comparison and the
performance values that are reported by the existing methods, we
took a different set of performance measures in different contexts.

FIGURE 1 | Flowchart of DDA-SKF. The model DDA-SKF included three steps: (1) three drug similarity kernels and two disease similarity kernels were calculated;
(2) similarity kernel fusion (SKF) algorithm was used to integrate these similarities into two comprehensive similarity kernels; (3) Laplacian regularized least squares
(LapRLS) framework was used to build the prediction model.
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We used the AUROC (area under receiver operating
characteristics) curve and AUPR (area under precision-recall)
curve to evaluate the prediction performance of our method in
the context of 10-fold cross-validations. AUROC and AUPR are
threshold-free metrics that are capable of measuring the overall
performance of prediction models (Jiao and Du, 2016). While
AUROC is powerful and popular as a main performance
evaluation index, the value of AUROC may be misleading
when the dataset is highly imbalanced (Saito and Rehmsmeier,
2015). It should be noticed that the value of AUPR can be used as
an alternative metric to evaluate the prediction performance
when the data is imbalanced (Davis and Goadrich, 2006). The
value of AUPR tends to be smaller relative to the value of AUROC

because of the highly imbalanced dataset (Saito and Rehmsmeier,
2015). In the context of 5-fold cross-validations, we applied
several additional performance measures other than the
AUROC and the AUPR. Six statistics, including sensitivity
(SEN), specificity (SPE), precision (PRE), accuracy (ACC), F1-
score (F1), and Matthew’s correlation coefficient (MCC), were
applied in measuring the prediction performance of DDA-SKF in
the context of 5-fold cross-validations. The threshold was
optimized to maximize the F1-score. These performance
measures were defined as follows:

SEN � TP

TP + FN
, (22)

FIGURE 2 | Performance of the single similarity and SKF in the drug subspace of the PREDICT dataset. (A) ROC curve and (B) PR curve.

FIGURE 3 | Performance of the single similarity and SKF in the disease subspace of the PREDICT dataset. (A) ROC curve and (B) PR curve.
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SPE � TN

TN + FP
, (23)

PRE � TP

TP + FP
, (24)

ACC � TN + TP

TN + FN + TP + FP
, (25)

F1 � 2PRE · SEN
PRE + SEN

, and (26)

MCC � TP · TN − FP · FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√ , (27)

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives in the 5-fold
cross-validation, respectively.

2.6 Parameter Calibration
There are three parameters in the SKF, which are the number of
neighbors k, the weighting coefficient α, and the number of
iterations t. There are also two parameters in the LapRLS,
which are the weighting coefficients β and λ. To find the best
parameter combination, we performed many trials manually with
arbitrary values of parameters to optimize the AUROC value. We
also performed a systematic exploration using a floating forward
grid search strategy to further analyze the effects of different
parameters. We finally fix the parameter values α and k as 0.2 and
15 in the drug subspace, while 0.7 and 10 in the disease subspace,
respectively. The parameters β and λ were fixed as 2−16 and 0.4,
respectively. The number of iteration t was determined using a
stopping criterion. We defined the relative error Ed,u in the drug
space as follows:

Ed,u(t) � ‖ Θd,u(t + 1) −Θd,u(t) ‖
‖ Θd,u(t) ‖ , (22a)

where u � 1, 2, 3. The relative error Ep,u in the disease subspace is
defined similarly. In the disease subspace, if the Ed,u < 10−7 and t ≥
10, the iteration will be terminated, while in the drug subspace,
the iteration will be terminated if Ep,u <10−10 and t ≥ 10. The
number of iterations was finally fixed as 10.

3 RESULTS AND DISCUSSION

In this section, we verified the prediction performance of DDA-
SKF. First, we compared the performance of DDA-SKF with
other state-of-the-art methods. Second, case studies were
conducted to confirm the effectiveness of DDA-SKF. Third,
we employed single similarity in the drug and disease
subspace to predict potential associations and compared the
performance of single similarity and SKF.

