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Abstract
The observed spatiotemporal ciliary beat patterns leading to proper mucociliary clearance on multiciliated epithelia are sus-
pected to be the result of self-organizing processes on various levels. Here, we present a simplified pluricellular epithelium 
model, which intends to make the self-organization of ciliary beating patterns as well as of the associated fluid transport 
across the airway epithelium plausible. The model is based on a two-dimensional array of locally interacting oscillating 
ciliated cells. Ciliated cells are represented by Boolean actuators, and abstracted hydrodynamic mucociliary interactions are 
formulated in terms of logical update rules (Boolean functions). In the course of a simulation, initial random conformations 
of an array of actuators self-organize toward metachronally coordinated states exhibiting efficient transport of mucus. Within 
the framework of Boolean networks ciliated cells represent the nodes of the network and as the mucus establishes the local 
interactions among nodes, its distribution (together with the formulated local interactions) determines the topology of the 
network. Consequently, we propose to consider the dynamics on multiciliated epithelia in the context of adaptive (Boolean) 
networks. Furthermore, we would like to present insights gained from conducted comprehensive parameter studies. In 
particular, the dynamical response of the network with respect to variations of the boundary conditions, updating schemes 
(representing intercellular signaling mechanisms) and the proportion of ciliated cells is presented.

Keywords  Cilia · Unciliated cells · Self-organized mucociliary clearance · Synchronization · Modularity · Adaptivity · 
Structure emergence

Introduction

Motivation for the present work is to contribute to the under-
standing of the fascinating and omnipresent phenomenon of 
mucociliary transport.

The epithelium of our airways constitutes a self-cleaning 
surface protecting our lungs from a variety of inhaled sub-
stances such as exhaust, dust, bacteria and other harmful 
substances of micro- and submicrometer size. These parti-
cles get entrapped by the mucus layer lining the inner surface 
of the tracheal and pulmonary airways, which is propelled 

by the coordinated oscillatory movement of millions of sub-
jacent cilia. Cilia are hair-like protrusions of the cell mem-
brane; an overview of their structure and function has been 
provided by Linck (2009) and Satir and Christensen (2007).

To gain insight into the mucociliary clearing mechanism, 
many experimental techniques on various length- and time-
scales are conducted. Experimental studies typically focus 
either on a structural or functional component on a typical 
scale, like the remarkable insight into the detailed molecu-
lar structure of the axoneme (see, e.g., Burgess et al. 2003; 
Sui and Downing 2006), the orientation of the ciliary beat-
ing plane (Satir and Christensen 2007), the distribution of 
the different epithelial cell types (e.g., Plopper et al. 1983; 
Oliveira et al. 2003) or the observation of mucociliary phe-
nomena on the pluricellular level (Ryser et al. 2007). Even 
though much work has been done on various scales, our 
understanding of the basic mesoscopic function of the sys-
tem still appears rather limited. Experimental methods face 
several challenges: until today, it is not possible to observe 
the details of the mucociliary dynamics in vivo. Further, it 
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is difficult to observe the mucociliary clearing mechanism 
under controlled conditions. And finally, it is highly com-
plex and laborious to simultaneously measure structural and 
functional parameters at different scales.

Mathematical models are perfectly suited to conduct 
parameter studies in order to determine the effects of struc-
tural and functional parameters on mucociliary phenomena 
and therefore, serve as an alternative approach for the inves-
tigation of the intriguing mucociliary phenomena. Consid-
ering the implementation of mucociliary interactions, the 
existing models can roughly be divided into two classes.

One class of models prescribes the motion of cilia, 
including their coordination, and concentrates on the 
hydrodynamics and rheology of the system. In these mod-
els, the action of cilia is modeled as distributed oscillating 
momentum source, such as oscillating envelope (Ross and 
Corrsin 1974), traction layer (Smith et al. 2007a), active 
porous medium or oscillating array of cilia represented by a 
distribution of hydrodynamic singularities along the cilia’s 
centerline (Smith et al. 2007b). The aim of these studies is to 
elaborate the geometrical and rheological conditions under 
which the system achieves an efficient transport (e.g., Lee 
et al. 2011).

