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Abstract

The human face is complex and multipartite, and characterization of its genetic architecture 

remains challenging. Using a multivariate genome-wide association study (GWAS) meta-analysis 

of 8,246 European individuals, we identified 203 genome-wide significant signals (120 also study-

wide significant) associated with normal-range facial variation. Follow-up analyses find that the 

regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells 

and craniofacial tissues, several regions harbor multiple signals with associations to different facial 

phenotypes, and there is evidence for potential coordinated actions of variants. In sum, our 

analyses provide insights for understanding how complex morphological traits are shaped by both 

individual and coordinated genetic actions.

Introduction:

In 1991, Atchley and Hall epitomized one of the major problems in contemporary biology as 

the need “to understand how complex morphological structures arise during development 

and how they are altered during evolution (p.102)1.” This problem continues to captivate 

biologists, geneticists, anthropologists, and clinicians almost three decades later. In their 

review, the authors describe a “complicated developmental choreography” in which intrinsic 

genetic factors, epigenetic factors, and interactions between the two make up the progeny 

genotype, which engages with the environment to ultimately produce a complex 

morphological trait composed of separate component parts1. We now understand that the 

intrinsic genetic factors ultimately contributing to complex morphological traits consist not 

only of single variants altering protein structure and/or function, but also non-coding 

variants and interactions among variants, each affecting multiple tissues and developmental 

timepoints. This realization requires methods capable of describing the genetic architecture 
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of complex morphological traits, which includes identifying the individual genetic variants 

contributing to morphological variation and interactions among those variants2,3.

The human face, an exemplar complex morphological structure, is highly multipartite and 

results from the intricate coordination of genetic, cellular, and environmental factors4–6. 

Through prior GWAS, over 100 loci have been implicated in normal-range facial 

morphology7–23 (Supplementary Table 1). However, as with all complex morphological 

traits, our ability to identify and describe the genetic architecture of the face is limited by our 

ability to accurately characterize its phenotypic variation4, identify variants of both large and 

small effect15, and identify interactions between variants. We previously described a data-

driven approach to facial phenotyping, which facilitated the identification and replication of 

15 loci involved in global-to-local variation in facial morphology16. Here, we apply this 

phenotyping approach to two larger cohorts from the US and UK (nTotal = 8,246; 

Supplementary Table 2) and apply multivariate techniques to uncover new biological 

insights into the genetic architecture of the human face. We now identify 203 genome-wide 

significant (120 also study-wide significant) signals, located in 138 cytogenetic bands, 

associated with multivariate normal-range facial morphology. Many of these loci harbor 

genes involved in craniofacial syndromes but had not yet been observed in GWAS for 

normal-range facial morphology but 53 genome-wide significant (26 also study-wide 

significant) peaks are located in regions with no previously known role in facial 

development or disease, potentially pointing to previously unknown genes and pathways 

involved in facial development. We additionally provide evidence that variants at our 

genome-wide significant peaks are involved in regulating enhancer activity in cell types 

controlling facial morphogenesis across the developmental timeline. Furthermore, we reveal 

interactions between variants at different loci affecting similar aspects of facial shape 

variation, identifying gene sets that work in concert to build human faces. With this work, 

we not only push forward our understanding of human facial genetics, but also illustrate the 

potential for researchers to confront Atchley and Hall’s problem: by intensively 

characterizing complex morphological variation and using advanced methods to identify 

factors involved in the developmental choreography of complex morphological structures.

Results

Multivariate phenotyping and meta-analysis framework

To study facial variation at both global and local scales, we start with a set of three-

dimensional (3D) facial surface scans, upon which we map a dense mesh of 7,160 

homologous vertices24. We then apply a data-driven facial segmentation approach, defined 

by grouping vertices that are strongly correlated using hierarchical spectral clustering16,25. 

The configurations of each of the resulting 63 segments are then independently subjected to 

a Generalized Procrustes analysis, after which principal components analysis (PCA) is 

performed in conjunction with parallel analysis to capture the major phenotypic variation in 

each facial segment26,27 (Extended Data Fig. 1). The number of principal components (PCs) 

kept at this stage of the analysis ranged from 7 to 70, with segments containing large 

numbers of quasi-landmarks generally requiring more PCs to describe the variation in that 

segment. The inherent shape variability in each segment also plays a role in the number of 
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PCs retained by parallel analysis, with more variable segments retaining more PCs. For 

example, though segments 5 and 25 contain similar numbers of quasi-landmarks, because 

the variability of the nose (segment 5) is generally greater than that of the lower cheeks 

(segment 25), the parallel analysis for segment 5 retained 32 PCs while for segment 25 it 

retained only 20 PCs (Extended Data Fig. 1B).

We then tested for genetic association between the facial PCs and 7,417,619 single-

nucleotide polymorphisms (SNPs) using a data-driven approach (Extended Data Fig. 2). 

Within each segment, instead of a priori selecting the PCs of interest, or treating each of the 

63 segments as a single “trait”, we use canonical correlation analysis (CCA) to first identify 

the linear combination of components in each segment maximally correlated with the SNP 

being tested in the identification cohort. We call this multivariate combination of PCs the 

“trait.” Thus, each SNP is associated (though not always with significance), with its own 

“trait” in each segment. Subsequently, the verification cohort is projected onto each of these 

traits, creating univariate “phenotype” variables which are tested for genotype-phenotype 

associations using linear regression. The projection ensures that the shape variation tested in 

the verification step is equivalent to the “trait” used in the identification step. The 

identification and verification P values are then meta-analyzed using Stouffer’s method28,29. 

The whole process is then repeated, switching the dataset used for identification and 

verification, thereby resulting in 126 meta-analysis P values and traits (63 segments × 2 

meta-analysis tracks) for each SNP. Further details are available in the Methods and 

Supplementary Notes 1 and 2.

Sharing of genome-wide signals between facial segments

We first assessed the degree to which variation in each facial segment shares the same 

patterns of association across the genome by computing the linkage disequilibrium score 

correlation (LDSC) based on genome-wide association P values for each pair of facial 

segments30,31. This 63 × 63 matrix of correlations was visualized on top of the facial 

segmentation hierarchy to assess between-segment correlations within and between facial 

quadrants (Extended Data Fig. 3), though it is important to note that these LDSCs should not 

be considered “genetic correlations” in the typical way of a univariate trait, since the z-

scores used are unsigned. The LDSCs were highest between segments of the same facial 

quadrant (i.e. lips, nose, lower face, upper face), validating the hierarchical clustering used 

to initially define the segments (Extended Data Fig. 3B). Average-linkage hierarchical 

clustering of the facial segments based on the correlation values gave rise to four main 

clusters, each primarily corresponding to segments from the same quadrant (Extended Data 

Fig. 4). Despite substantial within-quadrant similarity, there were notable correlations 

between groups of segments from different quadrants (Extended Data Fig. 3). Some of these 

specific correlations reflect close physical proximity of the segments in different quadrants 

(e.g. segments 12 and 33), but some correlations seem to reflect the shared embryological 

origins of groups of segments. Specifically, segments representing the nose (Quadrant II) 

and upper face (Quadrant IV) cluster together, and most segments representing the lips 

(Quadrant I) and lower face (Quadrant III) cluster together (Extended Data Fig. 4). 

Quadrants II and IV together approximate the frontonasal prominence, which appears earlier 
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in development than the mandibular and maxillary prominences, which are approximated by 

Quadrants I and III32.

Genome-wide association meta-analysis

In total, we identified 17,612 SNPs with P values (PMeta-US and/or PMeta-UK) lower than the 

genome-wide threshold (P ≤ 5 × 10−8). Of these, 11,398 SNPs also passed the study-wide 

significance threshold (P ≤ 6.96 × 10−10) (Supplementary Fig. 1). For each peak passing the 

genome-wide threshold, we designated the SNP with the lowest P value across all facial 

segments as the “lead SNP,” refining our results to 218 genome-wide significant lead SNPs. 

