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Bone exhibits a great ability for endogenous self-healing. Nevertheless, impaired bone

regeneration and healing is on the rise due to population aging, increasing incidence

of bone trauma and the clinical need for the development of alternative options to

autologous bone grafts. Current strategies, including several biomolecules, cellular

therapies, biomaterials, and different permutations of these, are now developed to

facilitate the vascularization and the engraftment of the constructs, to recreate ultimately a

bone tissue with the same properties and characteristics of the native bone. In this review,

we browse the existing strategies that are currently developed, using biomolecules, cells

and biomaterials, to induce, direct and potentiate bone healing after injury and further

discuss the biological processes associated with this repair.
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INTRODUCTION

The vertebrate skeleton is constituted by stiff bone organs with osseous tissue, bone marrow,
endosteum, periosteum, cartilage, nerves, and vascular channels. Basically, bone tissue can be
separated into an inorganic part (60–70%), water (5–10%) and an organic matrix of cells,
collagen, and other matrix associated proteins (the remaining portion). These composition and
configuration may greatly vary depending on the anatomical location, supported load, age, gender,
and the possible disease situation (Boskey et al., 2016). The mineral phase of bone is made of
inorganic mineral salts and ions: calcium, phosphate, carbonate, citrate, hydroxyl, and other ions
(magnesium, sodium, and fluoride), organized into hydroxyapatite nanocrystals, with a length of
25–50 nm (Glimcher, 1987). The organic component is composed of more than 90% of collagen
type-1 and several non-collagenous proteins including growth factors, cytokines, osteocalcin,
osteonectin, osteopontin, phosphoproteins, proteoglycanes, bone morphogenic proteins, and
phospholipids (Boskey and Posner, 1984; Boskey, 2013).

In addition, bone contains several cellular elements: pre-osteoblasts, osteoblasts, osteocytes,
and osteoclasts. Deriving from multipotent stromal mesenchymal (stem) cells, osteoblasts are
mononucleated, with a cuboidal shape. Localized at the surface of bone tissue, these cells are
responsible for bone formation by producing the organic bone matrix (un-mineralized osteoid
matrix) and directing the initiation of the mineralization process through the secretion of enzymes
such as the alkaline phosphatase. During these secretion and mineralization processes, around
10–20% of the osteoblasts remain alive and become embedded into the matrix that they have
secreted, and mature into osteocytes (Rochefort et al., 2010). Compared to osteoblasts, osteocytes
are smaller, with a higher nucleus to cytoplasm ratio and exhibit several dentritic processes that
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form the lacuna-canalicular system allowing intercellular
communication (Knothe Tate et al., 2004; Rochefort, 2014). As
mechanosensitive cells osteocytes are able to sense mechanical
variations within the bone tissue and to send regulatory signals
that will initiate and regulate the directed bone remodeling
(Lanyon, 1993; Rochefort and Benhamou, 2013; Bonewald,
2017). The process of bone resorption is supported by osteoclasts
that secrete H+ and enzymes at the resorption site to reduce
the pH allowing enzymes to cleave of the bone matrix. Deriving
from bone marrow monocyte precursors, osteoclasts are large,
multinucleated, polarized cells with phagocytic properties (Ikeda
and Takeshita, 2016).

Osseous tissue may be structurally organized into trabecular
(cancellous) bone or cortical (lamellar) bone (Nishiyama and
Boyd, 2011). Trabecular bone, found at the metaphysis and the
epiphysis of long bones and at the interior of cuboid bones, is
a network of interconnected of bone segments with plate and
rod configuration, ranging between 50 and 90% of “empty” space
that is filled with bone marrow tissue. Cortical tissue, forming
a compact and homogeneous macrostructure, is located at the
diaphysis of long bones and at the bone surface with a thickness
varying according to the bone anatomical location. Structurally
and functionally, cortical bone is composed of individual units
named osteons or Haversian systems that are organized along the
bone. Osteons are centered on central channels with vessels and
nerves providing nutrients and oxygen to the cells.

