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Wenxin Granule (WXKL) is a traditional Chinese medicine used for treatment of myocardial infarction (MI) and arrhythmias.
However, the genomic pathological mechanisms of MI and mechanisms of WXKL are largely unknown. This study aims to
investigate a comprehensive miRNA expression profile, and the predicted correlation pathways to be targeted by differentially
expressed miRNAs in MI, and mechanisms of WXKL from a gene level. MI rat model was established by a coronary artery
ligation surgery. miRNA expression microarrays were performed and the data were deposited in Gene Expression Omnibus
(GEO number GSE95855). And, pathway analysis was performed by using the DIANA-miRPath v3.0 online tool. The
expressions of miR-1, miR-133, Cx43, and Cx45 were detected by quantitative real-time PCR. It was found that 35 differentially
expressed miRNAs and 23 predicted pathways, including miR-1, miR-133, and gap junction pathway, are involved in the
pathogenesis of MI. And, WXKL increased the expressions of miR-1 and miR-133, while also increased the mRNA levels of
Cx43 and Cx45, and, especially, recovered the Cx43/Cx45 ratio near to normal level. The results suggest that regulatory effects
on miR-1, miR-133, Cx43, and Cx45 might be a possible mechanism of WXKL in the treatment of MI at the gene level.

1. Introduction

Myocardial infarction (MI) is a serious cardiovascular disease
that threatens human health. It remains one of the predomi-
nant causes of morbidity and mortality even though great
efforts have been made to manage it [1]. In China, the mor-
tality from MI is increasing attributable to population aging
[2]. Arrhythmia, especially ventricular fibrillation, is one of
the leading causes of death in patients with MI. And, in more
than half of sudden death cases, ventricular fibrillation
appears as the first symptom during MI [3]. Therefore, fur-
ther research of the pathological mechanism and finding
suitable agents are very important to prevent potential lethal
arrhythmia following MI.

In recent years, natural product medicine, such as tra-
ditional Chinese medicine, has drawn great attention from
people around the world and has been playing important
roles in the prevention and treatment of cardiovascular
diseases [4–6]. A traditional Chinese medicine named
Wenxin Granule (WXKL) has been reported to prevent
MI and arrhythmias [7–9]. However, the pharmacological
mechanisms of WXKL at the genomic level in MI are
largely unknown.

MicroRNAs (miRNAs)have beendemonstrated as critical
factors involved in various cardiovascular diseases including
arrhythmias following MI [10, 11]. As well known, posttran-
scriptional regulation is a pivotal and precise regulatory
mechanism that plays an important role in the process of gene
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expression. miRNAs play central roles in posttranscriptional
regulation processes, leading to the inhibition of one or more
posttranscriptional target genes silencing and then regulating
the corresponding pathways. miRNAs are a class of approxi-
mately 20–22 nucleotide long, endogenous noncoding RNAs.
The functional strand of mature miRNA could regulate pro-
tein expression at the posttranscriptional level by binding to
the 3′ untranslated regions of the target mRNA [12]. Since
the initial discovery of miRNAs in 1993 (Lee et al., 1993), it
has so far registered over 1800 miRNAs, which target about
60% of human genes, in the miRBase database (http://www.
mirbase.org/) [13]. Recently, much evidence has indicated
thatmiRNAsplay an important role in thepathogenesis of car-
diovascular disease, including coronary artery disease, myo-
cardial infarction, atherosclerosis, arrhythmias, and heart
failure, by involving in specific signaling pathways [14–17].
However, a comprehensive miRNA expression profile, espe-
cially the pathways predicted to be targeted by differentially
expressedmiRNAs in ligation-inducedMI rats, is still unclear.

Recent progress in miRNA expression microarray has
enabled the use of the high throughput technologies to obtain
an in-depth understanding of the pathological mechanisms
of MI and pharmacological mechanisms of natural product
medicine at the genomic level. In present study, a MI rat
model was established by a direct coronary artery ligation
surgery method and confirmed by electrocardiographic
(ECG) and histopathological methods. Then, left ventricular
tissues from 3 MI rats and 3 non-MI rats (control) were col-
lected for miRNA expression microarray analyses. To assess
the pathways predicted to be targeted, pathway analysis of
differentially expressed miRNAs was performed by using
the DIANA-miRPath v3.0 tool. The relative expressions of
miR-1 and miR-133 were validated by quantitative real-
time PCR, and the possible effects of WXKL were observed
at the same time. Additionally, the effect of Wenxin Granule
on Cx43 and Cx45, those involved in gap junction pathway,
was also observed in the present study.