Of these, 203 SNPs showed consistent genetic effects on the trait identified in the US- and 

UK-driven meta-analyses in the facial segment with the lowest P value for that SNP (Fig. 1; 

Supplementary Table 3) and 120 of these were also below study-wide significance. Visual 

representations of the LocusZoom33 and effect plots for each of the 203 genome-wide 

significant SNPs are available in the FigShare repository34.

The global-to-local approach means that we often identified associations between a single 

SNP and variation in many facial segments. In this manuscript, we primarily focus on the 

segment in which the SNP had its lowest P value (the ‘Best segment’) and provide 

information on which meta-analysis track (Meta-US or Meta-UK) in which the SNP reached 

this significance level (the ‘Best meta-analysis track’). Thus, throughout the rest of the 

manuscript, the reported P values for each SNP will be in the format of PBest track (Best 
segment) = value. By plotting the strongest association results for each segment (Fig. 1, left), 

segments 1 and 2 are visibly the “Best segment” for most SNPs, with n = 20 SNPs reaching 

lowest significance in the full face (segment 1) in the US-driven meta-analysis (n = 15 for 

Meta-UK) and n = 19 SNPs reaching lowest significance in segment 2 in the US-driven 

meta-analysis (n = 18 for Meta-UK).

Genes near lead SNPs are enriched for both craniofacial and limb development

In a GREAT36 analysis of the regions surrounding the 203 genome-wide significant lead 

SNPs, the top ten terms (based on lowest binomial P values) in the mouse phenotype, human 

phenotype, and gene ontology (GO) biological processes categories are all highly relevant to 

craniofacial shape and overall morphology (Extended Data Fig. 5A), with the top human 

phenotype being oral clefting. A FUMA37 analysis of the same regions highlighted genes 

overlapping several pathways related to abnormal cellular maintenance and also included 

pathways highly relevant for morphological development, like the Wnt, Hedgehog, and 

TGFβ signaling pathways (Extended Data Fig. 5B).

Facial GWAS peaks are enriched for enhancers specific to cell types across the timeline of 
facial development

To assess the likely cell-types and developmental timepoints in which our GWAS regions are 

active, we compiled H3K27ac ChIP-seq signals, a marker of the promoters of 

transcriptionally active genes and active distal enhancers38,39, from approximately 100 

different cell types and tissues, including cranial neural crest cells (CNCCs), fetal and adult 

osteoblasts, mesenchymal stem cell-derived chondrocytes, as well as dissected embryonic 

craniofacial tissues (Carnegie stages 13–20). Both CNCCs and craniofacial tissues showed 
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the highest H3K27ac signals in the vicinity of the 203 genome-wide significant lead SNPs, 

whereas no H3K27ac signal was observed for 203 random SNPs matched for allele 

frequency and distance to the nearest gene (Fig. 2A). The difference in H3K27ac signal 

between the 203 genome-wide significant lead and random SNPs was significant based on a 

two-sided Wilcoxon rank-sum test for many cell types and tissues, with CNCCs and 

embryonic craniofacial tissues having the greatest median differences (Extended Data Fig. 6; 

Supplementary Table 4).

To distinguish enrichment between coding and noncoding elements, we examined chromatin 

signals in CNCCs and embryonic craniofacial tissues in more detail, using ChIP-seq data on 

additional chromatin marks and transcription factors40,41. In the CNCCs, candidate 

regulatory regions in the vicinity of the 203 genome-wide significant lead SNPs were 

significantly enriched for strong and intermediate enhancers and depleted in weak promoters 

(Fig. 2B). In embryonic craniofacial tissue, all developmental stages sampled were 

significantly enriched for the chromHMM states of active enhancers, active enhancer flanks, 

and weak enhancers, and depleted in quiescent/low and heterochromatin states (Fig. 2C).

Cell-type-specific activity patterns were used to further subdivide the 203 genome-wide 

significant lead SNPs using k-means clustering of H3K27ac signals (Fig. 3). As expected, 

many lead SNPs showed specific activity for CNCCs and craniofacial tissue (e.g. cluster 5), 

representing activity in an early time point in development. Interestingly, however, some 

SNPs showed preferential activity for either CNCCs or craniofacial tissue (e.g. clusters 1 

and 2). Greater specificity for CNCCs could arise because CNCCs constitute a relatively 

small proportion of the cells present in craniofacial tissue at Carnegie stages 13–20, while 

greater specificity for craniofacial tissue could be due to activity in further differentiated 

cell-types of the face.

Known and novel loci

We identified 89 genome-wide significant (66 also study-wide significant) peaks that overlap 

with the results of prior association studies of normal-range facial phenotypes. Of these, 29 

genome-wide significant (20 also study-wide significant) peaks were reported by studies 

with overlapping samples as this study and 60 genome-wide significant (46 also study-wide 

significant) peaks were previously reported by studies with completely non-overlapping 

sample sets. A total of 61 genome-wide significant (28 also study-wide significant) peaks 

observed in our analysis are located at loci harboring putative craniofacial genes (implicated 

from human malformations or animal models), but which had not yet been observed in 

GWAS for normal-range facial morphology. Our GWAS additionally revealed 53 genome-

wide significant (26 also study-wide significant) peaks at loci harboring genes with no 

previously known role in facial development or disease. The annotation for each GWAS 

peak can be found in Supplementary Table 3.

Genomic regions harboring multiple lead SNPs

With our phenotyping and analysis framework, in many cases we are able to provide a more 

nuanced understanding of the underlying genetic architecture of facial variation. For 

example, variants at the TBX15-WARS2 locus (1p12; Fig. 4) were previously reported to be 
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associated with forehead prominence16 and self-reported chin dimples11, already indicating 

that this locus has multiple spatially separated effects on the face. In our current analysis, we 

see the same influence on forehead morphology as previously reported by our group16, with 

lead SNP rs3936018, located in the promoter region of WARS2, reaching its lowest 

significance in segment 14 (PMeta-US(Seg. 14) = 8.01 × 10−58). Interestingly, this lead SNP 

overlaps in location with a SNP not originally identified in our peak selection approach, 

rs12027501 (PMeta-US(Seg. 1) = 1.03 × 10−41). The latter was most significant in segment 1, 

the full face, and is not a good proxy for the former (r2: 0.075, D’: 0.979), indicating it is 

likely an independent statistical signal. Another signal, approximately 275 kb upstream of 

TBX15 (rs7513680), was most significantly associated with morphology in segment 51 

(PMeta-UK(Seg. 51) = 7.03 × 10−13), representing the cheek area around the corners of the 

mouth. Lastly, another GWAS peak is present approximately 301 kb downstream of WARS2 
(rs17023457) with an effect in the upper cheeks (PMeta-UK(Seg. 48) = 3.26 × 10−15). Of 

interest, we observed twenty-four such loci with multiple genome-wide significant peaks 

that are each associated with different facial traits (Supplementary Table 5, Supplementary 

Data 1).

Genetic interactions impacting facial variation

To better analyze and rank the effects of multiple genotypes on a facial trait, we utilized 

structural equation modeling (SEM) to refine our understanding of which groups of genome-

wide significant variants best explain the variance observed in each facial segment. SEM is a 

multivariate statistical analysis technique that analyzes structural relationships between 

measured variables (e.g. genetic variants and covariates) and latent constructs (univariate 

phenotypes derived from the PCs of the analyzed facial segment). This was done in an 

iterative manner, resulting in 50 well-fitting SEM models (corresponding to 50 facial 

segments; Supplementary Data 2). For each of these 50 models, the output included a 

univariate latent variable and a list of variants ranked by their estimated contribution to that 

variable, highlighting the polygenic nature of facial variation captured by the latent variable. 

