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Colloidal suspensions of buoyancy neutral particles flowing in circular pipes focus into narrow distributions
near the wall due to lateral migration effects associated with fluid inertia. In curving flows, these
distributions are altered by Dean currents and the interplay between Reynolds andDean numbers is used to
predict equilibrium positions. Here, we propose a new description of inertial lateral migration in curving
flows that expands current understanding of both focusing dynamics and equilibrium distributions. We
find that at low Reynolds numbers, the ratio d between lateral inertial migration and Dean forces scales

simply with the particle radius, coil curvature and pipe radius as
R3
pR

a4
. A critical value dc 5 0.148 of this

parameter is identified along with two related inertial focusing mechanisms. In the regime below dc , coined
subcritical, Dean forces generate permanently circulating, twinned annuli, each with intricate equilibrium
particle distributions including eyes and trailing arms. At d . dc (supercritical regime) inertial lateral
migration forces are dominant and particles focus to a single stable equilibrium position.

B uoyancy neutral particles flowing in circular pipes show a tubular pinch effect where particles are focused in
a reproducible manner into a narrow annulus near the wall1. The lateral force responsible for migrating
particles toward the wall is associated with the inertia of the fluid2–5 and the effect scales up and down to any

particle size or tube diameter as long as the continuum hypothesis for the fluid flow remains valid. In the years
following the discovery of the tubular pinch effect, the majority of related literature was concerned with theor-
etical aspects of lateral migration of particles. In the limit of small Reynolds numbers (compared to 1), analytical
models for the lift force in unbounded3,4 or bounded2,6,7 linear shear flows have proven useful in capturing most
essential features of the effect. Moreover, numerical simulations based on lattice Boltzmann mesoscopic
approaches have further validated the equilibrium focusing positions of particles up to Reynolds numbers of
about 10008. Accurate numerical models for the drag, lift and torque for non-spherical particles in linear shear
flows have also been presented recently9. Interesting changes in the topology of the equilibrium positions are
observed in curving flows where lateral migration effect is combined with drag forces induced by Dean flows10.
Accurate control of particle focal positions at extremely high flow rates by controlling the viscoelastic properties
of the fluid carrier has been demonstrated as well11.

In recent years, the inertial focusing effect is increasingly being used in microfluidic devices with rectangular
cross-section channels for high throughput separation and filtration applications. In rectangular geometries,
suspended particles migrate to at least four stable equilibrium positions along the channel periphery. These
equilibrium positions can be collapsed into just two streams in high aspect ratio cross-section channels12,13 and
into one single stream by employing curvilinear channels that induce Dean flows14,15. Several authors15–19 have
presented extensive experimental results on the later effect and tried to capture observed behavior into simple
design rules and diagrams based on dimensionless quantities such as the channel Reynolds number, the particle
Reynolds number and theDean’s number. However, the particle dynamics in an inertial migration process as well
as accurate theoretical models and related physical quantities to describe this dynamics remain challenging.

Here we investigate both theoretically and experimentally the inertial lateral migration effect in curving flows
and highlight several unique features in the spatial distributions of focused particles in a regime where Dean flows
dominate over inertial lateral migration effects. One of the more interesting aspects of this regime is the develop-
ment of two annular distributions of particles that are entrained by the two Dean vortices in a continuously
counterrotating motion to form a twin (double) tubular pinch effect. We also investigate the opposite regime
where lateral migration forces dominate over Dean drag and highlight fundamental differences as well as
transition mechanisms between these two regimes. Field forces acting on particles are described in terms
of stable, unstable and saddle equilibrium points within the framework of a simple analytical model while
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trajectories and topology of particle clouds are investigated numer-
ically. Confocal microscopy measurements of fast flowing particles
are presented in order to corroborate these theoretical findings.

Results
Analytical model for inertial lateral migration velocity in curving
flows. In a circular pipe of cross-section radius a, the velocity
profile of an incompressible liquid flowing in the laminar regime
is well approximated by the parabolic profile u(s)~Um(1{s2).