2. Materials and Methods

2.1. Animals. A total of 50 male Sprague-Dawley (SD) rats,
weighted 200± 20 g, were acquired from Beijing Vital River
Laboratory Animal Technology Co. Ltd. (License number
SCXK (Beijing) 2012-0001).

2.2. Drugs. Wenxin Granule (SFDA Approval number
Z10950026) was manufactured by Shandong Buchang
Pharmaceuticals Co. Ltd., Xi’An, China. Captopril tablets
(SFDA Approval number H31022986) were manufactured
by Sino-American Shanghai Squibb Pharmaceuticals Ltd.,
Shanghai, China.

2.3. The MI Rat Model Preparation. The model was estab-
lished by a direct coronary artery ligation surgery method
as described previously [18]. Before surgery, the rats were
anaesthetized with 1% pentobarbital sodium (50mg/kg)
intraperitoneally, and a twelve-lead electrocardiogram
(ECG) was performed preoperatively. After left thoracotomy,
the left anterior descending coronary artery was ligated

directly at the location between the pulmonary cone and
the left atrial appendage under its origin 2-3mm in all groups
except the control. Additionally, a twelve-lead ECG was per-
formed postoperatively the day after the surgery. Whether
the surgery was successful can be judged by Q wave in post-
operative ECG, compared with preoperative ECG. In the
experimental period, the total mortality rate was 20% to
30%. The main causes of death were lethal arrhythmias,
respiratory failure, and acute pump failure.

2.4. Design and Allocation.This protocol was approved by the
Standing Committee on Animals at Dongzhimen Hospital
Affiliated to Beijing University of Chinese Medicine. All ani-
mals used in this study received humane care in compliance
with the National Institutes of Health Guide for the
standards for ethical treatment of laboratory animals. And,
efforts were made to minimize the number of animals used.
The MI rats with a successful coronary artery ligation
surgery were assigned randomly into the model group, the
captopril group, and the WXKL group. Meanwhile, the rats
without coronary artery ligation were assigned to the control
group, with 9 rats in each group. The day after the surgeries,
treatments were administered to the rats intragastrically for
4 weeks. All drugs were ground and mixed with distilled
water before administration. The captopril group was given
with a dosage of 2.2mg/kg of captopril tablets. The WXKL
group was given with a dosage of 2.7 g/kg of WXKL. The
sham group and the model groups received the same volume
of distilled water via oral gavage. After 4 weeks of treat-
ments, all rats were anaesthetized and dissected to isolate
the heart for the subsequent experiments.

2.5. Masson Trichrome Staining. Masson trichrome staining
was performed with tissue that was fixed in 4% paraformal-
dehyde and embedded in paraffin. The tissue was cut into
4 μm sections using a paraffin slicer. The main procedures
performed are as follows: deparaffinize and rehydrate
through xylene and a series of ethanol washes (100, 95, 90,
80, and 70% alcohol), stain in Biebrich scarlet-acid fuchsin
solution for 15 minutes, wash in distilled water, differentiate
in phosphomolybdic-phosphotungstic acid solution for 5
minutes, transfer sections directly to brilliant green solution
and stain for 10 minutes. rinse briefly in distilled water and
differentiate in 1% acetic acid solution for 1 minute, wash
in distilled water, dehydrate very quickly through 95%
alcohol, 100% alcohol, and clear in xylene, and mount with
resinous mounting medium.