Higher correlations of cross-sample H3K27ac activity was found when comparing SNPs 

deemed significant by the same SEM model than when comparing SNPs non-significant in 

the same SEM model (Extended Data Fig. 7). Additionally, of the SEM-significant SNPs, 

four SNP combinations displayed evidence of pairwise epistatic interactions (Table 1; Fig. 5; 

Extended Data Fig. 8; Supplementary Note 3).

Discussion

In their review, Atchley and Hall provided a framework with which we can better understand 

and describe the development of complex morphological structures. In this analysis, we have 

focused on one part of this framework and have identified intrinsic genetic factors 

contributing to normal-range variation in the structure of the human face. By implementing 

an open-ended multivariate association method, in which the inherent morphological 

variation within each of these segments drives the association, and by using both standard 

and modified-for-multivariate follow-up bioinformatic approaches, we describe the 

association between SNPs and facial traits as well as the likely cellular functions of the 

regions surrounding these SNPs. We also highlight regions with multiple SNPs affecting 
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different facial phenotypes as well as evidence for multiple SNPs working in concert to 

produce a single phenotype. Taken in sum, our results illustrate an avenue for investigating 

the coordinated processes underlying complex morphological structures, like the human 

face, at a deeper level than single associations between genotype and univariate phenotype.

Overall, our association results reflect patterns from known biological processes. For 

instance, LD Score regression correlations between segments seem to reflect the shared 

embryological origins of different parts of the face, indicating that the hierarchical spectral 

clustering of the face based on structural correlations effectively partitions underlying 

genetic signals into biologically coherent groups. It is additionally clear from the large 

number of genome-wide significant SNPs reaching their strongest association in the full face 

and segment 2 (covering the nose and upper lip) that these facial regions are “hot-spots” for 

genomic signals (Fig. 1). In general, Quadrant II (representing the nose) and Quadrant IV 

(representing the forehead and eyes) had the most genome-wide significant lead SNPs 

reaching lowest significance in segments within each quadrant. This is unsurprising, given 

the close relationship between visible facial features in those areas and the underlying 

skeletal structure. Indeed, regions with less correspondence to underlying skeletal structure, 

like the upper lip (Quadrant I), had many fewer lead SNPs reaching lowest significance in 

the contained segments, and facial regions with some structural correspondence but still 

greatly impacted by age and adiposity, like the lower face and cheeks (Quadrant III), had 

only slightly more.

Reassuringly, the genes located within 500 kb of our genome-wide significant lead SNPs 

were highly enriched for processes and phenotypes associated with craniofacial development 

and morphogenesis in humans and mice (Extended Data Fig. 5). Notably, the top human 

phenotype was oral clefting, indicating a substantial overlap between the genes involved in 

normal facial variation and those implicated in the most common craniofacial birth defect in 

humans. Furthermore, many of the surrounding genes to which the genome-wide significant 

lead SNPs were annotated are known to be involved in pathways relevant for craniofacial 

development, such as the Wnt signaling and TGFβ pathways (Extended Data Fig. 5B). Our 

GWAS signals were also enriched for processes associated with limb development and 

related phenotypes, pointing to a shared genetic architecture between faces and limbs 

(Extended Data Fig. 5A) and a number of genes near our genome-wide significant loci (e.g. 

Dlx homeobox genes, BMP genes, and FGFR2) have well-established roles in limb 

development43. These findings are also supported by the large number of human syndromes 

that present with both facial and limb malformations44.

For the regions surrounding the 203 genome-wide significant lead SNPs, both CNCCs and 

embryonic craniofacial tissues showed the highest enrichment in H3K27ac signal (Fig. 2A). 

These observations are consistent with (a) activity of our 203 genome-wide significant lead 

SNPS in CNCCs and embryonic craniofacial tissues and (b) an embryonic origin for human 

facial variation across the timeline of facial development, as CNCCs represent an early time 

point in facial development whereas the craniofacial tissues represent progressively later 

time points. In both CNCCs and craniofacial tissue at all sampled developmental stages, 

regions in the vicinity of the 203 genome-wide significant lead SNPs were significantly 

enriched for predicted enhancers and not promoters (Fig. 2B and C). This is an especially 
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intriguing result, as recent evidence has described the action of multiple enhancers, each 

showing different tissue or timing specificity, in modulating expression levels to affect 

craniofacial development45. Complementing our GREAT analysis results, indicating that 

some genes near our GWAS peaks are involved in both facial and limb development, a 

subset of genome-wide significant lead SNPs showed preferential activity in additional in 
vitro-derived cell types relevant to both the face and the rest of the skeletal system, including 

osteoblasts, chondrocytes, differentiating skeletal muscle myoblasts, fibroblasts, and 

keratinocytes (e.g. cluster 3; Fig. 3). Together, these results suggest that genetic variation 

underlying facial morphology operates by modulating enhancer activity across multiple cell 

types throughout the timeline of embryonic facial development.

Sixty-one genome-wide significant peaks from our analysis did not overlap with the results 

of prior GWAS for normal-range facial morphology but were located nearby putative 

craniofacial genes implicated from human malformations or animal models. For instance, 

MSX1 has been implicated in orofacial clefting in humans46,47 and mice47,48, and is also 

widely expressed in lip and dental tissues during development49. We observed two distinct 

peaks at the MSX1 locus (4p16.2), one approximately 55 kb upstream of MSX1 with a 

pronounced effect on the lateral upper lip (lead SNP rs13117653; PMeta-US(Seg. 34) = 4.2 × 

10−18) and a second peak, about 323 kb upstream of MSX1 and located in the intron of 

STX18, involving the lateral lower lip and mandible (lead SNP rs3910659; PMeta-UK(Seg. 
25) = 4.45 × 10−9; Extended Data Fig. 9A–E). This result could indicate a potential role of 

STX18 in craniofacial development, though the STX18 protein is primarily important for 

functioning of the endoplasmic reticulum. Or this result could provide further evidence that 

complex phenotypic effects seen in our human sample could be due to the action of multiple 

regulatory elements within a single locus. In support of this, Attanasio et al., demonstrated 

that the activity of Msx1 in the second pharyngeal arch and maxillary process of the e11.5 

mouse embryo is recapitulated by the combined activity of two separate enhancers45.

We also identified 53 genome-wide significant signals in regions harboring genes with no 

previously known role in craniofacial development or disease, though many of the 

implicated genes are known to have a general role in developmental processes critical to 

morphogenesis. For example, in the current study, variants at the DACT1 locus are 

associated with mandibular morphology (Extended Data Fig. 9F–H). DACT1 is an 

established antagonist of the Wnt signaling pathway, which is known to be involved in 

craniofacial development50, though DACT1 is mostly studied for its involvement in gastric 

cancer. However, DACT1 has also been shown to inhibit the delamination of neural crest 

cells, further supporting its involvement in facial development51. These novel signals are 

promising new candidates of potential roles in facial morphogenesis.

In addition to better understanding which parts of the face had the most signals, we 

capitalized on the utility of facial segmentation via hierarchical clustering to finely parse out 

the effect of a SNP even within a complex genomic region. Notably, we observed twenty-

four loci with multiple genome-wide significant peaks each associated with different facial 

traits, suggesting that these variants might overlap with or be impacted by regulatory 

elements that affect the face in highly specific ways (Supplementary Table 5, Supplementary 

Data 1). An important consideration to our peak selection procedure is that it is statistical 
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and heuristic in nature, being based on investigator-chosen thresholds of both distance and 

similarity of associated facial phenotypes, and thus is not perfect. Refining a peak selection 

approach based on combinations of distance, linkage disequilibrium (LD) patterns, and trait 

similarity was beyond the grasp of this paper, but we believe such an approach has potential 

for further interrogating the complex genetic architecture of facial variation, as we have 

illustrated using the TBX15-WARS2 locus (Fig. 4).