More relevant to the context of the present study is a sec-
ond class of models, aimed at the understanding of the emer-
gence of the pattern of motion. In these models, the details 
of the motion of cilia or their coordination are not prescribed 
explicitly. The coordinated behavior rather emerges in the 
course of self-organization, during which the system com-
ponents interact locally, what drives the system from an ini-
tially uncoordinated state toward a globally coordinated state 
exhibiting cooperative behavior.

Self-organization may play a role on various time- and 
length-scales, at various levels for the generation of muco-
ciliary transport. As discussed by Marshall (2010), the 
interactions between cilia-generated fluid flow and planar 
cell polarity (PCP) signaling may lead to self-organization 
during the morphogenesis, which establishes the alignment 
of the axonemes on the individual cells. Much of work has 
been done on the molecular level, concerning the molecu-
lar motors (dynein motor proteins), their organization in 
the axoneme as well as the hydrodynamics of the result-
ing model cilium (Riedel-Kruse et al. 2007; Hilfinger and 
Jülicher 2008; Hilfinger et al. 2009). The complex motion 
pattern of a single cilium is thought to result from the self-
organization of many dynein motor proteins generating 
stresses on the elastic microtubules in the axoneme. The next 
higher level, the cellular level, concerns the formation of 
metachronal waves by the self-organized synchronization of 
cilia covering a single cell (Elgeti and Gompper 2013). For a 
long time, it remained an open question whether the synchro-
nization is achieved by cellular signaling (membrane poten-
tials and calcium waves), or if it emerges spontaneously, 

due to interactions between the individual cilia. Today, the 
computational models indicate that hydrodynamic coupling 
is sufficient to induce synchronization (Elgeti and Gompper 
2013; Mitran 2007; Gueron et al. 1997). It is conceivable, 
however, that calcium signaling is needed for fine tuning the 
synchronization (Salathe 2007).

Here, we propose a first step to the next higher level, the 
pluricellular level, on which the self-organization of ciliary 
activity among ciliated cells is thought to generate the global 
wave field and fluid transport on the airway epithelium. In 
order to make the self-organized beat patterns as well as 
self-organized fluid transport across the airway epithelium 
plausible, we present a simplified model, which is intended 
to represent a virtual self-cleaning epithelium. Ciliated cells 
are modeled as actuators alternating between two possible 
states representing ciliary oscillations. Interactions between 
the two-state actuators are mediated by discrete mucus drop-
lets and enmeshed dust particles. Whenever it is possible, 
the mucus droplets get displaced by the action of actuators 
and they may block their motion in certain configurations, 
which is prescribed by local interaction rules. This highly 
simplified model based on locally interacting motors self-
organizes toward a virtual self-cleaning epithelium: the 
initially randomly distributed phases erratically displace 
the mucus lumps at the beginning of the simulation. As 
time passes the motors self-organize, which is expressed 
by emergent global spatiotemporal structures, resembling 
the metachronal wavelets, which have been observed on 
the ciliated tracheal epithelium (Ryser et al. 2007). These 
metachronal wavelets efficiently transport the mucus lumps 
into a well-defined direction.

This paper is organized as follows. In “Model descrip-
tion” section, we introduce our abstract epithelium model. 
First, an introduction and biophysical motivation of the 
various model components, such as different morphologies, 
boundary conditions and update schemes, is provided. In 
the last section of the model description (“Concise formal 
model description” section ), we provide a formal complete 
description of the model. Therefore, readers with a strong 
mathematical background principally have the possibility 
to skip the “Symmetrically interacting two-state actuators” 
section –“Boolean network representation” section. The 
goal of “Model description” section is to formulate our epi-
thelium model in terms of an adaptive Boolean network. 
Within the framework of adaptive Boolean networks, nodes 
are represented by actuators and the topology of the network 
(in effect the links between the nodes) is determined by the 
mucus distribution. Thanks to the simplicity of our epithe-
lium model, it is possible to investigate the impact of the 
model parameters on the system’s behavior by conducting 
comprehensive parameter studies. The corresponding simu-
lation data are presented in “Simulations and results” sec-
tion. The simulation data were screened for any suspicious 
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coherences between the model parameters and the network 
dynamics as well as between the parameters and their corre-
sponding attracting states. Furthermore, we aimed at finding 
the mechanisms driving the model efficiently toward prop-
erly self-cleaning states. Finally, in “Discussion” section we 
discuss our findings. In particular, we hypothesize about the 
meaning of the discovered dynamical aspects, which seem 
to be universal for our specific model of locally interacting 
cells, for the real biological system.