3.1 Comparison With State-Of-The-Art
Methods
In this section, to evaluate the prediction performance of our
model on the benchmarking datasets using both novel association
prediction and the novel drug prediction. We compared our
model against other state-of-the-art methods, including BNNRT
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(Yang et al., 2019a), DisDrugPred (Xuan et al., 2019), DRRS (Luo
et al., 2018), SCMFDD (Zhang et al., 2018b), MBiRW (Luo et al.,
2016), and DRIMC (Zhang et al., 2020). We also compared our
method against the PREDICT (Gottlieb et al., 2011), LRSSL
(Liang et al., 2017), and NTSIM methods (Zhang et al., 2018a).

To eliminate the randomness in the cross-validation, we
repeated each cross-validation five times with different
random data partition schemes. The average value and the
standard deviations of every performance measures were
reported. However, it should be noted that the standard
deviations were not reported by other methods in comparison.

For the novel association prediction, the evaluation results of
all the methods on the benchmarking dataset are collected in
Table 1. As in Table 1, DDA-SKF obtained good values in
AUROC and AUPR. DDA-SKF achieved an AUROC of 0.937,
which is 0.536, 5.281, 0.861, 31.601, and 2.854%, respectively,
higher than that of BNNR’s 0.932, DisDrugPred’s 0.890, DRRS’s
0.929, SCMFDD’s 0.712, and MBiRW’s 0.911. DDA-SKF also has
an AUPR of 0.533, which is only slightly lower than that of
BNNR. Therefore, we believe that DDA-SKF has a better, or at
least comparable, performance to all state-of-the art methods in
novel association prediction. The integration of disease and drug
similarity kernels is effective.

For the novel drug prediction, we evaluated the performance
of all models in the benchmarking dataset. The results are
recorded in Table 1. DDA-SKF achieved an AUROC of 0.845,
which is 8.892, 1.198, 10.458, 15.280, and 5.890%, respectively,
higher than that of BNNR’s 0.776, DisDrugPred’s 0.835, DRRS’s
0.765, SCMFDD’s 0.733, and MBiRW’s 0.798. DDA-SKF also
obtained an AUPR of 0.270, which is only slightly lower than that
of DRIMC. Therefore, we conclude that DDA-SKF outperformed
most state-of-the-art methods in novel drug predictions.

In the comparison with PREDICT, LRSSL, and NTSIM
methods, 5-fold cross-validation was applied rather than 10-
fold cross-validations, as all three existing methods reported
their performances in 5-fold cross validations. According to
the results in Table 2, DDA-SKF achieved better performances
in almost every comparison. DDA-SKF achieved an AUROC of
0.929 and 0.931 for the PREDICT dataset and LRSSL dataset,
which are 0.869 and 3.215% higher than that of the second model
NTSIM, respectively. As for AUPR, DDA-SKF achieves an AUPR
of 0.497 and 0.382 on the PREDICT dataset and LRSSL dataset,
which are the best values among the four. For the F1-score, DDA-
SKF achieves 0.504 and 0.427 for the PREDICT dataset and
LRSSL dataset, which are 25.373 and 26.331% higher than that of
NTSIM, respectively. In summary, DDA-SKF achieved better
performances in this comparison.

3.2 Case Study
Although the prediction performances of DDA-SKF in terms of
AUROC and AUPR are slightly lower than those of the best
method for the novel association prediction and novel drug
prediction, our method can work without enough disease
similarities. This is useful when the orphan drugs, whose
indication is still very limited, are considered.

In this section, the capability of our model in predicting novel
drug–disease associations is tested. We performed three tests

based on the PREDICT dataset in this part: one is drug-
repositioning prediction, the second is orphan drug indications
prediction, and the last is complex disease prediction.

To predict novel indications for all drugs, all known
drug–disease associations in the benchmarking dataset were
used as the training set, and the unknown drug–disease
associations were regarded as the candidate set. DDA-SKF was
applied to obtain scores for all candidate drug–disease
associations. All candidate associations were ranked according
to the prediction scores. Top-ranked candidate associations were
identified as novel drug–disease associations.