2.6. Microarray Hybridization. RNA was extracted by
mirVana™ RNA Isolation Kit (Applied Biosystem, Foster,
CA, USA) following the manufacturer’s instructions.
Cyanine-3- (Cy3-) labeled cRNA was prepared from 0.2 μg
RNA using the One-Color Low RNA Input Linear Amplifica-
tion PLUS kit (Agilent Technologies, Santa Clara, CA)
according to the manufacturer’s instructions, followed by
RNeasy column purification (QIAGEN, Valencia, CA). Dye
incorporation and cRNA yield were checked with the Nano-
Drop ND-1000 Spectrophotometer. Then, 0.6 μg of Cy3-
labelled cRNA (specific activity> 10.0 pmol Cy3/μg cRNA)
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was fragmented at 60°C for 30 minutes in a reaction volume
of 22.5 μl containing 1x Agilent fragmentation buffer and 2x
Agilent blocking agent following the manufacturers’ instruc-
tions. On completion of the fragmentation reaction, 22.5 μl
of 2x Agilent hybridization buffer was added to the fragmen-
tationmixture and hybridized to Agilent Rat miRNA (8∗15K,
Design ID: 070154) for 17 hours at 65°C in a rotating Agilent
hybridization oven. After hybridization, microarrays were
washed 1 minute at room temperature with GE Wash Buffer
1 (Agilent) and 1 minute with 37°C GE Wash buffer 2
(Agilent), then dried immediately by brief centrifugation.
Slides were scanned immediately after washing on the Agi-
lent DNAmicroarray scanner (G2505C) using one color scan
setting for 4× 180 k array slides (scan area 61× 21.6mm, scan
resolution 3 um; dye channel is set to Green and Green PMT
is set to 100%). The microarray data discussed in this
study have been deposited in the National Center for Bio-
technology Information (NCBI) Gene Expression Omnibus
(GEO) and are accessible through (GEO) Series accession
number GSE95855 (https://www.ncbi.nlm.nih.gov/geo/que
ry/acc.cgi?&acc=GSE95855).

2.7. Bioinformatic Analysis. The scanned images were ana-
lyzed with Feature Extraction Software 10.7.1.1 (Agilent
Technologies) using default parameters to obtain back-
ground subtracted and spatially detrended processed signal
intensities as the raw data. Raw data were normalized in
quantile algorithm with Genespring 13.0 (Agilent Technolo-
gies). The probes that at least 100.0 percent of samples in any
1 condition out of 2 conditions have flags in "Detected" were
maintained for further data analysis. Differentially expressed
miRNAs were then identified through fold change as well
as P value calculated using t-test. The threshold set for
up- and downregulated genes was a fold change≥ 2.0 and a
P value≤ 0.1. Hierarchical clustering was performed to show
the distinguishable miRNA expression pattern among sam-
ples. Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were performed by using the

online DIANA-miRPath v3.0 tool (http://www.microrna.gr/
miRPathv3) to identify the main functions of the differen-
tially expressed miRNAs [19].

2.8. Real-Time Quantitative RT-PCR. Quantification was
performedwith a two-step reaction process: reverse transcrip-
tion (RT) and PCR. MicroRNA was reversely transcribed
using TaqMan® microRNA Reverse Transcription Kit
(Catalog number 4366596, Applied Biosystems, Foster, CA,
USA) and then used for quantitative real-time PCR using
FastStart Universal SYBR Green Master (Rox) (Catalog
number 04913914001, Roche, Swiss) according to the manu-
facturer’s instructions. U6 was used as internal controls. The
microRNA-specific primer sequences were performed using
TaqMan microRNA Assays (Catalog number 4427975,
Applied Biosystems). The mRNA was reversely transcribed
usingThermoScientificRevertAidFirst Strand cDNASynthe-
sisKit (Catalognumber#K1622,ThermoFisherScientific Inc.,
USA). ThemRNA quantitative real-time PCR was performed
using SYBR Green PCR Master Mix (Catalog number
4309155, Applied Biosystems) according to the manufac-
turer’s instructions. GAPDH was used as internal controls.
The mRNA-specific primer sequences were designed and
synthesized as follows: Cx43 forward: 5′-CAACAACCTG
GCTGCGAAAA-3′; reverse: 5′-ACCTTGCCGTGCTCTT
CAAT-3′. Cx45 forward: 5′-GGGCTCTGGAAGAAACGG
AA-3′; reverse: 5′-ATGCTTGGGTTTTGGTTGGC-3′.
GAPDH forward: 5′-AGTTCAACGGCACAGTCAAG-3′;
reverse: 5′-TACTCAGCACCAGCATCACC-3′. The expres-
sion levels of microRNAs were normalized to U6. The expres-
sion levels of mRNAs were normalized to GAPDH. And, the
expression levels of microRNAs and mRNAs were calculated
using the 2−ΔΔCt method [20].