While the human population is aging, the incidence of bone
trauma will inevitably increase as well. Susceptibility to bone
fracture is also majored by the increasing number of women
and men with osteoporosis. In the US, about 5 and 10% of bone
fractures exhibit a disunion or late healing and therefore remain
a key management in orthopedic surgery (Einhorn, 1995). The
current surgical method for large bony defect reconstruction
implies the harvesting of autologous bone segments (e.g., radius,
fibula, iliac crest, scapula. . . ), leading to extended hospitalization,
associated morbidity and complications, and increasing direct
and indirect healthcare costs. Thus, there is an important clinical
need for the elaboration of new healing possibilities for bone
prevention and repair of bone fractures (Knothe Tate et al.,
2011, 2013). As an alternative to autologous bone graft, recent
developments are currently examined to locally induce and
stimulate the bone healing process, but also to fill the bone
defect with allogenic materials (bone material sourced from a
donor) or by tissue engineering biomaterials, mimicking the local
microenvironment in order to stimulate the physiological bone
development, without donor site morbidity (Veronesi et al., 2015;
Russo et al., 2017).

The objective of this review is to describe and discuss the
current strategies developed to potentiate healing bone processes
after injuries, using biomolecules, cells, and biomaterials.

Bone Regenerative Strategies:

Biomolecules, Cells, and Biomaterials
When injured, bones have the rare property of endogenous
self-repair by regenerating new bone without forming a
fibrotic scar that would modify their mechanical characteristics

(Kalfas, 2001). Consequently, the healing process of adult
bones follows the whole steps of the bone formation during
embryogenesis and organogenesis, where the freshly renewed
bone is finally not distinguishable from the initial tissue.
However, the improvement of this healing procedure is
mandatory to guarantee the fast and suitable restoration of
bone properties and functions in several pathological conditions
such as inadequate immobilization, impaired blood supply,
periosteum excessive damage, infection, mineral and vitamin
lacks, primary pathologies, specific medications, or radiation
(Chimutengwende-Gordon and Khan, 2012; Shekkeris et al.,
2012). Beside standard therapies that include mechanical
support (e.g., casts, nails, plates, and screws) to treat bone
fractures/defects, other approaches currently developed and
used to direct and further enhance bone restoration are
primarily centered on the utilization of: (1) active elements or
biomolecules, (2) cell-based treatments, and (3) biomaterials.

Biomolecules and Biotherapies
Biomolecules used in bone regenerative therapies are mostly
growth factors, cytokines, or hormones (Vo et al., 2012;
Katagiri et al., 2013). There are acting as biochemical signals
triggering cellular functions, such as migration, proliferation,
differentiation, secretion, or apoptosis, among others.

The most studied osteogenic factors are members of
the transforming growth factor-β (TGF-β) superfamily, and
principally bone morphogenetic proteins (BMPs) (Lissenberg-
Thunnissen et al., 2011; Carreira et al., 2015). These cytokines
are acting on skeletal tissue formation and growth, but also
in adulthood during bone healing process, by promoting
the osteoblastic differentiation of mesenchymal stem cells,
stimulating the chondrocyte and osteoblast proliferation, and
increasing the production of extracellular matrix. In the skeleton,
BMPs are located among the collagen fibers within the bone
matrix, in the periosteum and in the bone marrow. After a
fracture, BMPs are released from the bone matrix and diffuse to
induce and stimulate osteoprogenitors that, in turn, will produce
more BMPs. BMP-2, -4 and -7 are thus able to stimulate bone
formation in vitro and in vivo at heterotopic sites, while BMP-1, -
2 and -3 can increase the in vitro production of collagen type I and
osteocalcin from osteoblastics cells and induce the development
of mineralized bone nodules. Because of their great therapeutic
possibilities, BMPs were largely used alone or in combination
with porous scaffolds to promote healing and growth in the
typical management of bone disunions, open fractures, spinal
fusions, and maxillofacial damages (Kang et al., 2012; Rahman
et al., 2014; Wang et al., 2014). However, heterotopic bone
formation, osteolysis, radiculitis, and retrograde ejaculation were
also reported when using BMPs (Tannoury and An, 2014; Kang
et al., 2017). TGFs-β are able to promote the chondrocyte and
osteoblast proliferation and also differentiation of mesenchymal
cells into chondrocytes. These factors are of crucial importance in
coupling bone formation and resorption processes by increasing
bone resorption at higher concentrations.