Model description

Symmetrically interacting two‑state actuators

Our model is based on symmetrically interacting two-state 
actuators. Each actuator represents a ciliated epithelial cell. 
By arranging many actuators in a parquet-like manner, the 
model represents a ciliated epithelium. Cilia corresponding 
to the same cell are assumed to move synchronously back 
and forth. This back and forth motion of cilia bundles is 
incorporated by the alternation between the actuators’ two 
possible states, which is illustrated in Fig. 1. The actual state 
of an actuator can thus be expressed by the Boolean state 
variable � ∈ {0, 1}.

Morphology of virtual epithelia

The morphology of the airway epithelium is thought to 
be the result of self-organizing processes during the mor-
phogenesis (Marshall 2010). An important characteristic 
of the morphology is the distribution of the orientation of 
the ciliary beating plane, which can be determined by the 
orientation of the microtubules in the axoneme (Satir and 
Christensen 2007). The impact of the (dis-)orientation of 
the ciliary beating plane, i.e., of the axonemal orienta-
tion on mucociliary transport, has been discussed, e.g., by 
Rutland and De Iongh (1993) and De Iongh and Rutland 
(1989). It has been concluded that a disorganized ciliary 
orientation may be a primary cause for mucociliary dys-
function and vice versa. Studies attempting to quantify 
the axonemal orientation of respiratory cilia have usually 

considered the ciliary beating plane on a few cells derived 
from nasal brushing (e.g., Rautiainen 1988). Here, we first 
of all assume that cilia belonging to the same cell have a 
coinciding beating plane. As it is conceivable that the cili-
ary orientation on a cell might be more strict than between 
cells, the actuators can be oriented vertically or horizon-
tally, as illustrated in Fig. 1. Note that the two different 
possible orientations are not meant being perpendicular 
to each other, but to represent two distinct orientations of 
the ciliary beating plane differing by an arbitrary angle 
between cells.

Here, we consider three different conceivable parquet-
like cell alignments shown in Fig. 2. In the following, we 
shall refer to these three cell alignments as unidirected 
square lattice (USL), unidirected hexagonal lattice (UHL) 
and bidirected hexagonal lattice (BHL).

Another important characteristic of the morphology rep-
resents the population densities of ciliated and unciliated 
cells, whose role for the mucociliary dynamics has not been 
considered so far. According to electron microscopic studies 
(Plopper et al. 1983; Oliveira et al. 2003), the area covered 
by ciliated cells roughly varies between one and two-thirds 
of the total surface of the tracheal lining. Consequently, 
unciliated cells should be considered in pluricellular mod-
els. Therefore, we included the proportion f ∈ [0, 1] of 
unciliated epithelial cells, which are represented by ran-
domly distributed empty sites in an array of actuators.

Finally, as indicated by the dashed grid lines in Fig. 2 
the virtual epithelium is represented by a two-dimensional 
array. For convenience, a site located at the i-th row and 
j-th column is denoted as �ij . �ij either represents an actua-
tor, then �ij ∈ {0, 1} , or indicates an empty site represent-
ing an unciliated cell, then �ij = NaN . Accordingly, the 
state of an array of cells with I rows and J columns can be 
denoted as: � = {�ij} , where �ij ∈ {0, 1, NaN}.

Fig. 1   Ciliated cells are represented by two-state actuators. An actua-
tor’s current state is expressed by the Boolean state variable � . Each 
actuator provides two fields (0 and 1)

Fig. 2   Three different cell alignments have been investigated. Bright 
gray colored cells label the neighborhood of a central cell colored in 
dark gray. Dashed grid lines indicate the mapping onto a two-dimen-
sional array
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Boundary conditions

Experiments aiming at the characterization of spatiotempo-
ral features of mucociliary phenomena on the tracheal ciliary 
epithelium are based on the approach of excising a rectangu-
lar piece of the cylindric trachea (Wong et al. 1993; Yi et al. 
2002; Lee et al. 2005; Ryser et al. 2007), which changes the 
boundary conditions from cylindrical to open. The excision 
might influence the collective dynamical behavior of the sys-
tem. Therefore, we consider four different boundary condi-
tions, which are illustrated in Fig. 3 and shall be referenced 
in the following as: open boundaries (OP), vertical cylindric 
boundaries (VC), horizontal cylindric boundaries (HC) and 
toric boundaries (TO).