Given the complexity of the human face and its component traits, it is likely that the genetic 

architecture contributing to facial variation includes groups of genomic regions that 

contribute to the same facial trait, perhaps through actions in similar cell types or explicit 

interactions among variants. Importantly, genome-wide significant SNPs that significantly 

explained variance in the same segment, based on the structural equation model (SEM) for 

that segment, showed higher correlations of cross-sample H3K27ac activity than when 

compared to SNPs which did not, indicating that the SEM-refined lists of SNPs for each 

segment are likely those that are similar in either their spatial or temporal cellular activity 

(Extended Data Fig. 7). Tests for epistasis using the SEM-refined SNP lists for each segment 

identified four SNP combinations with significant evidence of pairwise epistatic interactions 

(Table 1). For example, rs76244841 (PRDM16 associated; PMeta-UK(Seg. 30) = 1.48 × 10−8) 

and rs62443772 (GLI3 associated; PMeta-UK(Seg. 22) = 5.35 × 10−16) were found to have a 

significant interaction in facial segment 9, which covers the premaxillary soft tissue from the 

base of the columella to the oral commissure (Table 1; Fig. 5). Interestingly, PRDM16 and 

GLI3 are both part of a tetrameric Hedgehog signaling complex in Drosophila melanogaster 
(Supplementary Note 3)52–54. Overall, these results indicate that the statistical evidence of 

SNP groups influencing polygenic facial variation identified through SEM, and explicit 

variant interactions suggested by the epistasis analysis, are potentially representative of true 

biological relationships but must be confirmed with further study.

In conclusion, with this work we have not only reported genomic variants influencing 

normal-range facial variation, but have also sought to use our in-depth facial phenotyping 

approach and bioinformatic tools to illustrate one way in which researchers without access 

to functional follow-up analyses can delve deeper into the genetic architecture of complex 

morphological traits. These results illustrate the potential to highlight spatial and temporal 

connections between SNPs, representing a major step forward in our ability to characterize 

the polygenic genetic architecture of complex morphological structures. In performing an 

open-ended and minimally restrictive study, we are optimistic that our results will be useful 

for other research efforts to better understand the biological forces that shape human and 

non-human morphology.

Methods

Sample and recruitment

The samples used for analysis included a combination of three independently collected 

datasets from the United States (US; nUS = 4,680) and one dataset from the United Kingdom 

(UK; nUK = 3,566), for a total sample size of n = 8,246. The US samples originated from the 

3D Facial Norms cohort55 (3DFN) and studies at the Pennsylvania State University (PSU) 

and Indiana University-Purdue University Indianapolis (IUPUI). The UK dataset included 
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samples from the Avon Longitudinal Study of Parents and their Children (ALSPAC)56,57. 

Institutional review board approval was obtained at each recruitment site, and all participants 

gave their written informed consent prior to participation. For children, written consent was 

obtained from a parent or legal guardian. Some individuals from the 3DFN and PSU 

samples were previously tested for associations with facial morphology in our prior work16. 

A breakdown of the samples used for analysis is shown in Supplementary Table 2 and 

further details are available in the Supplementary Methods. In all datasets, participants with 

missing information in sex, age, height, weight, or with insufficient image quality were 

removed.

Genotyping and imputation

Due to the several genotyping platforms used for the US cohort (details in the 

Supplementary Methods), we chose to impute the samples from each platform separately, 

then combine the imputed results58. For each dataset, standard data cleaning and quality 

assurance practices were performed based on the GRCh37 genome assembly. Phasing was 

performed using SHAPEIT2 (v2.r900)59 and imputation to the 1000G Phase 3 reference 

panel60 performed using the positional Burrows-Wheeler Transform61 pipeline (v3.1) of the 

Sanger Imputation Server (v0.0.6)62. After post-imputation quality control and intersection 

of imputed SNPs, a single merged dataset of all US participants was created with 7,417,619 

SNPs for analysis.

The raw genotype data from ALSPAC were not available and restrictions are in place against 

merging the ALSPAC genotypes with any others. For this reason, ALSPAC genotypes, 

phased using SHAPEIT259 and imputed to the 1000G Phase 1 reference panel (Version 3)63 

using IMPUTE264, were obtained directly from the ALSPAC database and held separately 

during the analysis. After post-imputation quality control, the ALSPAC dataset contained 

8,629,873 SNPs for analysis.

For both datasets, SNPs on the X chromosome were coded 0/2 for hemizygous males, to 

match with the 0/1/2 coding for females12.

Ancestry axes and selection of European participants

From the post-imputation merged dataset of US participants, we identified the European 

participants by projecting them into a principal component (PC) space constructed using the 

1000G Phase 3 dataset, first filtered for linkage disequilibrium and SNPs shared between 

both datasets. Further details are available in the Supplementary Methods. In the combined 

PC space, we calculated the ancestry axes for the US participants and the Euclidean distance 

between all US participants and the 1000G samples. Using a k-th nearest neighbor 

algorithm, we identified the five nearest 1000G neighbors for each US participant. The most 

common 1000G population label from these five nearest neighbors was then assigned to the 

US participant and participants assigned the 1000G European population labels of CEU, 

TSI, FIN, GBR, and IBS were selected for analysis.

Ancestry axes were calculated for the UK participants by projecting them into the 1000G 

Phase 3 dataset in a similar manner as described for the US participants. Since all ALSPAC 
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participants available for this analysis were European, no additional ancestry refinement was 

performed.

3D image acquisition

For all datasets, 3D images were captured using either a digital facial stereophotogrammetry 

system or a laser scanning system. All participants were asked to have closed mouths and to 

maintain a neutral facial expression during image capture65. For the 3DFN sample, facial 

surfaces were acquired using the 3dMDface (3dMD, Atlanta, GA) camera system. PSU 

images were obtained with either the 3dMDface or Vectra H1 system (Canfield Scientific, 

Parsippany, NJ). The IUPUI sample was fully imaged using Vectra H1. The ALSPAC 

sample was imaged using a Konica Minolta Vivid 900 laser scanner (Konica Minolta 

Sensing Europe, Milton Keynes, UK). For this system, two high-resolution facial scans were 

taken and then processed, merged, and registered using a macro algorithm in Rapidform™ 

2004 software (INUS Technology Inc., Seoul, South Korea).

3D image registration and quality control

3D surface images and their reflections were registered using the MeshMonk registration 

framework (v0.0.6)24 in Matlab 2017b. This process results in a homologous configuration 

of 7,160 spatially dense quasi-landmarks, allowing the image data from different individuals 

and camera systems to be standardized24. Images greatly differing from the norm or with 

large holes were manually investigated and either removed or re-processed, with details 

available in the Supplementary Methods. Although variation in asymmetric facial features is 

of interest, in this work we sought to only study variation in symmetric facial shape.

Segmentation of facial shape

To study global and local effects on facial variation, we performed a data-driven facial 

segmentation on the UK and US datasets combined, as described previously16. Before 

segmentation, images in the two datasets were separately adjusted for sex, age, age-squared, 

height, weight, facial size, the first four genomic ancestry axes, and the camera system, 

using PLSR (function plsregress from Matlab 2017b). As an illustration, the age adjustment 

is visualized in Supplementary Fig. 2. After adjustment, facial segments were defined by 

grouping vertices that are strongly correlated using hierarchical spectral clustering16,25. The 

strength of covariation between quasi-landmarks was defined using Escoufier’s RV 

coefficient66,67. The RV coefficient was then used to build a structural similarity matrix that 

defined the hierarchical construction of 63 facial segments, broken into five levels (Extended 

Data Fig. 1A). The configurations of each segment were then independently subjected to a 

Generalized Procrustes analysis68, after which a PCA was performed in combination with 

parallel analysis to capture the major variance in the facial segments with fewer 

variables26,27 (Extended Data Fig. 1B).