Um is the maximal velocity while s~
r
a

is the normalized cross-

sectional position of the particle (Fig. 1a). The liquid flow
includes a relatively small volume concentration of particles,
typically less than 3% such that the tubular pinch effect is not
inhibited20. In pipes coiled into a circle of radius R, Dean flows
are generated by the fluid inertia and the velocity field develops
a two-vortex transverse flow (perpendicular to the pipe central
line) defined by10

ur(r,y)~U2
m
siny(a2{r2)2(4a2{r2)

288a4vR
ð1Þ

and

uy(r,y)~U2
m
cosy(a2{r2)(4a4{23a2r2z7r4)

288a4vR
ð2Þ

where v is the kinematic viscosity of the liquid, ur and uy are
the radial and circumferential components of the Dean velocity
field, respectively. To quantitatively describe the Dean flow, we
retain from Eq. (1) the maximum Dean velocity

uDmax~ur 0,
p

2

� �
~

U2
ma

2

72vR
and observe that the ratio of Dean to

axial flow maximum velocities scales as

fD~
uDmax

Um
~Re

a
72R

~
Dn2

72Re
ð3Þ

where Re and Dn denote respectively the channel Reynolds

number Re~
aUm

v
and the Dean number Dn~Re

ffiffiffi
a
R

r
. To

maintain the physical validity of the analytical model given

in Eqs. (1) and (2), Dean10 suggests that the number
Re2a
1440R

(that is
Dn2

1440
) be kept as small as possible, usually less than

unity. For a circular channel of radius a~50 mm forming a coil

Figure 1 | Analytical model for inertial focusing effect in curved pipes. a) Schematic representation of the transversal cross-section of the pipe in both

Cartesian xOz and polar coordinates. By convention the center of curvature of the coil is in the negative direction ofOx axis as indicated by the centripetal

acceleration vector~acp; b) Graphical representation of the tabulated function f(s) for Re, 50 according to Shonberg and Hinch21. The focusing position

corresponds to the coordinate s0 5 0.631; c) Contour fill plot and vector field of the Dean flows normalized to the axial flow velocity Um according to

Dean10 for Re5 10 and Dn5 1; d) Plots of F(s) along axis Ox at different values of parameter d. The critical value dc~0:148 is highlighted with a solid

continuous black line. The two vertical dashed lines at s520.631 and s510.631 highlight the position of the focusing points in the absence of the Dean

flows. Center of curvature of the tube is at the left (in the region x , 0).
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of curvature radius R 5 1 cm this condition limits the flow to
Re 5 536.
For Reynolds numbers up to 100, Schonberg and Hinch21 demon-

strated that in laminar flows in pipes of cross-section radius a, buoy-
ancy neutral spherical particles develop an overall lateral migration
velocity that can be written as

Ul(s)~
R3
pU

2
m

4va2
f (s) ð4Þ

with Rp the radius of the particle and Um the maximum velocity
of the liquid flow. f(s) is a dimensionless inertial lift parameter
that for a given Reynolds number, depends on the normalized
cross-sectional position s only. At low Reynolds numbers, f(s)
has been already tabulated by Schonberg and Hinch21 by con-
sidering full parabolic Poiseuille flows and wall effects. As shown
in Fig. 1b, this function has two zeros: one is at the origin s 5
0, that is the center of the pipe, and another at s0 5 0.631.
While the first zero is trivial and simply means that the particles
moving on the central line of the pipe do not experience any
inertial focusing effect, the second one relates to the well-known
tubular pinch effect and indicates stable equilibrium positions for
particles1,21 on an annulus of radius 0.631a.
By combining inertial lateral migration in Eq. (4) with Dean flow

effects in Eqs. (1) and (2), we obtain the full velocity field for particles
flowing in a curved pipe. The radial and angular components of this
field can be rewritten as

Ur(r,y)~
R3
pU

2
m

4va2
f

r
a

� �
zU2

m
siny(a2{r2)2(4a2{r2)

288a4vR
ð5Þ

and

Uy(r,y)~U2
m
cosy(a2{r2)2(4a4{23a2r2z7r4)