Mucus

Mucus is discontinuously incorporated by randomly seeding 
mucus droplets of equal size. On the one hand, the discrete 
mucus model allows to simplify mucociliary interactions. 
On the other hand, it accounts for the fact that the mucus 
blanket is anyway made up of excreted mucus “flakes,” 
“plaques” or ”droplets“ (Van As and Webster 1974), which 

may coalesce into a continuous layer, if their density is suf-
ficiently large (Geiser et al. 1997).

According to Fig. 1, each actuator provides an empty field 
(0 or 1), which can be occupied by mucus droplets. On the 
other hand, empty sites (unciliated cells) provide two fields 
(0 and 1), which can be occupied by mucus droplets. Thus, 
the distribution of mucus droplets on the virtual epithelium 
is given by � = {mijk} , with k ∈ {0, 1} specifying the field 
within a site ij. In order to simplify the notation, the term mij 
refers to 

∑
k mijk in the following.

System update

In the course of a simulation, the actuators are actuated 
sequentially. This means that only the state of the actuated 
actuator and its adjacent mucus configuration is updated, 
while the states of adjacent actuators do not change. As 
soon as an actuator and its local mucus configuration has 
been updated, a subsequent actuator is updated for which 
the changes of the prior step are taken into account. We shall 
label the sequence of update steps by the “time” superscript 
t. Furthermore, t� ≐ t∕N labels the update of the whole net-
work, consisting of N actuators, in the following. In the con-
text of discrete dynamical systems such sequential update 
schemes are called asynchronous. An excellent overview 
of the impact of different update schemes on the network 
dynamics of random Boolean networks has been provided 
by C. Gershenson (Gershenson 2002, 2004b). In order to dis-
tinguish the different update schemes, we shall use a slightly 
modified form of the terms proposed in Gershenson (2002) 
(since we are not dealing with random Boolean networks). 
We shall use the following update schemes (consider the 
corresponding illustrations in Fig. 4):

•	 DAU—deterministic asynchronous update
	   This update mode corresponds to a pre-defined 

sequence, in which the nodes/cells in the lattice are 
addressed. Keep in mind, however, that determinism 
of addressing does not mean determinism of actuators 

Fig. 3   Boundary conditions: open, vertical cylindrical, horizontal 
cylindrical and toric boundaries. The dark gray and bright gray lines 
indicate wrapped boundaries

Fig. 4   The figure illustrates different update schemes for a lattice con-
sisting of 4 × 4 cells. The numbers indicate the order of activation 
(for one certain time step). From left to right: a pre-defined sequence 

(DAU), random cell selection without replacement (RAU1) and a pla-
nar wavelike activation (SRAU1)
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motion. Whether an actuator moves or not depends on 
the mucociliary interactions, which are on a high degree 
stochastic, as we shall see in the proceeding sections.

•	 RAU—random asynchronous update
	   At each time step, a single node is chosen randomly 

and updated. The random choice of nodes has been 
applied for sampling with and without replacement 
(Cornforth et al. 2005). Random sequences of nodes 
generated without and with replacement are denoted as 
RAU1 and RAU2, respectively.

•	 SRAU—semi-random asynchronous update
	   The update scheme SRAU uses a wavelike activa-

tion: at each time step a strip of actuators gets addressed. 
Inside of each strip the actuators get addressed according 
to the RAU1 scheme. As the choice of the strip is pre-
defined but inside the strips the sequence of actuators is 
chosen randomly, this addressing scheme has a semi-ran-
dom character. This wavelike activation has been imple-
mented for a wave traveling from the left to the right, as 
well as for a wave traveling from the top to the bottom, 
which we denote as SRAU1 and SRAU2, respectively.