Multivariate genome-wide association meta-analyses

The meta-analysis framework utilized consists of three steps performed separately for each 

of the 63 segments: identification, verification, and meta-analysis (Extended Data Fig. 2). 

For all analyses, the genotypes were coded additively based on the presence of the major 
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allele. In the identification step, for each of the 63 facial segments, each SNP was associated 

with phenotypic variation using canonical correlation analysis (CCA, canoncorr in Matlab 

2017b). CCA is a multivariate analysis which extracts the linear combination of PCs, which 

represent the direction of phenotypic effect in shape space (i.e. a trait), that are maximally 

correlated with a SNP and returns a correlation value between those PCs and the SNP tested. 

Because CCA does not accommodate adjustments for covariates, we removed the effect of 

relevant covariates (sex, age, age-squared, height, weight, facial size, the first four genomic 

ancestry axes, and the camera system), on both the independent (SNP) and the dependent 

(facial shape) variables using PLSR (plsregress from Matlab 2017b), and thus performed the 

CCA under a reduced model with residualized variables. The correlation value between PCs 

and SNPs is tested for significance based on Rao’s F-test approximation69 (right tail, one-

sided test). In sum, for each of the 63 segments, the CCA component of the identification 

step identifies the phenotypic trait most correlated with each SNP (TraitUS and TraitUK in 

Extended Data Fig. 2) and Rao’s F-test provides a P value (PCCA-US and PCCA-UK) 

representing the strength of the correlation. CCA has also been implemented in `mv-

PLINK`70. Performance tests of mv-PLINK have found that it outperforms univariate 

methods and has similar power to other multivariate methods of association70–72, which 

generally have higher statistical power than univariate methods70–76.

In the verification step, the shape PCs of the non-identification dataset were projected onto 

the trait found in the identification stage, which returns a univariate variable (UniVarUS and 

UniVarUK). These univariate variables were then tested for genotype-phenotype associations 

in a standard linear regression (regstats in Matlab 2017b) with the SNP genotypes of the 

verification dataset as independent variable and the univariate trait projection score as the 

dependent variable. This function employs a t-statistic and a one-sided (right-tail) P value 

was obtained with the Student’s T cumulative distribution function77 (function tcdf in 

Matlab 2017b).

In the meta-analysis step, the identification P value (from Rao’s F-test on the canonical 

correlation) and the verification P value (from the univariate regression) were combined 

using Stouffer’s method28,29, chosen because a meta-analysis of beta values was not 

possible given that the CCA returns a positive correlation value, not beta statistic. The entire 

process was repeated, resulting in two meta-analysis P values (PMeta-US and PMeta-UK) 

accompanied by two identified traits per segment and per SNP: first using US in the 

identification stage and UK as verification (METAUS or US-driven), then using UK in the 

identification stage and US as verification (METAUK or UK-driven). A validation of our 

analysis pipeline is available in Supplementary Note 1.

Sharing of genome-wide signal between facial segments

To assess the extent to which genome-wide signals of association with facial variation were 

shared between a pair of facial segments, LD score regression30,31 was applied to the meta-

analysis, after converting the meta P values to z-scores and ignoring the sign or direction of 

effect. The former was required because of the multivariate nature of our results and the 

latter was needed since CCA is a one-sided test with canonical correlations always between 

[0 1]. As a result, all resulting genetic correlations reported here are restricted to be positive 
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as well. Further details on the calculation of LDSC values is available in the Supplementary 

Methods. This process was done twice, once each for the US- and UK-driven meta-analyses. 

A high degree of congruence (rS = 0.95) between the results based on the US- and UK-

driven meta-analyses was observed, and the average correlation of both between each pair of 

facial segments was reported. The 63 × 63 matrix of average correlations was visualized on 

top of the facial segmentation hierarchy to assess correlation both within and between facial 

quadrants (Extended Data Fig. 3) and used to perform average-linkage hierarchical 

clustering (Extended Data Fig. 4).

GWAS peak selection

The analysis strategy yielded 126 meta-analysis P values and 126 traits for every SNP, 

representing the 63 segments × two meta-analysis tracks. Per SNP, the lowest P value was 

selected, and we noted in which meta-analysis track (METAUS or METAUK; “Best meta-

analysis track”) and segment (“Best Segment”) this P value occurred. The study-wide 

Bonferroni threshold (P ≤ 6.96 × 10−10) was calculated as 5 × 10−8 / (1.0042 × 1.6631 × 

43.0145), with the denominator values representing the number of independent tests per 

SNP, across both meta-analysis tracks, and across all segments, respectively. These values 

were calculated using 10,000 permutations each of 1,000 random SNPs, with more details 

available in Supplementary Note 2 and the permutation outcomes available in the FigShare 

repository for this manuscript34. Though a study-wide threshold was calculated, we chose to 

annotate lead SNPs reaching at least genome-wide threshold to retain as many potentially 

biologically meaningful results as possible. The FigShare repository also provides 

information on all SNPs reaching suggestive significance (P = 5 × 10−7) as well as QQ-plots 

for each segment in all stages of the analysis34. For the initial peak selection, we chose to 

group SNPs below genome-wide threshold by genomic position and the SNP with the lowest 

P value per genomic region was selected as the lead SNP. Within a ± 500-kb window of the 

resulting genome-wide significant lead SNPs, we further refined the selection by performing 

a regression of slopes on the traits defined in the identification stage (in Best meta-analysis 

track and Best Segment) to determine if adjacent SNPs showed consistent effects with the 

lead SNP, resulting in 218 genome-wide significant lead SNPs. Of these 218 lead SNPs, 203 

showed consistent traits in the US and UK datasets in the Best Segment (Supplementary 

Table 3), with more details in the Supplementary Methods. Visual representations of the 

LocusZoom33 and effect plots for each of the 203 genome-wide significant SNPs are 

available in the FigShare repository34. The 203 lead SNPs were mapped to 138 cytogenetic 

bands (i.e. loci) using the Ensembl GRCh37 locations78. This method of peak selection is 

statistical in nature and is thus not perfect. For example, our inspection of the LocusZoom33 

plots for the TBX15-WARS2 locus led to the identification of two clusters of SNPs, based 

on r2 correlation, sharing the same genomic positions and affecting different facial segments, 

but separating these two clusters was not possible in our initial peak selection and they were 

considered a single signal until manual investigation. To comprehensively identify SNPs 

within a locus contributing to facial morphology, and the specific facial segments affected, 

fine mapping and other detailed investigations are needed.
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Gene annotation

Genes ±500 kb of the genome-wide significant lead SNPs were identified using the Table 

Browser of the UCSC Genome Browser79. The most likely candidate gene per lead SNP was 

identified based on a three-step system using first literature searches, then the results from 

Hooper et al., on the transcriptomics of mouse facial development80, then the FUMA gene 

prioritization algorithm (v1.3.3)37. Further details are available in the Supplementary 

Methods. Using the available literature, we classified the lead SNP into one of five 

categories: “Region previously implicated in normal-range facial morphology,” “Region 

previously implicated in normal-range facial morphology using other analyses of these 

data,” “Candidate gene implicated in craniofacial morphology through animal model,” 

“Region or candidate gene implicated in craniofacial morphology through human 

dysmorphology,” and “No previous association.” To the best of our knowledge, all links with 

facial morphology from the literature are provided in Supplementary Table 3.