2.9. Statistical Analysis. SPSS software package 13.0 for
windows was used for data analysis. Continuous variables
were expressed as mean± standard deviation (SD). Statistical
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Figure 1: Electrocardiogram (ECG), heart anatomical samples, and Masson trichrome staining from normal and MI rats. (a) Typical ECG
recordings. (b) Heart anatomical samples. Scale bars = 1 cm. (c) Masson trichrome staining. Green staining indicates myocardial fibrosis.
Scale bars = 100 μm.
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analysis was carried out on three or more groups by one-way
analysis of variance (ANOVA) and LSD (Fisher’s least signif-
icant difference) test. A value of P < 0 05 was considered
statistically significant.

3. Results

3.1. Identification of the MI Rat Model. We first determined
whether the coronary artery ligation surgery was successful
in the present study. As shown in Figure 1(a), the ECG of
the model group exhibited pathological Q waves. As shown
in Figure 1(b), anatomical samples of the heart could be
observed with significant MI scarring in the model group.
As shown in Figure 1(c), local tissue fibrosis could be
observed in the model group by Masson trichrome staining.
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Figure 2: Heatmap of miRNA expression microarray from left ventricular tissue samples of MI rats (model group) and non-MI rats (control
group). At 4 weeks after the coronary artery occlusion surgery, heatmap of 35 differentially expressed miRNAs between MI and non-MI rats
identified by microarray. The miRNA clustering tree is hierarchically clustered on the left, and the sample clustering tree is hierarchically
clustered on the top. The samples are clustering significantly into two groups, the control (non-MI rats) and model (MI rats). The color
scale of the miRNA represented in the corresponding row shows the relative expression level of miRNAs; green indicates downregulation,
while red indicates upregulation.
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Figure 3: Target genes predicted based on TargetScan database and
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Figure 4: KEGG annotations of differentially expressed miRNAs from left ventricular tissue samples of MI rats (model group) and non-MI
rats (control group). The miRNA versus pathway heatmap was created directly from the DIANA-miRPath v3.0 online tool. The heatmap
depicts the level of enrichment in pathways of 35 differentially expressed miRNAs between MI and non-MI rats identified by microarray.
There were 23 predicted pathways integrating with 35 differentially expressed miRNAs in the heatmap. The pathway clustering tree is
shown on the top, and the legend on the bottom indicates the pathway represented in the corresponding column. The miRNA clustering
tree is shown on the left, and the legend on the right indicates the miRNA represented in the corresponding row. The color scale shown
on the upper left corner illustrates the predicted correlation degree of pathways with the miRNAs (shown as log P value).
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The above results confirmed the MI model reliability that we
used in the present study.

3.2. miRNA Expression Signature and Hierarchical Clustering
Analysis of MI Rat Model. At 4 weeks after the coronary
artery occlusion surgery, miRNA expression profile was
tested between the control and MI rat models. As shown in
Figure 2, a total of 35 differentially expressed (more than a
twofold change) miRNAs were identified. Compared with
the control group, 17 miRNAs were downregulated in the
model group as shown in the upper portion of Figure 2.
And the other 18 miRNAs were upregulated as shown in
the lower portion of Figure 2. Thereafter, hierarchical cluster-
ing analysis illustrated that differentially expressed miRNAs
could distinguish control and model samples apparently as
shown in the sample clustering tree (on the top of Figure 2).

3.3. Target Prediction of Differentially Expressed miRNAs.
Target genes of differentially expressed miRNAs were the
intersection predicted with TargetScan and microRNAorg
databases.As shown inFigure 3, a total of 5829 potential target
genes were predicted in the common set of the two databases.

3.4. Pathway Analysis of Differentially Expressed miRNAs. To
assess the pathways predicted to be targeted, pathway analy-
sis of differentially expressed miRNAs was performed by
using the DIANA-miRPath v3.0 tool. As shown in Figure 4,
the 23 pathways were predicted to be related to the 35 former
differentially expressed miRNAs. ECM-receptor interaction,
fatty acid metabolism, TGF-beta signaling, and gap junction
pathway were involved in these predicted pathways.

3.5. Relative Expressions of miR-1 and miR-133. The relative
expressions of miR-1 and miR-133 were validated by quanti-
tative real-time PCR, and the possible effects of WXKL were
observed at the same time. The relative expression of
miRNAs was normalized against that of the U6 endogenous
control. As shown in Figure 5, the relative expression of
miR-1 decreased in the model group compared with the con-
trol group (P < 0 01). Compared with the control group, the
relative expression of miR-133 decreased in the model and
the captopril groups (P < 0 01 and P < 0 05, resp.). Com-
pared with the model group, the relative expressions of
miR-1 and miR-133 increased in the WXKL and the capto-
pril groups (P < 0 01 and P < 0 05, resp.).