•	 Mimicking Purcell’s two-hinged low-Reynolds-number-
swimmer

	   As non-reciprocal motions play an important role in 
a low-Reynolds-number environment the cell arrange-
ment BHL has been used together with a prescribed 
addressing sequence of two neighboring actuators, V 
and H, forming the shape of an “L.” The two actuators 
are addressed in the sequence VHVHVH, which would 
result in a four-phase cyclic motion if the actuators were 
to move unhinderedly. This scheme, originally proposed 
by one of the authors in an essay in a popular scien-
tific journal (Ricka 2010), was motivated by the “two-
hinged low-Reynolds-number-swimmer,” which has 
been introduced by Purcell (1977) and is illustrated in 
Fig. 5. The prescribed addressing sequence principally 
represents a special locally deterministic update scheme, 
as it considers the actual state of two locally coupled 
cells to determine which actuator will be addressed. 
The selection of the “L” is based on the update schemes 

introduced above (RAU1, RAU2, SRAU1, SRAU2 and 
DAU). Consequently, we actually mixed a local update 
scheme (prescribing the four-phase sequence of an “L”) 
with different global update schemes (selecting which 
“L” to address). Settings using the coupling of two cells 
forming an “L,” will be accounted for a cell arrangement, 
referred to “BHL + L.”

The different update schemes have been applied in order 
to investigate the role of potential intercellular signaling 
mechanisms on the airway epithelium for the dynamical 
behavior of locally interacting ciliated cells.

Local mucociliary interactions

For the sake of simplicity, we shall assume from here on that 
the cells are aligned according to the square-lattice align-
ment (USL, Fig. 2).

Hydrodynamic interactions between adjacent ciliated 
cells are considered in a simplified fashion and implemented 
in terms of logical local decision rules induced by mucus 
droplets randomly seeded on the empty fields of the network. 
The system’s evolution is achieved by attempting to sequen-
tially move the individual actuators. As interactions between 
actuators only occur if mucus is located on the activated 
actuator ij, an activated actuator can switch its state unhin-
deredly as long as there is no mucus, i.e., mt

ij
= 0 , hindering 

its oscillation (Fig. 6). There are, however, two possibilities 
that an activated actuator ij, with a mucus load of mt

ij
> 0 , 

remains in its actual state. Either the active actuator has not 
enough energy to shift or squeeze the mucus droplets on 
adjacent fields (Fig. 7), or the actuator is situated in a locked 
configuration (see Fig. 8).

Note that there are always two possible locked configura-
tions for each actuator. If the activated actuator ij is not situ-
ated in a locked configuration, and mt

ij
> 0 , it either flips its 

state by squeezing the concerned mucus on adjacent fields, 
or it stagnates and remains in its current state (Fig. 7). Prior 
to its attempt to move, each actuator ij gets a certain amount 
of inversely sampled energy ut

ij
 ascribed. If the actuator’s 

Fig. 5   The prescribed cyclic four-phase motion of two adjacent actua-
tors forming the shape of an “L” (left). The construction of this four-
phase motion-sequence was motivated by Purcell’s two-hinged swim-
mer (right)

Fig. 6   An activated mucus-free actuator (indicated by the bright sur-
round) is always able to alternate its state ( � t+1

ij
= � t

ij
)
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ascribed energy exceeds the required moving energy Δwt
ij
 , 

the actuator is able to move. This way, the actuators’ energy 
distribution and the situation-specific change in free energy 
(Δwt

ij
) determines the probability for an actuator to flip its 

state by squeezing the mucus on adjacent actuators.
Intercellular coordination, or rather the emergence of 

global spatiotemporal patterns, are caused by stagnating 
actuators as well as locked configurations, as in these situa-
tions the activated actuator has to adjust its state according 
to its locally surrounding state and mucus distribution.

Actuator energy and mucus relaxation

The interactions are quantified using a simple scheme 
intended to model in a crude fashion the transient entropic 
elasticity and relaxation of entangled mucin chains. We 
view the actuator as a piston acting against the pressure 
p exerted by mucus droplets contained in a certain vol-
ume V. We assume that the interactions are mediated only 
through n adjacent fields of the targeted site (Fig. 9). As 
a result the volume to be compressed by the action of the 
piston is V = nΔV .By moving the actuator, this volume 

changes by −ΔV  to V � = (n − 1)ΔV  , what requires the 
work Δw = pΔV  . To determine the pressure p we employ 
the standard thermodynamic relation: p∕T = �S(V)∕�V  , 
where S(V) = kBln(WV ) is the Boltzmann entropy of the 
mucus droplets enclosed within V. Replacing the differ-
entials by discrete differences �S → ΔS = kBln(WV �∕WV ) 
and �V → −ΔV  yields