To investigate the potential roles of the identified genome-wide significant lead SNPs, 

analyses using FUMA (v1.3.3)37, which can test for enrichment of a set of genes in pre-

defined pathways, and GREAT (v3.0.0)36, which predicts the function of cis-regulatory 

regions, were performed using preset parameters (Extended Data Fig. 5). In this manuscript, 

we focus on the top FUMA and GREAT results, based on P value, and have provided the full 

export of GREAT results in the FigShare repository34.

Cell-type-specific enhancer enrichment

To assess activity of the 203 genome-wide significant lead SNPs in various cell types and 

tissues (further details in the Supplementary Methods), we analyzed signals of acetylation of 

histone H3 on lysine 27 (H3K27ac). Across cell types and tissues, we compared 20-kb 

windows containing the 203 genome-wide significant lead SNPs, 203 random SNPs 

matched for minor allele frequency and distance to the nearest gene using SNPsnap81, or 

619 Crohn’s disease-associated SNPs from the NCBI-EBI GWAS catalog82. Regions in the 

vicinity of SNPs associated with Crohn’s disease showed the highest H3K27ac signal in 

various immune cell types, serving as a positive control for both our approach and dataset 

(Extended Data Fig. 10). A two-sided Wilcoxon rank-sum test was used to compare the 

H3K27ac signal between the 203 genome-wide significant lead and random SNPs, within 

each cell type and tissue analyzed. K-means clustering was performed on the lead SNP 

H3K27ac signal across all cell-types and tissues with k = 6, as we found that this value 

maximized the number of clusters without significantly impacting cluster quality, as 

measured by silhouette width (Fig. 3).

Chromatin state association in CNCCs and embryonic craniofacial tissue

Lists of human CNCC regulatory elements were annotated based on multiple chromatin 

marks by Prescott et al.41 and embryonic craniofacial chromHMM states were computed in 

combined data from each Carnegie stage by Wilderman et al.40. For each set of regulatory 

regions, all regions within 20 kb of either genome-wide significant lead SNPs or the above-

described 203 random SNPs were considered. Enrichment/depletion of each class of 

regulatory region for lead SNPs versus random SNPs was computed using a two-sided 

Fisher’s exact test (Fig. 2B, C).
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Structural Equation Modeling

To better define the cause-effect relationships between the significant genotypes and their 

collective traits, both the US and UK participants were used as input for structural equation 

modeling (SEM) using the lavaan package (v0.6–3) in R (≥ 3.5.0)83, which reports a two-

sided P value. For our analyses, separate SEM models were constructed for each segment 

using each of the 203 genome-wide significant lead SNPs and the shape PCs for all 

participants, with additional information available in the Supplementary Methods.

For each of the 50 SEM models where the refinement process was successful (details in the 

Supplementary Methods), final model fit indices and model parameter estimates are 

provided in Supplementary Data 2. Reassuringly, for segments that are closely related in the 

segmentation hierarchy (i.e. segments 5, 11, 23, and 47) there is an average overlap of 46% 

of the variants meeting the P < 0.05 cutoff for SEM significance, compared to 13.6% 

average overlap for non-hierarchically related segments (i.e. segments 5 and 6). The 

H3K27ac activity across all cell types was compared for significant variants both within and 

between segments using Spearman’s rho using two-sided Kruskal-Wallis tests (Extended 

Data Fig. 7).

Epistasis Analysis

We additionally used the univariate latent variable and the variants passing the P < 0.05 

significance cutoff from the final 50 refined SEM models (P < 0.1 for segments 7, 16, and 

25) to assess whether interactions between genotypes increase or decrease the distribution of 

the latent variable. For each segment, the effect on the latent variable of all diplotype 

combinations of variants were assessed via a linear regression epistasis analysis in Plink 

1.984. After Bonferroni correction for multiple testing, four SNP pairs were significant at P < 

0.05 (Table 1). For these four pairs, the nine diplotype combinations and their normalized 

phenotypic and marginal distributions were plotted (Fig. 5; Extended Data Fig. 8) to assess 

the genotypic contribution to epistatic masking (i.e. the combination of two variants reduce 

the phenotype) and boosting (i.e. the combination of two variants increase the phenotype). 

For each diplotype combination, the marginal phenotypic medians of the singular genotypes 

were averaged to visualize the predicted phenotypic distribution that would occur if the two 

genotypes were acting independently and this average median was compared to the medians 

of the combined diplotypes. Significance testing was performed using a two-sided Mood’s 

Median test42 with one degree of freedom. These steps were performed using the R 

packages agricolae (v1.3–0), cowplot (v1.0.0), ggplot2 (v3.1.1), ggpubr (v0.2), gridExtra 

(v2.3), gtable (v0.3.0), grid (v3.6.2), Hmisc (v4.2–0), psych (v1.8.12), and data.table 

(v1.12.0).

Data and code availability statement:

All of the genotypic markers for the 3DFN dataset are available to the research community 

through the dbGaP controlled-access repository (http://www.ncbi.nlm.nih.gov/gap) at 

accession #phs000949.v1.p1. The raw source data for the phenotypes - the 3D facial surface 

models in .obj format - are available through the FaceBase Consortium (https://

www.facebase.org) at accession #FB00000491.01. Access to these 3D facial surface models 
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requires proper institutional ethics approval and approval from the FaceBase data access 

committee. Additional details can be requested from S.M.W.

The participants making up the PSU and IUPUI datasets were not collected with broad data 

sharing consent. Given the highly identifiable nature of both facial and genomic information 

and unresolved issues regarding risk to participants, we opted for a more conservative 

approach to participant recruitment. Broad data sharing of the raw data from these 

collections would thus be in legal and ethical violation of the informed consent obtained 

from the participants. This restriction is not because of any personal or commercial interests. 

Additional details can be requested from M.D.S. and S.W. for the PSU and IUPUI datasets, 

respectively.

The ALSPAC (UK) data will be made available to bona fide researchers on application to 

the ALSPAC Executive Committee (http://www.bris.ac.uk/alspac/researchers/data-access). 

Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee 

and the Local Research Ethics Committees.

KU Leuven provides the MeshMonk (v0.0.6) spatially dense facial mapping software, free 

to use for academic purposes (https://github.com/TheWebMonks/meshmonk). Matlab 2017b 

implementations of the hierarchical spectral clustering to obtain facial segmentations are 

available from a previous publication25 (https://doi.org/10.6084/m9.figshare.7649024).

The statistical analyses in this work were based on functions of the statistical toolbox in 

Matlab 2017b, SHAPEIT2 (v2.r900), Sanger Imputation Server (v0.0.6), PBWT pipeline 

(v3.1), MeshMonk (v0.0.6), LDSC (v1.0.1), FUMA (v1.3.3), GREAT (v3.0.0), Plink 1.9, 

lavaan (v0.6–3), R (>v3.4), agricolae (v1.3–0), cowplot (v1.0.0), ggplot2 (v3.1.1), ggpubr 

(v0.2), gridExtra (v2.3), gtable (v0.3.0), grid (v3.6.2), Hmisc (v4.2–0), psych (v1.8.12), 

data.table (v1.12.0), Genotype Harmonizer (v1.4.20), KING (v2.1.3), bowtie2 (v2.3.4.2), 

bedtools (v2.27.1), and Bioconductor (v3.7), as mentioned throughout the Methods. Publicly 

available data used were: the 1000G Phase 3 data (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/), the list of HapMap 3 SNPs excluding the MHC region (http://

ldsc.broadinstitute.org/static/media/w_hm3.noMHC.snplist.zip), and ChIP-seq files from 

Prescott et al.41 (GSE70751), Najafova et al.85 (GSE82295), Baumgart et al.86 (GSE89179), 

Nott et al.87 (https://genome.ucsc.edu/s/nottalexi/glassLab_BrainCellTypes_hg19), Pattison 

et al.88 (GSE119997), Wilderman et al.40 (GSE97752), and the Roadmap Epigenomics 

Project89 (https://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/). Meta-

analysis GWAS statistics are available on GWAS Catalog (GCP000044). All relevant data to 

run future replications and meta-analysis efforts are provided in the FigShare repository for 

this work34, along with additional figures (https://doi.org/10.6084/m9.figshare.c.4667261). 