288a4vR
: ð6Þ

By analysing the topology of these two vector fields (one radial
and the other as shown in Fig. 1c) we conclude that the only
regions where the resultant field can vanish are either on the
axis Ox (in the pipe central plane) or at x , 0 and r , s0a
where radial position vector ~r is tangent to the Dean streamlines
(Uy~0). For all other off-axis regions (above and below Ox
axis), the two velocity fields have different directions and non-
zero components at all points with two exceptions: (i) the cen-

ters of the two Dean vortices (r~
a
2

and y~0,p) where the

Dean drag velocity is zero and (ii) the circle of radius r 5 s0a
where lateral migration force vanishes. At these points, the part-
icles will experience only one of the two forces but the overall
resultant force will still be non-zero, thus particles at these
points cannot be considered in equilibrium. We will restrict then

our analysis to the axis Ox, by considering y~
p

2
in Eq. (5). The

fact that the off-axis points in the region x , 0 and r , s0a are
not equilibrium points either will be demonstrated later on by
full numerical simulations.
The only non-zero scalar component of the resultant velocity

vector on the axis Ox becomes then

Ur0(s)~
U2
m

4
klf (s)zkd

(1{s2)2(4{s2)
72

� �
ð7Þ

where kI~
R3
p

va2
and kD~

a2

vR
are two parameters related to the iner-

tial migration and Dean drag velocities, respectively. By employing
the notation

d~
kl
kD

~
R3
pR

a4
ð8Þ

Eq. (7) becomes

Ur0(s)~
U2
ma

2

4vR
df (s)z

(1{s2)2(4{s2)
72

� �
~

U2
ma

2

4vR
F(s) ð9Þ

where

F(s)~df (s)z
(1{s2)2(4{s2)

72
ð10Þ

was also employed. Of interest in the topology of this function are the
roots of the equation F(s) 5 0 that indicate potential equilibrium
positions of particles in the channel. It is interesting to observe in Eq.
(10) that d is the only parameter responsible for changes in the
topology of the function F(s) and its related zeros. It is also interesting
to observe from Eq. (8) that this parameter is purely geometric, as it
does not rely on the physical properties of the liquid or the associated
flow Reynolds number. This is limited to flows where theoretical
models expressed by Eqs. (1–2) and (4) remain valid, that is at low
Reynolds numbers. However, since Dean’s model in Eqs. (1) and (2)
is valid up to Re 5 536 while f(s) chosen for this study (Fig. 1b)
imposes Re , 50, it is rather the inertial lateral migration term that
limits the model to relatively slow flows. Consequently, if we want to
extend the present model to 50 , Re , 536, a new function f(s)
appropriate for the range of interest has to be employed21 and all
above formalism remains unchanged.

Solutions of the equation F(s)5 0 and related equilibrium points.
We investigate in the following the topology of the function F(s) at
some critical values of the parameter d. While exact graphical
representations of this function for different values of d are
presented in Fig. 1d, some additional drawings in Fig. 2 are used to
show qualitatively the orientation of the drag forces at each point of
interest and identify the type of equilibrium for each configuration.
At d~0, the profile of the function F(s) is symmetrical with respect

to the ordinate axis (Fig. 1d) and has two zeros at s521 and s511.
At these points the particles are however at rest since no-slip bound-
ary conditions are imposed by the Poiseuille flow profile. Since d~0
just removes the inertial contribution in F(s) this means that in the
absence of inertial lateral migration effect equilibrium positions
along the axis of interest (Ox) other than the extreme points s 5
61 are not possible.
As the parameter d is increased (by increasing the size of the

particles for example), F(s) becomes slightly asymmetric and the zero
in the region s. 0 (far side of the coil) begins to move away from the
wall (d~0:05 in Fig. 1d). However, as depicted in Fig. 2 (curve
dvdc) this zero cannot be a stable equilibrium position for the
particles since the off-axis (vertical) velocity field is divergent. The
particles will leave this point at the smallest perturbation (induced by
Brownian motion for example). Consequently, this particular point
corresponds to a saddle point (SP).
Interestingly, while the saddle point SP continue the shift toward