We verified newly predicted associations by comparing them
against the Comparative Toxicogenomics Database (CTD) (Davis
et al., 2019). CTD contains curated and inferred chemical–disease
relationships, which are divided into marker/mechanism and
therapeutic. We only compared the therapeutic relationships
for verification. For each of the 593 drugs, we collected the
top-5 and the top-20 prediction results. The predictions for all
drugs were listed in Supplementary Table S1 and
Supplementary Table S2 as OMIM IDs in supplementary
materials. In the DDA-SKF prediction results, 156 of top-5
and 377 of top-20 predictions have been confirmed by CTD.

We listed several top-5 prediction results in Table 3. Although
some top-ranked predictions had not been verified, we believe
that these may provide new indications for approved drugs. For
example, vincristine for B chronic lymphocytic leukemia (CLL),
cisplatin for acute lymphoblastic leukemia (ALL), and
methotrexate for neuroblastoma. These articles provide some
possible hints that consist of our predictions (Lj et al., 1997; Vilpo
et al., 2000; Lau et al., 2015).

In particular, DDA-SKF can perform drug–disease association
prediction without disease similarities. This may be important in
studying some orphan drugs. Since the indications of orphan
drugs are usually very limited, the similarities between diseases
may be misleading. Therefore, by excluding the disease
similarities from the model, DDA-SKF should have more
potential in finding new indications for orphan drugs, which
may eventually decrease the cost of orphan drug utilization.

We selected several orphan drugs fromOrphanet (http://www.
orpha.net), including celecoxib, methotrexate, and doxorubicin.
For each orphan drug, all known drug–disease associations were
removed. The orphan drug would have no association
information during the process of prediction. We fed the drug
similarity kernels with orphan drug information and the
aforementioned association matrix to our model. The results
of top-20 predictions for each orphan drug were recorded in
Supplementary Table S3 in supplementary materials. The top-5
predicted results are summarized in Table 4. These successful
prediction instances further confirm that DDA-SKF has the
potential to predict novel indications for orphan drugs without
disease similarity information.

Last, several commonly studied complex diseases were
chosen to evaluate DDA-SKF. For instance, Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic
lateral sclerosis (ALS) were considered. We listed the top-5
predicted results in Table 5 along with the literature evidences.
For each disease, the uncovered associations will be ranked
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based on the prediction scores, and the top-ranked unknown
associations were identified as the prediction results. The AD
and PD results were obtained on the PREDICT dataset, while
the ALS results were obtained using the LRSSL dataset. These
results indicate that DDA-SKF has the potential to uncover new
drugs for these complex diseases.

3.3 Comparison With Single Similarity
In this work, different drug similarity kernels were integrated as a
drug comprehensive similarity kernel in the drug subspace. Also,
different disease similarity kernels were integrated as a disease
comprehensive similarity kernel. To demonstrate the
effectiveness in integrating multiple similarity kernels, we
calculated the values of AUROC and AUPR with every single
similarity kernel on the PREDICT dataset. The results are shown
in Figure 2 and Figure 3. We also compared the effectiveness of
the multiple similarity kernels fusion and all single similarity
kernels. The results are recorded in Table 6. We can see that the
comprehensive kernel produced higher performances than every
single kernel.

4 CONCLUSION

In this study, we proposed DDA-SKF (drug–disease associations
prediction based on the similarity kernels fusion) for predicting
drug–disease associations. Several similarity kernels of drugs and
diseases were integrated. The SKF method has a better, or at least
comparable, performance than the existing methods, in terms of
AUROC and AUPR. The novel drug prediction test indicated that
DDA-SKF can identify potential indications of approved drugs,
which may be useful in drug repositioning. The DDA-SKF can
also make predictions without disease similarity. This allows it to
be applied on orphan drugs, which is useful in exploring potential
indications of such drugs. The evaluation on several complex
diseases illustrates that our method can provide valuable
information and potential indications for clinical studies.
However, it should be noted that there is still a room for

further improvement. One is to integrate similarities from
more biological knowledge, and the other is to integrate
information of the drug-target information. Due to the limited
time and resources of this study, these works will be conducted in
future.
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