Other factors, FGFs, IGFs, PDGFs, and VEGF, are extensively
tested for their osteogenic and angiogenic properties in bone
repair (Wildemann et al., 2007). FGFs can stimulate the
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mesenchymal cell, osteoblast, and chondrocyte proliferation, but
also enhance tissue growth due to their angiogenic properties.
Within the FGF family, FGF-2 or bFGF is the most studied
cytokine regarding bone healing applications (Bai et al., 2013).
IGFs are able to promote the proliferation and the collagen
matrix synthesis and secretion from osteoblast and chondrocytes
(Bai et al., 2013; Moller et al., 2013). Depending on their
concentrations, PDGFs are chemotactic andmitogenic factor that
can either promote chondrocyte and osteoblast proliferation, or
induce bone resorption (Bai et al., 2013).

In addition, several factors, including the parathyroid
hormone, the growth hormone, steroids, the calcitonin or the
vitamin D, are also used, alone or associated with other elements,
in systemic applications to stimulate osteogenesis, angiogenesis,
and osteoblast differentiation during bone healing (Ellegaard
et al., 2010; Suchak and Soory, 2013; Prideaux et al., 2015;
Verdonk et al., 2015).

It has also been recently reported that osteocytes are
producing sclerostin, an antagonism of the Wnt signaling
pathway, which constitutively restricts the bone formation.
Several studies thus demonstrated that sclerostin inhibition
using anti-sclerostin monoclonal antibodies can increase the
bone formation of all bone compartments, including the
trabecular, endosteal, intracortical, and periosteal faces. These
sclerostin antibodies can thus promote a bone mass increase
and bone strength improvement, as well as enhancing fracture
consolidation and healing of both non-critical and critical size
skeletal defects in numerous studies in animal models (Jawad
et al., 2013; Virk et al., 2013; Alaee et al., 2014; Tinsley et al., 2015),
but also in human studies (Padhi et al., 2011; Costa et al., 2014;
McColm et al., 2014; Recker et al., 2015).

At last, microRNAs (miRNAs) have been recently reported
as regulators of skeleton growth [15, 31–34] and remodeling
(Murata et al., 2014; Sun et al., 2015; Waki et al., 2015; Weilner
et al., 2015) as well as many various processes, including in cell
renewal (Otto et al., 2017; Ran et al., 2017), cell differentiation
(Peng et al., 2016; Huang et al., 2017), wound healing (Roy
and Sen, 2012), angiogenesis (Pourrajab et al., 2015), or tissue
regeneration (Fang et al., 2015). miRNAs are small (16–25
nucleotides) non-coding RNA, often highly conserved among
species, that bind to the 3′UTR of target mRNAs controlling
to their degradation or translational repression (Huang et al.,
2011). Among the several miRNAs reported as regulators of
skeleton growth and remodeling, miR-92a was found to be
decreased within days after fractures and its in vivo inhibition
using local or systemic administration of anti-miR-92a in mice
with a femoral fracture increased the callus volume, improved
neovascularization and overall enhanced the fracture healing
(Murata et al., 2014). Fracture healing improvement, with
accelerated endochondral ossification, increased callus volume
and improved biomechanical parameters, was also reported in
a rat model of closed femur fracture with internal fixation,
after local injection of rat bone marrow derived mesenchymal
stem cells overexpressing miR-21 (Sun et al., 2015). Serum
circulating miRNAs (miR-10a-5p, miR-10b-5p, miR-133b, miR-
22-3p, miR-328-3p, and let-7g-5p) were also reported with
differential levels of expression in patients suffering from

osteoporotic fractures; whereas 5 of them were able to regulate
the osteogenic differentiation of human mesenchymal stem cells
in vitro (Weilner et al., 2015). These few examples suggest that
miRNAs are key regulators of bone metabolism and may thus
display therapeutic interest for bone repair modulation.