the origin with increasing d, at d~dc~0:148 the function F(s)
becomes tangent to the abscissa at the point sc 5 20.472
(dc~0:148 in Fig. 1d). The off-axis velocities are now converging
toward this equilibrium point (curve d~dc in Fig. 2) but on the
abscissa particles still experience a divergent velocity field since
F(s) is positive on both sides of this critical point. Consequently, this
will be an unstable quasi-equlibrium point (QE) as well. Particles at
this point will be at rest for a relatively short period of time since they
are pushed toward the center of the pipe at the smallest external
perturbation such as from Brownian motion or interparticle colli-
sions. As discussed later, this critical value dc~0:148 of the para-
meter dwill play amajor role in our analysis as it is responsible for the
separation of the observed behavior across three regimes, each with
completely different particle dynamics and focusing patterns,
regimes that we coin as subcritical for dvdc, supercritical for
dwdc and critical for d~dc.

www.nature.com/scientificreports
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Further on, when d gets larger than the critical value dc we
observe a splitting of the point QE into two zeros, both in the
region s , 0: one relatively close to the origin and another close
to the inner wall, near the default focusing point s 5 2s0 5
20.631. Again the point near the center (O) will not be stable
since the velocity field is divergent in all directions (Fig. 2), thus
this point will correspond to a non-equilibrium (NE) state. In
contrast, for the root near the inner wall, we observe that all
the conditions for static equilibrium are fulfilled: the velocity
fields in both on-axis and off-axis directions converge toward this
point. In this case particles will settle into a stable equilibrium
(SE) position. This is in fact the most commonly reported result
in the literature where very stable and narrow streams of particles
can be obtained. We observe however, that the position of this
stable position changes slightly with d in the sense that as d gets
larger, the equilibrium position gets closer to the wall having as
limit the critical point s0 5 20.631, where the focusing in the
absence of any Dean flows is supposed to occur (Fig. 1d). Since
the parameter d is related to the size of the particles through Eq.
(8), this simply implies that larger particles are biased toward s 5
s0 while smaller particles will prefer to focus nearer to the point
sc. An example of a separation application based on this effect was
already demonstrated by Kuntaegowdanahalli et al.18 It is inter-
esting to observe that all the particles will be distributed in the
interval [s0, sc] that is between 20.631 and 20.472. Consequently,
according to the present theoretical framework, the use of this
effect for particle size separation is limited to a rather narrow
window of just 16% of the pipe radius, that is about the same
order of magnitude as the diameter of the particles responsible for
an observable inertial focusing effect in that pipe. According to
Kuntaegowdanahalli et al.18, the critical particle size in inertial
focusing experiments has to be Rp $ 0.07a that is 14% of the
pipe cross-sectional radius. It is however possible that this interval
be slightly extended in channels with high aspect ratio rectangular
cross-sections but this is not investigated in the present study.

Flow rate and channel length critical parameters.The discussion so
far focuses on the topology of the dimensionless functions f(s) and
F(s) which describe the distribution of resultant drag force and
related equilibrium points in the cross-sectional area of the
channel. In this respect, the discussion is limited to the position of
these final equilibrium points without regard to the time required for
particles to reach them. According to Eq. (9) the resultant velocity of

the particles scales as
U2
ma

2

vR
. For large values of this factor, particles

will move faster toward equilibrium positions while at smaller values,
the particles will focus slower. In experimental work, controlling this
parameter is very important since the pipes (channels) will always
have a finite length in which the focusing is expected to occur.
Consequently, while dynamics of the particles in the cross-
sectional area of the pipe will give an insight into the way particles
attain equilibrium positions, the total necessary length of pipe has to
be considered accordingly.
By convention, we consider a particle traveling a length pa along a

Dean vortex at a velocity
U2
ma

2

72vR
, that is the maximal velocity of the

Dean flows at the center of the pipe (s 5 0). In the same amount of
time, the flow in the pipe will advance axially along the pipe center
line with the quantity

L~Um
pa

U2
ma

2
72vR~72p

v
Uma

R ð12Þ

Dividing this length L by the circumference of the coil, we obtain the
number of turns required for the flow to complete the rotation of the
particle in the Dean flow:

N~
L

2pR
~

72p
2pRe

%
36
Re

: ð13Þ

This result is rather interesting since the number of turns necessary
for a Dean off-axis displacement is fixed by the Reynolds number
regardless the particle and the pipe configuration parameters. From a
practical point of view, it is important then to have a Reynolds
number of at least a few tens in order to have particles focused after
a few turns only.