3.6. Pathway Analysis of Differentially Expressed Cardiac-
Specific miRNAs. MiR-1 and miR-133 are muscle-enriched
miRNAs, and they are abundant in the heart. To further
assess the pathways predicted to be targeted, pathway analy-
sis of differentially expressed cardiac-specific miRNAs was
performed by using the DIANA-miRPath v3.0 tool. As
shown in Figure 6, the 14 pathways were predicted to be
related to the 3 differentially expressed miR-1 and miR-133
family members. ECM-receptor interaction and gap junction
pathway were the predicted highest correlation.

3.7. Relative mRNA Levels of Connexin 43 (Cx43) and
Connexin 45 (Cx45). The mRNA levels of Cx43 and Cx45
are the important factors involved in gap junction pathway.

The relative mRNA levels of Cx43 and Cx45 were detected
by quantitative real-time PCR, and the possible effects of
WXKL were observed at the same time. As shown in
Figure 7(a), the relative mRNA levels of Cx43 decreased in
the model and the captopril groups compared with the con-
trol group (P < 0 05). Compared with the model and the con-
trol groups, the relative mRNA levels of Cx43 and Cx45
increased in the WXKL group (P < 0 01 and P < 0 05, resp.).
As shown in Figure 7(b), the Cx43/Cx45 ratio decreased in
the model and the captopril groups compared with the con-
trol group (P < 0 01 and P < 0 05, resp.). Compared with
the model group, the Cx43/Cx45 ratio increased in the
WXKL group (P < 0 01).

4. Discussion

miRNAs are approximately 20–22 nucleotide long, noncod-
ing, endogenous single-strandedRNAs [21]. Studies have con-
firmed thatmiRNAs are indeed implicated in thepathogenesis
of MI by involving in specific signaling pathways [22–24].
However, a comprehensive miRNA expression profile, espe-
cially the pathways predicted to be targeted by differentially
expressed miRNAs in MI, is largely unknown.

In the present study, a MI rat model was established by
ligation of the left anterior descending coronary artery. This
method is the most commonly used experimental model to
induce MI in rodents. At 4 weeks after the coronary artery
occlusion surgery, the pathological Q waves, scar tissue, and
myocardial fibrosis could be observed in the model group.
Those results confirmed the MI model reliability in the pres-
ent study. In order to understand the pathological mecha-
nisms of MI better, the complete miRNA expression state
of MI rats and non-MI rats was examined using Agilent Rat
miRNA microarray (8∗15K, Design ID: 070154) of a total
of 758 miRNA probes. The miRNA microarray makes it
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possible to measure the expression levels of almost all the
known rat miRNAs and therefore facilitates the identification
of miRNAs and the targeted pathways that are related to MI.
In this study, a total 35 differentially expressed miRNAs were
identified with more than a twofold change. In the model
group, 17 miRNAs were downregulated, including miR-1,
miR-133, miR-29, miR-126, miR-212, miR-499, miR-322,
miR-378, and miR-30 family members, whereas the other
18 miRNAs were upregulated, including miR-21, miR-195,
miR-155, miR-320, miR-125, miR-199, miR-214, miR-324,
and miR-140 family members. Among these differentially
expressed miRNAs, miR-1, miR-133, miR-29, miR-126,
miR-499, miR-30, miR-21, miR-195, miR-155, miR-199,
miR-214, and miR-140 have been reported to be related to
MI [25–36], while the other miRNAs have not been reported
directly in MI. As well known, miRNAs are likely to partici-
pate in numerous disease initiation and development by
regulating specific target genes. Each miRNA can regulate
up to dozens of mRNAs, while multiple miRNAs have been
also shown to collaborate in targeting a specific mRNA [37].