Cell-Based Therapies
Several approaches, based on cell-therapy, are currently applied
to improve both bone healing and bone vessels formation,
usingmultipotentmesenchymal stromal-like cells (MSCs) and/or
endothelial progenitor cells (EPCs).

Following the recommendations proposed by the
International Society for Cellular Therapy in 2006 (Dominici
et al., 2006), cells that exhibit the following properties can be
assumed as MSCs: (i) cells that are able to adhere to plastic
dishes in vitro; (ii) cells that are capable to differentiate into
osteoblasts, adipocytes and chondrocytes; and (iii) cells that are
CD105+, CD73+ and CD90+ but CD34−, CD45−, CD14− or
CD11b−, CD79α− or CD19−, and HLA-DR−. In situ, MSCs
contribute to maintenance of the tissue they reside, indicating
that while all MSCs exhibit several identical properties, they also
have some tissue-specific distinctive characteristics devoted to
their residential tissue (Mattioli-Belmonte et al., 2015). They can
thus be harvested from several tissues, especially bone and bone
marrow, in adults, but also from placenta, umbilical cord blood,
adipose tissue, muscle, brain, kidney, heart, and others. Clinical
trials are now in the course using MSCs to heal long bones
after defects or disunion fractures, or using dental pulp cells in
mandible regeneration (d’Aquino et al., 2009; Giuliani et al.,
2013; Paino et al., 2017). However, the utilization of MSCs is
nevertheless confronted to several complications (Centeno et al.,
2010; Yim et al., 2014): (i) their extraction implicates an invasive
process and morbidity; (ii) their proliferation and differentiation
abilities decrease with the age of the donor; and (iii) lack of
early vascularization of MSC associated grafts induces premature
death of the implanted cells.

EPCs, mainly found in bone marrow, can mobilize into
the bloodstream and home to ischemic sites under the
stimulation of specific factors, including G-CSF, VEGF, FGF-
2, PGF, EPO, or SDF-1. EPCs are typically described as cells
expressing a combination of hematopoietic progenitor markers
(CD34/CD133) and an endothelial marker (VEGF receptor-2).
These cells are involved in several tissue functions, including
neoangiogenesis, vascular repair and blood-flow recovery after
ischemia, as well as fracture healing and bone regeneration since
they exhibit an osteogenic potential (Atesok et al., 2010; Deng
et al., 2011; Keramaris et al., 2012).

Since EPCs represent a very rare population cells in the
circulation (0.0001% of the total mononuclear cells in human
adult peripheral blood), EPC can be alternatively harvested
among the abundant CD34+ cell fraction into the adult
peripheral blood after G-CSF clinical mobilization. This CD34+

cells, also known as endothelial and hematopoietic progenitor
cell-rich population, exhibit phenotypic markers associated to
both endothelial and hematopoetic lineages (CD133+, CD31+,
c-Kit+, CD45+, and CD14−), and demonstrated angiogenic and
osteogenic characteristics similar to EPCs in vitro and in vivo.
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Since (neo)vascularization plays a central role in the process
of bone development and healing, several studies investigated
the ability of CD34+ cells to heal bone fractures and reported
encouraging results (Atesok et al., 2010).

Biomaterials
Several descriptions were proposed for the word “biomaterials.”
One definition given by Vert et al. in 2012 is “material exploited
in contact with living tissues, organisms, or microorganisms”
(Vert et al., 2012). Another definition by Williams in 2009 is:
“a biomaterial is a substance that has been engineered to take
a form which, alone or as part of a complex system, is used
to direct, by control of interactions with components of living
systems, the course of any therapeutic or diagnostic procedure, in
human or veterinary medicine” (Williams, 2009). Biomaterials
are set to interact with biological structures to assess, increase,
restore or heal altered tissues, organs, or functions. Compared to
other categories of materials, biomaterials have the properties to
persist in their grafted biological situation without harming the
surrounding tissues.