Particle dynamics in inertial curving flows. To account now for the
dynamics of the particles toward the equilibrium positions as well as
the topology of stable and unstable equilibrium configurations, we
have developed a simple numericalmodel based on the superposition
of the two (lateral inertial migration and Dean) velocity fields as
shown in Eq. (5) and (6). The resultant total field vector
~U~(Ur,Uy) resulting from these two equations is coupled to a
diffusive velocity field ~udiff and used to solve the differential
equation of motion

d~r
dt

~~Uz~udiff ð14Þ

by using a fourth-order Runge-Kutta integration scheme22 and a
random walk diffusion model23 (see Methods for more details on
the numerical model). Although the particles used in this study are
rather large (the smallest particles are 2 mm in diameter with assoc-

iated diffusion constant Dp~2|10{13 m
2

s
), we maintain the term

~udiff in Eq. (14) in order to give the simulation some degree of
realism: without this term particles are trapped at saddle and non-
equilibrium points indefinitely.
The simulation starts with a number of few tens of particles ran-

domly distributed at the inlet section of the pipe. The positions of
these particles are then evolved according to Eq. (14) and axial

Figure 2 | Topology and solutions of the equation F(s)5 0.Depending on
the values of the dimensionless parameter d, four types of feature

equilibrium points are illustrated: the saddle point (SP),the quasi-

equilibrium (QE) point in the critical regime, the non-equilibrium (NE)

and stable equilibrium (SE) points in the supercritical regime. Centripetal

acceleration vector has the same orientation as in Fig. 1 (center of

curvature to the left).
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projections of these positions in the pipe cross-sectional plane are
plotted at each time step. Particle configurations as well as their
migration toward equilibrium are investigated in the three regimes:
(i) subcritical (dvdc) when the function F(s) has a single zero point
(SP); (ii) the region around dc – critical – where the critical point QE
is about to split into the stable (SE) and the non-equilibrium (NE)
points and (iii) supercritical (dwdc) where the critical point SE
approaches the limit s0 5 20.631 of the inertial focusing in the
classical tubular pinch effect.

Subcritical regime (dvdc).Numerical solutions of Eq. (14) at dvdc
and Re 5 16 indicate the formation of two twin annuli of particles
that are symmetric about the coiling plane (Fig. 3) and entrained into
two counterrotating vortices by the Dean currents. Very small
particles do not show this behavior since they remain mostly
unfocused and simply follow the Dean flows while they are
advancing axially in the channel (Fig. 3a). As the size of the
particles increases, the two annuli become better defined while the
center of each annulus becomes clearer with a net vertical separation
between them (Fig. 3b–d). Confocal measurements of buoyancy
neutral fluorescent beads flowing in curved capillary tubes at
d~0:0375 are compared to theoretical simulations (Fig. 4a–d) and
confirm this behavior (Fig. 4e–h) by clearly showing the formation of
two distinct focusing annuli and the development of a separating gap
(d) at the coil symmetry plane (Fig. 4c–d and Fig. 4g–h). Details

about the confocal measurement setup are presented in the
Methods section and in the Supplementary Information material.
However, to clearly visualize experimentally the two annuli and
the trail of particles – as indicated by the simulation – the channel
Reynolds number had to be increased and the size of the particles
diminished slightly (Fig. 4i–j). This indicates that the quantity N
(number of turns) as defined by Eq. (13) slightly underestimates
the number of loops needed for complete and stable inertial
focusing. This can originate in the approximations employed for
the characteristic length pa and associated fluid velocity to derive
Eq. (12) and could be addressed by considering different
phenomenological parameters better related to the length and the
average speed of particles on these contours.
Color and contrast-enhanced cross-sectional scatter plots in the

