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ABSTRACT Cluster 5 Synechococcus species are widely acknowledged for their broad
distribution and biogeochemical importance. In particular, subcluster 5.2 strains inhabit
freshwater, estuarine, and marine environments but are understudied, compared to
other subclusters. Here, we present the genome for Synechococcus sp. strain LA31, a
strain that was recently isolated from Narragansett Bay, Rhode Island, USA.

Unicellular picocyanobacteria from the genus Synechococcus are found throughout
aquatic environments (1–3) and play a key role in global carbon cycling (4). However,

the biodiversity and biogeochemical contributions of nonmarine Synechococcus strains
are only beginning to be understood (3). Here, we present the genome of Synechococcus
sp. strain LA31, which was recently isolated from a temperate estuary.

LA31 was isolated from the Narragansett Bay Time Series in Rhode Island, USA (lati-
tude, 41.47; longitude,271.40). To enrich for phytoplankton, surface water (22°C; salinity,
28.84 psu) was spiked with nutrients comparable to F/40 medium for 10 days (5) and
given 150 mmol photons/m22 � s21 of light (12-h light/12-h dark cycle). Single cells were
sorted into 96-well plates using an Influx flow cytometer (BD, San Jose, CA, USA) and
were maintained under the same conditions. Wells showing growth after 2 weeks were
streaked onto F/2 agar plates for isolation, and one colony was transferred to F/2 me-
dium (5). DNA was extracted using a series of freeze-thaw cycles in N2, proteinase K incu-
bations, and final extraction with the Qiagen DNeasy PowerBiofilm kit (Hilden, Germany),
as described previously (6). MR DNA (Shallowater, TX, USA) performed library preparation
(SMRTbell Express template preparation kit v2.0; Pacific Biosciences), sequencing (Sequel
system), read quality control, and assembly (Hierarchical Genome Assembly Process
[HGAP] in single-molecule real-time [SMRT] Analysis v9.0). Assembly completeness and
contamination were measured with CheckM v1.1.3 (7). Gene calling and annotation
were done with Prodigal v2.6.3 (8) and KofamScan v1.3.0 (9). antiSMASH v6.0 (10) was
used for detection of secondary metabolite genes, tRNAscan-SE v2.0 for detection of
tRNA sequences (11), and Barrnap v0.9 for detection of rRNA sequences (12). A phyloge-
nomic tree of all unicellular picocyanobacterial assemblies available in the NCBI RefSeq
database (13) was constructed using GToTree v1.5.51 with the included cyanobacterial
marker gene set (14–18). Default parameters were used for all software unless otherwise
noted.

A total of 1,209,177 reads (average length, 3,532.17 bp) were assembled into a sin-
gle contig 2,752,051 bp in length (GC content, 63%; completeness, 99.46%; contamina-
tion, 0.54%). A total of 2,965 coding regions were detected (1,501 annotated), with 47
tRNAs and three 5S, 16S, and 23S rRNA genes. A phylogenetic tree of 251 conserved
proteins from 219 genomes placed LA31 in Synechococcus subcluster 5.2 (Fig. 1),
branching with both brackish (CB0101 [19]) and freshwater (Vulcanococcus limneticus
LL [20]) isolates.

Nitrogen transporters for nitrate/nitrite (NRT [n = 1]), ammonium (AMT [n = 2]), urea
(urtABCDE and Dur3), and 15 amino acids (21) were detected in LA31. A purine/
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hypoxanthine transporter was also detected; such transporters are upregulated in
eukaryotes under N deprivation but have not been reported in cyanobacteria (22).
High-affinity phosphate uptake systems (pstABC and pstS [n = 3]) and phosphonate
transporters (phnD and phnE) were detected for P, and Fe transporters were detected
for both ferrous (feoAB) and ferric (fbpAB or idiAB) (23) Fe. Four toxin-antitoxin gene
pairs were detected, similar to closely related CB0101 (24). Thirteen secondary metabo-
lite coding regions were identified for ribosomally synthesized and posttranslationally
modified peptides (RiPPs) (n = 10), terpene synthesis (n = 2), and hierridin B (n = 1), a
potential antimalarial compound (25).

FIG 1 Maximum likelihood tree created with 251 concatenated amino acid sequences found in all currently
available cluster 5 Synechococcus, Cyanobium, Vulcanococcus, and Prochlorococcus genomes. The distribution of
the three subclusters within cluster 5 is indicated with brackets on the right side. Strain LA31 (presented here)
is shown in bold. Gloeobacter violaceus PCC 7421 is included as an outgroup. Node numbers represent local
support values derived from 1,000 resamplings as part of FastTree. Genbank accession numbers are listed for
each genome.
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Data availability. This assembly is available under GenBank accession number CP075523
and RefSeq assembly accession number GCF_018502385.1. The version described is the
first version. Reads are available under SRA accession number SRR14511408.
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