A large variety of materials, including natural originated
materials, polymers, ceramics, and composites, as well as nano-
materials, can be exploited as biomaterials in vivo to improve
the 3D configuration of the regenerated bone tissue and to
promote the cell differentiation along the osteoblastic lineage
(Dennis et al., 2015; Khademhosseini and Langer, 2016). The
3D materials need to be biocompatible, porous, and should
exhibit the adequate porous architecture to reestablish the global
anatomy and function of the original tissues and reduce the
production of non-functional necrotic tissues (Hollister, 2005;
Kraehenbuehl et al., 2011; Yoo, 2013; Algahtani et al., 2014;
Langer, 2015).

Native biomaterials can be a piece of bone from the same
individual (autograft), from individuals of the same species
(allografts) or from different species (xenografts).

Biopolymers used in tissue engineering are synthetic organic
materials biocompatible with human tissues. These materials
can be synthetics (such as polylactic acid [PLA], polyglycolic
acid [PGA], and copolymers of PLA-PGA), or of natural
origin, such as the widely used 3D collagen-based biomimetic
hydrogel scaffolds (Helary et al., 2010, 2015). These scaffolds
are biocompatible, biodegradable with low antigenicity, and
exhibit a suitable environment to provide osteoblast attachment,
proliferation, and differentiation (Abou Neel et al., 2013; Mravic
et al., 2014). Although collagen scaffolds are per se highly
hydrated (with more than 95% w/v fluid) with weak mechanical
properties for tissue replacement applications (Cheema et al.,
2007), the “simple” plastic compression of the material rapidly
increases the relative collagen fibrillar density (to more than 10%
in weight) by removing the excess of fluid (Brown et al., 2005).
The “plastic compression” approach thus yields a type I collagen
matrix with a fibrillar density similar to that of native bonematrix
(Coyac et al., 2013; Chamieh et al., 2016). This process enables
the rapid, controllable and reproducible production of dense
collagen gel scaffolds with highly defined meso-structure and
increased biomechanical properties, similar to that of the osteoid
(Engler et al., 2006). Furthermore, cell seeding constitutes part of

the processing route, and the scaffolds provide the 3D structure
for their growth and differentiation without compromising their
viability (Brown et al., 2005; Ghezzi et al., 2011). At last, it is
also important to consider also the use of molecule-entrapped
materials that can stimulate or active the tissular resident stem
cells. In that purpose, some specific scaffolds, containing growth
factors and cytokines, were created to promote the migration
and engraftment of host resident stem cells to direct the tissue
regeneration (Ko et al., 2013).

Made of non-organic oxides and salts, ceramics are wildly
employed in bone tissue engineering due to their resemblance
with bone mineral composition in the case of calcium phosphate
(a large group of minerals among which hydroxyapatite is the
most common) or thanks to their high adhering capacity to bone
tissues regarding bioglasses (Miri et al., 2016).

Nanomaterials, including nanoparticles, nanofibers,
nanotubes, and nanosheets, have become a popular material to
use in tissue engineering (Gaharwar et al., 2014). Nanomaterials
are defined as materials with one dimension between 1 and
100 nm. In the bone regeneration field, nanomaterials exhibit
several strengths: they are able to mimic the bone nano-
composition, they are presenting an increased surface area and
roughness, and finally they are displaying strong adsorption
properties for cells and bioactive proteins (Zhang and Webster,
2009). Therefore, it has been recently demonstrated that
nanoparticles coated at the surface of implant were able to
promote osteoblast activity, to decrease osteoclast activity, and
finally to enhance bone growth at the interface between the
native bone and the implanted device (Alghamdi et al., 2014).
Nanomaterials are also presenting osteoinductive properties to
promote the osteogenic differentiation of stem cells (Xu et al.,
2015), as well as osteoconductive properties to increase the
mechanical properties of implantable scaffolds (Wang et al.,
2016).

Cells free scaffolds strategies are also developed to promote
the ingrowth of new bone. These cell-free scaffolds are
designed to provide mechanical stability of implanted material,
while promoting osteogenesis, osteoconduction, and/or
osteoinduction (Bueno and Glowacki, 2009). These cell-free
scaffolds can be “resorbable” and thus be gradually degraded
and replaced by new bone (Sandor, 2012; Ros-Tarraga et al.,
2016), or “permanent” and thus endure and become integrated
within the new bone (Panseri et al., 2013). At last, cell-free
materials can incorporate bioactive factors to attract host stem
cells, bone ingrowth cytokine to promote osteoformation and/or
pro-angiogenesis factors (Patel et al., 2008).