Based on the findings of this study, the total 35 differen-
tially expressed miRNAs were identified to target 5829
mRNAs in the intersection predicted with TargetScan
and microRNAorg databases. Consequently, many signaling
pathways composed of numerous mRNAs are involved in the
pathogenesis of MI. But, the numerous miRNAs and target
mRNAs pose a significant bottleneck to the elucidation of
their functional impact. Fortunately, the DIANA-miRPath
v3.0 online tool offers an extensive array of fundamental tools
that enable the functional annotation of one or more miR-
NAs [19]. To assess the pathways predicted to be targeted,
pathway analysis of differentially expressed miRNAs was
performed by using the DIANA-miRPath v3.0 tool in this
study. Pathway analysis showed that many pathways are
involved in MI, including ECM-receptor interaction, TGF-
beta signaling, fatty acid metabolism, and gap junction
pathway. Although extracellular matrix (ECM) plays an
important role in the maintenance of myocardial tissue struc-
ture integrity and cardiac pump function, excessive ECM
remodeling may lead to ventricular diastolic and systolic
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Figure 6: KEGG annotations of differentially expressed cardiac-specific miRNAs from left ventricular tissue samples of MI rats (model
group) and non-MI rats (control group). The miRNA versus pathway heatmap was created directly from the DIANA-miRPath v3.0 online
tool. The heatmap depicts the level of enrichment in pathways of 3 differentially expressed cardiac-specific miRNAs. There were 14
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dysfunctions and ultimately contributes to heart failure
[38, 39]. Notably, extracellular matrix synthesis and degrada-
tion are closely related to TGF-beta signaling pathway [40]. It
is well known that fatty acid and glucose serve a wide variety
of functions in the heart. Reportedly, fatty acid dysmetabo-
lism is an important factor which contributes to post-MI
cardiac dysfunction and remodeling [41]. Additionally, gap
junction pathway is recognized as one of the substrates in
susceptibility to post-MI arrhythmias [42].

The above results indicate that the miRNAs and specific
signaling pathways might be potential therapeutic targets
for treatment of MI. The present study is interested in miR-
1 andmiR-133, twomuscle-enriched miRNAs, and they were
chosen for further validation by the quantitative real-time
PCR, and the possible effects of WXKL were observed at
the same time. Additionally, the effect of WXKL on Cx43
and Cx45, those involved in gap junction pathway, was also
detected in the present study. The results showed that the
expressions of miR-1 and miR-133 were consistent with the
microarray data. And WXKL increased the expressions of
miR-1 and miR-133 significantly. MiR-1 and miR-133 have
been regarded as key factors involved in cardiac development
and cardiovascular disease. Reportedly, mice lacking miR-1-
2 develop ventricular septal abnormalities and cardiac
rhythm disturbances [43]. While the deficiency of miR-
133a leads to myocardial matrix remodeling and progress
of heart failure [44, 45]. Further pathway analysis indicated
that gap junction pathway was the predicted closely correla-
tion pathway to be targeted by miR-1 and miR-133. Notably,
Cx43 and Cx45 are the important factors involved in gap
junction pathway, and they are indeed required to maintain
cardiac rhythms [46]. One study has revealed that multiple
miRNA binding sequences exist in 3′-untranslated regions
of Cx43 and Cx45 genes [47]. It has been reported that
Cx43 is a miR-1 and miR-133 target [48, 49], but Cx45 has

not been reported yet. Both Cx43 and Cx45 are the principal
connexins which are expressed in the left ventricle [50]. The
change of Cx43/Cx45 ratio has been demonstrated to
increase susceptibility to cardiac rhythmicity and reduce
gap-junctional intercellular communication [46, 51–53]. In
the present study, we demonstrated that WXKL increased
the relative mRNA levels of Cx43 and Cx45, and, especially,
recovered the Cx43/Cx45 ratio near to normal level. Some
studies have confirmed that WXKL is an effective alternative
medicine that can improve myocardial ischemia, enhance
cardiac function, relieve ventricular remodeling, and reduce
the occurrence of arrhythmia [7, 9, 18, 54]. The observed
beneficial effects of WXKL in the two connexins can be partly
attributed to the above cardioprotective effects. The above
findings provide a possible pharmacological mechanism of
WXKL in the treatment of MI at the genomic level.

5. Conclusions

Complex changes of miRNAs and related pathways,
including miR-1, miR-133, and gap junction pathway, are
involved in the pathogenesis of MI. Regulatory effects on
miR-1, miR-133, Cx43, and Cx45 might be a possible phar-
macological mechanism of WXKL in the treatment of MI at
the gene level.
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