experimental figures represent confocal laser hit-points of fast flow-
ing particles in curved capillary tubes. It is important to note that the
points here do not correspond to actual particles centroids, but the
scatter patterns are rather an approximation of the particle probabil-
ity distribution field. For this reason, data points in the confocal
images look rather scattered and pattern features corresponding to
inertial focusing are more clearly defined in small particle experi-
ments (Fig. 4i–j) rather than for large ones (Fig. 4e–h).
Since the parameter t in the simulation corresponds to the number

of complete turns covered by particles, the relatively large values for
the time t. 4 employed in simulation compared toN5 2.26 as given

Figure 3 | Inertial focusing of small particles. Numerical simulations of inertial focusing in curving confined flows in the subcritical regime at: a)

d~0:0024; b) d~0:0081; c) d~0:0192 and d) d~0:0375. These values correspond to particles with diameters of respectively 2, 3, 4 and 5 mm in a 100 mm

diameter channel and Re5 16. Computer animations of the particle cloud time evolution are presented in the supplementary video files movie_3a.mp4,

movie_3b.mp4, movie_3c.mp4 and movie_3d.mp4, respectively.

www.nature.com/scientificreports
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by Eq. (13) show that the observed patterns are stable and will not
continue to evolve regardless the total length (number of coils) of the
pipe. While the formation of the two twin annuli is a relatively fast
process (after two turns only), entraining all particles into this twin
annuli pattern is a very long process. The reasons for these two
distinct time scales is the presence to the saddle point (SP) at s . 0
where particles can reside for a long period of time until small per-
turbations (such as those induced by Brownian motion) move them
away from these points. As a direct consequence, particles will form
tails (trains) centered on the saddle point (Fig. 5a) that will deplete
slowly until all particles are irreversibly trapped in the rotating twin
annuli. This behavior is also confirmed by confocal measurements at
d~0:0081 (Fig. 5b) where the twin annuli pattern and the tail gen-
erated by the saddle point are observed.

Critical regime (d<dc). An interesting evolution of the topology of
the two annuli pattern is observed when d approaches the critical
value dc. From the numerical simulations at small values of d in the
previous section we conclude that the two annuli are almost centered
between the stable equilibrium (SE) and saddle (SP) points. As d is
increased, the annuli move toward the stable equilibrium point (SE)
and approach each other by diminishing the separation gap d. This
reduction is initially rather modest with increasing d (Fig. 5c) but
rapidly closes down above d< 0:07 (Fig. 5d–e) such that near the
critical value d~dc the gap vanishes completely and the two annuli
touch each other (Fig. 5f). The size of these annuli is gradually
reduced as well in the radial direction making the transition
towards the regime where particles are focused into a single stream
near the stable equilibrium point SE. More numerical simulation

results that support the above description of the transition toward
the critical regime are presented in Fig. 6a–d and related
supplementary material.

Supercritical regime (dwdc). Beyond the critical regime the two
vortices have practically no radial extent and are collapsed to a
single large annulus (regular tubular pinch effect) where particles
are pushed toward the stable equilibrium point SE by the Dean
currents.This regime is the most frequently reported in the
literature and corresponds in our theoretical framework to the case
where inertial migration forces are dominant. Focusing in this
regime is a two-step process, confirmed by both numerical
simulations and confocal microscopy experiments (Fig. 7). First,
the particles are sent to the focusing points on a ring
corresponding roughly to s 5 s0 (the regular tubular pinch effect).
This process is fast in the sense that the particles focus to an annulus
within the first turn (as shown in Fig. 7a) then Dean flows then start
to displace particles on this ring towards the stable equilibrium point
SE (Fig. 7b). Contrary to the subcritical regime where particles were
continuously cycled on and off this focusing ring (by the formation of
the twin counterrotating annuli), the inertial migration forces in the
supercritical regime are strong enough to impede particles from
leaving their equilibrium positions along the ring. As the flow
advances in the coiled pipe, more and more particles are packed
around the stable equilibrium point while the saddle point is
gradually depleted (Fig. 7c and d).
It is notable that even after more than three complete turns of

the coiled piped there are still off-equilibrium floating particles
(Fig. 7d). This is mainly due to the influence of the saddle point