Items available in the FigShare repository are: (1) Anthropometric mask: a Matfile of the 

anthropometric mask used; (2) Association statistics and effects of the 203 lead SNPs: Facial 

effects, LocusZoom plots, and association statistics from each stage of the analysis for the 

203 lead SNPs; (3) Calculation of study-wide significance threshold: Script and permutation 

outcomes needed to replicate the calculation of the study-wide significance threshold; (4) 

Facial segment assignments: Segment assignments for each quasi landmark in the 

anthropometric mask; (5) Figure 2A labeled: A larger version of Figure 2A, with all cell 
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types and tissues labeled; (6) GREAT Export: Raw output of the GREAT analysis; (7) PCA 
shape constructs: PCA shape spaces for all 63 facial segments; (8) QQ plots: QQ plots for 

each segment in all stages of the analysis; (9) Script to explore facial segments and GWAS 
hits: MatLab script for select data exploration functions; (10) SNPs reaching suggestive 
significance in either meta-analysis track: Association statistics of all SNPs with P < 5 × 

10−7 in METAUS or METAUK tracks; (11) Source data for manuscript figures: Source data 

in Excel format for all figures, where possible.

Extended Data

Extended Data Fig. 1: Hierarchical spectral clustering of facial shape
(A) Global to local facial segmentation of all 3D images (nTotal = 8,246), obtained using 

hierarchical spectral clustering. Segments are colored in teal and identical to those in Figure 

1. Roman numerals represent “quadrants” of facial segments. (B) The number of principal 

components retained after parallel analysis for each facial segment.
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Extended Data Fig. 2: Study design
Sample Wrangling: Images and genotypes from each study were intersected and unrelated 

participants of European ancestry, with quality-controlled images, covariates, and imputed 

genetic data were selected to obtain the analyzed data. Identification: For each facial 

segment, canonical correlation analysis (CCA) and Rao’s F test approximation was used to 

identify the multivariate combination of facial principal components most correlated with 

the genotypes, which led to a P value (PCCA-US or PCCA-UK) and multivariate phenotypic 

trait most correlated with each SNP (TraitUS and TraitUK). Verification: The principal 

components of the other dataset were then projected onto this trait to obtain a univariate 

variable representing the distribution of participants from the verification dataset for the trait 

identified in the identification dataset (UniVarUK and UniVarUS). The genotypes of the 

verification dataset are then tested against this variable via linear regression, resulting in an 

additional P value (PUniVar-UK and PUniVar-US). Meta-Analysis: The P values from 
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identification and verification are meta-analyzed using Stouffer’s method, resulting in the 

final set of P values from each meta-analysis track (PMETA-US and PMETA-UK).

Extended Data Fig. 3: Genomic signal correlations
LDSC correlations between segments. (A) Correlations between segments from different 

quadrants, ranging from 0.8 to 0.88, which seem to reflect both physical proximity of 

segments on the face and shared embryological origins. (B) Correlations ranging from 0.88 

to 1, which are mostly between segments within the same facial quadrant.
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Extended Data Fig. 4: Clustering of facial segments on the basis of shared genetic signals
Correlations between facial segments on the basis of SNP P values were calculated using 

LDSC, as described in Methods, and average linkage hierarchical clustering was performed 

using the matrix of correlation values. Quadrant colors in legend refer to the quadrant of the 

polar dendrogram in which the facial segment lies in, also represented by the facial images 

at the top, and embryonic facial prominences are assigned to each facial segment.
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Extended Data Fig. 5: GREAT and FUMA analyses showing enrichment for craniofacial and 
limb development
(A) GREAT analysis. For the top ten GO terms in each category, plotted is the binomial test 

Bonferroni-corrected P value (red; negative values) and binomial region fold enrichment 

(blue; positive values). Behind every GO term, in parentheses we indicate the number of 

genes in the test set with the annotation (Observed) and the total number of genes in the 

genome with the annotation (Total), with the format (Observed/Total). Dashed line 

represents significance at P = log10(0.05) = −1.3. (B) FUMA analysis, indicating the KEGG 

pathways that were significantly enriched in our results. Multiple pathways are relevant for 

craniofacial development. The right panel shows the genes that are involved in the pathways.
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Extended Data Fig. 6: H3K27ac signal is significantly different in 203 lead vs. 203 random SNPs 
for relevant facial tissues
For all cell-types and tissues, each represented by a point above, the median difference 

between H3K27ac RPM signal between the 203 lead SNPs vs. 203 random SNPs was tested 

for significance using a two-sided Wilcoxon rank-sum test. The thin dashed line represents 

the 5% false discovery rate P value of 0.0094, using the Benjamini-Hochberg method. 

Relative to the random, MAF-matched SNPs, the lead SNPs are significantly enriched for 

H3K27ac signal in many cell types, with the highest magnitude differences being from 

CNCCs (blue) and embryonic craniofacial tissues (orange). Test statistics used to create this 

plot are available in Supplementary Table 4.
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Extended Data Fig. 7: Correlation of H3K27ac activity among SEM models
(A) For all segments (aka “masks”), we compared the H3K27ac activity for significant SNPs 

from the refined SEM model for variation in that facial segment. Plotted is the Spearman’s 

rho correlation between pairs of SNPs significant in the same SEM model (“Within Mask”); 

pairs of SNPs where one is from the SEM model and the other is not (“Within To Out”), and 

where both SNPs in the pair are from a different SEM model (“Out To Out”). Segments 

where the distribution of correlation across all cell types was significantly different 

(Benjamini-Hochberg adjusted P < 0.05) based on a two-sided Kruskal-Wallis test are 

indicated in black. (B) For all cell types, the median correlation across all segments is 

plotted for each of the three SNP groupings. Significance between the means was 

determined using a two-sided Kruskal-Wallis test. Boxplots plot the first and third quartiles, 
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with a dark black line representing the median. Whiskers extend to the largest and smallest 

values no further than 1.5 × the inter-quartile range from the first and third quartiles, 

respectively.

Extended Data Fig. 8: Phenotypic and marginal distributions for diplotype combinations
For a random SNP pairing (A) and each significant epistasis pair (B-D), boxplots are plotted 

to visualize the epistatic effect on the phenotype. The marginal phenotypic medians of the 

singular genotypes (non-shaded boxplots) were used to calculate and visualize the predicted 

diplotype phenotypic distribution that would occur if the two genotypes were acting alone. 

The median phenotype was also calculated for each diplotype as the average of the marginal 

medians of the singular genotypes (blue dashed lines on the colored plots). This median was 

compared to the observed medians of the diplotypes (solid black lines; colored boxplots) via 

Mood’s Median test with one degree of freedom. Log transformed P values were used to 

color boxplots if there was a significant (P < 0.05; log(P) > 1.30) difference between the 

expected phenotype of the combined genotype and observed diplotype. Boxplots plot the 

first and third quartiles, with a dark black line representing the median. Whiskers extend to 

the largest and smallest values no further than 1.5 × the inter-quartile range from the first 

and third quartiles, respectively.
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Extended Data Fig. 9: MSX1 and DACT1 loci
LocusZoom plots for the two association signals nearby MSX1 (A), which has previously 

been implicated in orofacial clefting in humans and mice, and DACT1 (F), which is a novel 

result. Points represent one-sided -log10(P) of the METAUK meta-analysis track for the 

facial segment illustrated in the normal displacement figures (B, D, G) and are colored based 

on linkage disequilibrium with the labeled SNP. Asterisks indicate genotyped SNPs and 

circles indicate imputed SNPs. Facial effects for the two association signals nearby MSX1: 

rs3910659 (B) and rs13117653 (D) and the signal nearby DACT1: rs10047930 (G). Effects 

are the normal displacement (displacement in the direction locally normal to the facial 

surface) in each quasi landmark of the lowest facial segment reaching genome-wide 

significance in METAUK, going from the minor to the major allele. Blue indicates inward 
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depression; red indicates outward protrusion. Yellow rosette plots depict the -log10(P) of the 

meta-analysis P value (one-sided, right-tailed) per facial segment in METAUK track. Black-

encircled facial segments have reached genome-wide significance (P = 5 × 10−8). (C) 

rs3910659; (E) rs13117653; (H) rs10047930.