ANGIOGENESIS AND NEUROGENESIS

CONSIDERATIONS

Since bone tissue is a highly vascularized organ, all the cells that
are implicated in vasculogenesis and osteogenesis play a key role
in bone formation and remodeling during both prenatal and
postnatal times. Therefore, any insufficient blood and cellular
supply may delay or impair spontaneous healing of bone fracture.
This close relationship, between osteogenesis and angiogenesis,
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makes neovascularization and ossification-related growth factors
important therapeutic mediators for bone healing, including
VEGF, FGF-2, BMP-2, -6 and -7 (Wildemann et al., 2007; Cui
et al., 2010).

Incorporating or entrapping bioactive factors within
biodegradable scaffolds presents the advantage of facilitating
their slow release locally over a longer duration (Ko et al.,
2013). However, as several growth factors and cytokines
are involved, the solely action of only one growth factor
could be not sufficient to stimulate the whole bone healing
and angiogenesis processes (Geuze et al., 2012). Therefore,
the action of several growth factors delivered in the ideal
combination could be able to promote both angiogenesis and
osteogenesis, thus inducing vessels formation in the tissue
constructs (Gorin et al., 2016). It is also imperative to consider
cautiously not only the accurate arrangements of these growth
factors, but also their administration time, i.e., simultaneous
or sequential. At last, it is important to have in mind the
use of angiogenic growth factors is also able to stimulate
pathological side consequences of angiogenesis promoting
tumor development, atheroscleosis, and adverse proliferative
pathologies (Moldovan and Moldovan, 2002; Wang et al., 2009;
Kilarski et al., 2012).

Instead of promoting angiogenesis using growth factors,
one way to favor the vascularization of the grafted construct
is to directing add vessel-related progenitors (such as EPCs)
(Atesok et al., 2010; Deng et al., 2011; Keramaris et al., 2012;
Liu et al., 2017), and/or to artificially create vessels within
the biomaterial at the construct step (such as by bioprinting)
(Zhu et al., 2017).

Furthermore, it is also important to consider that the
grafting environment is poor in oxygen. However, hypoxia
is a major stimulus for angiogenesis through the induction
of vasodilatation, proliferation, and migration of endothelial
cells. Activation of the hypoxia inducible factor (HIF) pathway
can trigger transcription of a wide panel of genes, including
angiogenic factors such as VEGF and extracellular matrix
components (Germain et al., 2010; Gorin et al., 2016).

At last, the restauration of the sensitive innervation of the
tissue is important for the future functionality of the implanted
engineered tissue (Bataille et al., 2012; Martens et al., 2013, 2014).
It has thus be recently reported a calcitonin gene-related peptide

(CGRP) positive staining, mainly localized around neovessels,
when using DPSC-loaded-dense collagen gel scaffolds after
in vivo implantation (Gorin et al., 2016).

CONCLUSION

The global market of bone graft substitutes is rapidly rising,
in particular because of the population demands and the
development of the health system. Therefore, one of the most
important research and development consideration in tissue
engineering is to develop, design and manufacture biodegradable
scaffolds.

One of the major challenges would be to improve the scaffold
organization in the purpose of fitting with the patient-specific

characteristics, as well as to create biocompatible materials
with a regular growth rate all along their volume, using pore
calibrated gradients or precise dispersions of entrapped cells
and/or growth factors (Knothe Tate, 2011). In that purpose,
based on their neural crest origin and on their potential to form
mineralized tissue, dental pulp stem cells (DPSC) represent an
interesting therapeutic tool to restore damaged orofacial bones
or teeth (Chamieh et al., 2016). However, many countries start
now to request good manufacturing practice (GMP) principles
(Giancola et al., 2012) that could greatly increase the complexity
of collecting, isolating and incorporating cells into the scaffold,
as well as limiting the use of some incorporated growth factors.
Finally, the “best” biomaterial scaffold would be pointless without
the establishment of a vascular system in the constructs within
the following few days after its implantation.
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