Figure 4 | Inertial focusing in curving channels at dvdc . (a–d) Numerical simulations of the time evolution of particle radial positions in the subcritical

regime at Re 5 16 (100 ml/min) and d~0:0375 (5 mm diameter particles in 100 mm diameter tube); e–h) Experimental confirmation by confocal

microscopymeasurements at Re5 16 (e–h) and same value of parameter d; i–j) Smaller particles (2 mmdiameter) flowing faster at Re5 22 (150 ml/min)

and Re 5 30 (200 ml/min), respectively. Size of particles are to scale in all simulations but not in experimental images.

www.nature.com/scientificreports
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(SP). These theoretical conclusions are again well supported by
experimental confocal images where the annulus corresponding to
the tubular pinch effect is well formed (Fig. 7e) while the evolution
toward the stable equilibrium positions (Fig. 7f–h) is very similar to
that obtained by numerical modeling. This is also the reason that for
practical applications we need to design coils with an actual number
of turns larger than the parameter N (from Eq. 13) to ensure that
particles trapped near the saddle point SP will have enough time to
leave that point and migrate toward a stable equilibrium position.

Discussion
The theoretical framework proposed in this paper provides two
important parameters for predicting the inertial focusing behavior
of particles in curved coils: d and N. While the first is used to distin-
guish between subcritical (twin tubular pinch effect) and supercrit-
ical (regular tubular pinch effect) regimes, the second can be thought
of as an estimate of the tube length (number of coils) needed to
achieve an observable effect. Interestingly, the number N depends
only on the Reynolds number and becomes equal to unity at Re<36.
From a more practical point of view, particles of any size with d
higher or slightly below the critical value d~0:148 will give an
observable effect within a reasonable number of turns as long as a
Reynolds number in the order O(10) is guaranteed. This raises some
difficulties in applications with small particles since the required
Reynolds numbers can be difficult to achieve as they imply narrower
channels and large applied driving pressures.
Parameter d as defined by Eq. (8) does not replace the well-known

inertial focusing condition Rp$ 0.07a for the tubular pinch effect in
straight pipes12. In other words, the divergence d?? for coils of zero
curvature simply means that the particles will be fully in the inertial
focusing regime since d is larger than dc. However, what is observed
in this work is the formation of interesting topologies of stable par-
ticle distributions even when the inertial focusing condition Rp $

0.07a is not fulfilled – that is when particles are smaller than the
critical size claimed by this condition. The experimental results
shown in Fig. 4 highlight the dynamics of the two subcritical annuli
where the particles are smaller than stated by this condition. For the
other regime (supercritical) Gossett and Di Carlo have published
state diagrams and design rules17 to be used for single and multiple
turn curved channels. However, with our analysis we offer a more
complete picture of the actual mechanism of focusing not only in the
supercritical but in the subcritical regime as well that cannot be
captured by these simple diagrams.
The fact that particles can be focused to well defined stable equi-

librium configurations despite the fact the condition Rp $ 0.07a is
not fulfilled opens the path to interesting separation applications
where, by designing appropriate outlet bifurcations and pumping
protocols, inertial focusing of small species can be achieved in larger
and shorter inertial focusing channels. We believe that the new pro-
posed theoretical framework has the potential to support sample
preparation applications in areas such as food safety inspection,
environmental screening or clinical diagnostics where isolation
and concentration of small microbial organisms (e.g., bacteria, para-
sites or fungi) is of primary concern.