Extended Data Fig. 10: Regions nearby previously published SNPs associated with risk for 
Crohn’s disease are preferentially active in immune cells and tissues.
Each boxplot represents the distribution of H3K27ac signal in 20 kb regions around 619 

Crohn’s disease-associated SNPs from the NCBI-EBI GWAS catalog in one sample. See 
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Methods for details on calculation of H3K27ac signal. Samples corresponding to immune 

cells and tissues are highlighted in red. Thin dashed line at ~2.9 is the median level of signal 

across all cell-types and tissues. Boxplots plot the first and third quartiles, with a dark black 

line representing the median. Whiskers extend to the largest and smallest values no further 

than 1.5 × the inter-quartile range from the first and third quartiles, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall results of US-driven and UK-driven meta-analyses.
On the left, numbered blocks representing the 63 facial segments arranged and colored 

according to quadrant (I = orange; II = red; III = light blue; IV = dark blue), and the full face 

(white), and segments 2 (light orange) and 3 (ice blue). The histogram arranged on the left 

side represents the number of genome-wide significant lead SNPs reaching their lowest P 
value in each segment with each rectangle representing one SNP. The US-driven meta-

analysis results are on the outside of the circle and the UK-driven meta-analysis results are 

on the inside of the circle. In the center, the global to local facial segmentation of all 3D 
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images included in this analysis, obtained using hierarchical spectral clustering, colored to 

match with the quadrants on the left. On the right, a Miami plot of the US-driven meta-

analysis P values on the outside and the UK-driven meta-analysis P values on the inside, 

with chromosomes colored and labeled. Values plotted are the result of Stouffer’s meta-

analysis of one-sided right-tailed identification and verification P values, detailed in the 

Methods, and are -log10 scaled (range: [0–80]). The red line represents the genome-wide 

significance threshold (P = 5 × 10−8) and the black line represents the study-wide threshold 

(P = 6.96 × 10−10). Created using Circos v0.69–835.
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Figure 2. Regions near the 203 genome-wide significant lead SNPs are enriched for enhancers 
preferentially active in cranial neural crest cells and embryonic craniofacial tissue.
(A) Each boxplot represents the distribution of H3K27ac signal in 20-kb regions around the 

203 genome-wide significant lead SNPs (top) or 203 random SNPs (bottom) in one sample, 

with cranial neural crest cells and embryonic craniofacial tissue highlighted. Boxplots plot 

the first and third quartiles, with a dark black line representing the median. Whiskers extend 

to the largest and smallest values no further than 1.5 × the inter-quartile range from the first 

and third quartiles, respectively. The dashed red lines represent the median level of H3K72ac 

reads per million (RPM) signal across all cell types and tissues. A larger labeled version of 

(A) is available in the FigShare repository34. For each class of regulatory element in either 

CNCCs derived from induced pluripotent stem cells (iPSC) (B) cranial neural crest cells or 

(C) embryonic craniofacial tissue, the number of elements within 20 kb of the 203 genome-

wide significant lead SNPs was compared to the number within 20 kb of 203 random SNPs 

using a two-sided Fisher’s exact test. Points represent estimated odds ratio and surrounding 

bars represent 95% confidence intervals. Asterisk indicates any Benjamini-Hochberg 

adjusted P value < 0.05. For embryonic craniofacial tissue, enrichments were calculated for 

each Carnegie stage separately, as Wilderman et al.40 performed chromatin state 

segmentation for each stage separately. Descriptions of all mnemonics can be found at: 

https://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp.
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Figure 3. Activity of 203 genome-wide significant lead SNPs in all cell-types studied.
H3K27ac signal calculation and k-means clustering of SNPs were performed as described in 

Methods. Average linkage clustering on Euclidean distances was performed both within 

each of the 6 row clusters and for all columns. Descriptions of all mnemonics can be found 

at: https://egg2.wustl.edu/roadmap/web_portal/meta.html
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Figure 4. TBX15-WARS2 multi-peak locus.
LocusZoom33 plots and facial effects for four association signals near the TBX15-WARS2 
locus. Clustering based on r2 was performed to separate non-correlated signals, resulting in 

the separation of four SNPs. Color for each SNP is based on cluster association, with 

saturation indicating r2 correlation with the most significant SNP in the cluster. SNPs 

represented by diamonds are the genome-wide significant lead SNPs also present in the 

1000G Phase 3 dataset; SNPs represented by circles are adjacent SNPs also present in the 

1000G Phase 3 dataset; SNPs represented by asterisks are those not present in the 1000G 

Phase 3 dataset. For the segment in which each lead SNP had its lowest effect, we plot the 

facial effects for the lead SNPs reaching significance in that segment as the normal 

displacement (displacement in the direction normal to the facial surface) in each quasi-
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landmark going from minor to major allele, with red colored areas shifting outward while 

blue colored areas shift inwards.
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Figure 5. Phenotypic and marginal distributions for rs62443772 - rs76244841 epistatic pair.
Plotted in the first column and last row are the marginal phenotypic distributions of the 

genotypes, which shows the phenotypic distribution that would occur if the two genotypes 

were acting alone. The median phenotype was also calculated for each diplotype as the 

average of the marginal medians of the singular genotypes (blue dashed lines on the colored 

plots). The observed diplotype median (black line on the colored plots) was compared to the 

expected diplotype median (blue dashed lines on the colored blots) via Mood’s Median 

test42 with one degree of freedom. The resulting log transformed P value was used to color 

the boxplots to illustrate significance, unless the difference was non-significant, in which the 

color was automatically set to grey. Within each colored boxplot is the untransformed 

Mood’s median P value as well as the number of individuals used for significance testing. 

Boxplots plot the first and third quartiles, with a dark black line representing the median. 

Whiskers extend to the largest and smallest values no further than 1.5 × the inter-quartile 

range from the first and third quartiles, respectively.
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Table 1.
Four SNPs with evidence of epistatic interactions.

For each of the 50 segments with a refined SEM model, we used the latent variables and SNP lists to test for 

evidence of epistasis using a two-sided linear regression epistasis test in Plink 1.9, with Bonferroni multiple 

testing correction. For the four SNP pairs with significant evidence of epistatic interactions, this table lists the 

epistasis P value, rsID, GRCh37 location, and gene annotation. The phenotypic and marginal distributions for 

the pairs are depicted as boxplots in Figure 5 and Extended Data Fig. 8.

Segment
SNP 1 SNP 2

Test statistic P value
RSID Location Annot. Gene RSID Location Annot. Gene

6 rs10838269 11:44378010 ALX4 rs11175967 12:66321344 HMGA2 23.9422 9.94 × 10−7

9 rs76244841 1:2775953 PRDM16 rs62443772 7:42131949 GLI3 16.5745 4.68 × 10−6

11 rs6740960 2:42181679 PKDCC rs6795164 3:133885925 SLCO2A1 16.3707 5.21 × 10−5

22 rs7373685 3:128107020 GATA2 rs7843236 8:121980512 SNTB1 15.7837 7.10 × 10−5
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