Methods
Numerical model. The equation (14) is solved in the cross-section plane of the pipe
that is by taking into account only the components of the velocity that are
perpendicular to the flow. In this way the problem is reduced to a system of two scalar
differential equations and solved with a fourth-order Runge-Kutta algorithm22. In
order to account for diffusion processes, a random walk model has been
implemented23 by considering in the right hand term of Eq. (14) the quantity where k̂
is a randomly oriented unit vector.Dp and t here are the equivalent diffusion constant
of the particles in the respective liquid according to the Stokes-Einstein equation24

and the time step of the simulation, respectively. Initial condition consists of few
hundred particles randomly distributed at the pipe at the inlet and flowing at the
velocity of the liquid on the respective streamline. Positions of the particles are
evolved in the cross-sectional plane according to Eq. (14) regardless their axial

Figure 5 | Inertial focusing in curving channels at d<dc . a) Numerical simulation of particle distributions in the subcritical regime highlighting some

relevant features such as the twin counterrotating vortices, the saddle point, the gap d between the two annuli and the temporary tail; b) experimental

confocal microscopy image of amix of 3 mm(red) particles in a pipe of 100 mmdiameter (d~0:0081); c) dependence of the gap between the two annuli d
on the parameter d; d–f) the configuration of the two annuli for the three points on the curve d(d) highlighted in figure c). Particle sizes are to scale in all

simulations but not in experimental images.
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Figure 6 | Inertial focusing of large particles. Numerical simulations of inertial focusing in curving confined flows at the transition between subcritical

and critical regimes: a) d~0:0648; b) d~0:1029; c) d~0:1317 and d) d~0:1536. These values correspond to particles with diameters of respectively 6, 7,

7.6 and 8 mm in a 100 mmdiameter channel and Re5 16. Computer animations of the particle cloud time evolution are presented in the supplementary

video files movie_6a.mp4, movie_6b.mp4, movie_6c.mp4 and movie_6d.mp4, respectively.

Figure 7 | Inertial focusing in curving channels at dwdc .Numerical simulations (a–d) and experimental confocal measurements (e–f) of time evolution

of inertial focusing at d~0:3 for 10 mm diameter particles. Size of particles are to scale in all simulations but not in experimental images.
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position and by neglecting any mutual interactions between particles. Images
representing the positions of the particles with respect to the pipe walls are generated
at each time step and assembled in computer simulation movies that accompany
Figs. 3 and 6.

Microchannel fabrication. Themicrofluidic device is constructed from 100 mm (ID)
HPFA capillaries (IDEXHealth & Science, Illinois, US), mounted on a glass carrier in
a three loop configuration each of 1.5 cm radius (as illustrated in Supplementary
Fig. 1). The input and output capillary ends are connected to a computer controlled
syringe pumps (PHD 2000 Harvard Apparatus, MA, US) and a waste reservoir,
respectively. The capillary is then encased in a layer of polydimethylsiloxane (PDMS)
forming a 2 mm thick slab. The PDMSminimize the optical diffraction distortions by
matching closely the refractive index of the cylindrical HPFA capillary and the glass
substrate. Particles used in microfluidic experiments consist of solutions of Fluoro-
Max fluorescence microbeads (Thermo Scientific, MA, US). Solutions are prepared at
0.01% (W/V) of 2 mm, 3 mm and 5 mm in distilled water, doped with Rhodamine.

Confocalmicroscopymeasurements.Microbead tracking is performed on aNIKON
Ti-Eclipse C2 Laser scanning confocal microscope. The laser raster scans a narrow
window (100 mm) in the longitudinal direction of the capillary and across the full
width of the channel. Z-stack is obtained from scan at step of 250 nm covering
150 mm, the full cross-section of the capillary tube. FITC 488 nm and DSRED
561 nm lasers are used to excite themicrobead and the background fluorescence from
the Rhodamine doped solution. The cross-sectional images of the capillary are then
aggregated and sum along the scanned longitudinal axis to form a composite image of
the trackedmicrobial in the capillary tube. These images provide amap of positions at
which the laser intersects a flowing particles thus individual points on the image do
not necessarily represent a particles. These can rather be associated with a probability
distribution of particles over the cross-section of the capillary with higher density
corresponding to higher probability of presence of particle flow. A schematic
representation of the experimental setup as well as some examples of primary 3D
confocal images are given in the Supplementary Material.
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