Subsequently, we set kBT = 1 , i.e., energy is measured in 
units of kBT  . A plausible expression for the multiplicity 
(“thermodynamic probability”) Wn can be deduced as fol-
lows: random deposition of M mucus droplets on n avail-
able fields is equivalent to rolling an n-sided dice. Thus, the 
result of the deposition of M droplets is a sample from the 
multinomial distribution, with equal probabilities for hitting 
a field unoccupied by an actuator. Thus, the multinomial 
coefficient Cn = M!∕(m1!m2! ⋅ ⋅ ⋅ mn!) is a good candidate 
for the multiplicity in Boltzmann entropy. ( mi denotes the 
number of droplets deposited on a field i.) However, after 
the deposition, prior to an attempted move of an actuator, 
we allow the distribution of droplets to relax to a “thermo-
dynamic equilibrium,” i.e., into a state of maximum multi-
plicity, where the droplets are most uniformly distributed 
on the available fields, so that |mi − mj| ≤ 1 , for i ≠ j . In 
other words, we invoke the maximum entropy principle 
(Hanel et al. 2014). Therefore, we define the multiplicity 
involved in Eq. 1 as Wn = max

(
M!∕m1!m2! ⋅ ⋅ ⋅ mn!

)
 and 

Wn−1 = max
(
M!∕m�

1
!m�

2
! ⋅ ⋅ ⋅ m�

n−1
!
)
 , where mi and m′

i
 are 

subject to the constraints 
∑n

i=1
mi =

∑n−1

i=1
m�

i
= M.

(1)Δw = pΔV = kBTln
( Wn

Wn−1

)
.

Fig. 7   If the active actuator holds a mucus droplet ( mt
ij
> 0 ), the 

actuator is either going to stagnate (i.e., ut
ij
< Δw ), or the previously 

ascribed actuator energy is sufficient to switch its state by squeezing 
the mucus droplets on adjacent fields ( ut

ij
≥ Δw)

Fig. 8   In certain state configurations, the active actuator is locked and 
consequently remains in its actual state: � t+1

ij
= � t

ij

Fig. 9   The left panel illustrates the neighborhood of actuators aligned 
in the square lattice. Bright gray actuators control the subsequent 
state of the actuated dark gray actuator. Middle and right panel: two 
situations which are thought to illustrate the locally concerned vol-
ume V = nΔV  and the involved number of mucus droplets M. As 
indicated by the black surround the update of �ij , as well as of the 
associated local mucus distribution, depends on a maximum of four 
sites (n ≤ 4) . The state and mucus distribution of actuators, which are 
not involved to the current interaction, are irrelevant for the update of 
mt

ij
 and � t

ij
 . Therefore, these actuators are shown grayed out.



27Theory in Biosciences (2020) 139:21–45	

1 3

To complete the specification of the mucociliary inter-
actions, we must specify the actuators’ ascribed energy u. 
At this point, we introduce an additional stochastic ele-
ment, assuming a certain distribution fU(u) of the actua-
tor energy. Prior each attempt an actuator’s energy u is 
obtained by reverse sampling, according to: u = F−1

U
(r) , 

where r represents a uniformly distributed random number 
and FU the cumulative energy distribution.

In the present simulations, we used the following 
expression:

where u > 0 and � parameterizes the actuators’ energy sup-
ply. This function is illustrated in Fig. 10.

Boolean network representation

In this study, the mucociliary dynamics on the epithelium 
are represented in terms of an adaptive Boolean network. 
Ciliated cells are imported in terms of Boolean actuators and 
represent the nodes of the network. The links between nodes 
represent mucociliary interactions, which we formulate in 
terms of Boolean functions.

Formally, a Boolean network consists of N elements 
{�1,�2,… ,�N} , each of which is a binary variable 
�i ∈ {0, 1} representing a node in the network. In general 
(Aldana et al. 2003), the value of a node �i at time t + 1 is 
given as a function fi of its Ki controlling elements at time t:

The Boolean function fi as well as the number of controlling 
elements Ki may be different for each node. The dependence 
on node i explicitly denotes that the set of controlling nodes 
with indices {j1, j2,… ,Ki} generally varies from one node 
to the other.

(2)FU(u) =
(

�

1 − �
exp(−u) + 1

)−1

,

(3)� t+1
i

= fi(�
t
j1(i)

,� t
j2(i)

,… ,� t
Ki(i)

) .

In our case, �ij at time t + 1 is given as a function fij of the 
local state configuration {� t

pq
}pq∈nt

ij
 and the local distribution 

of mucus droplets {mt
pq
}pq∈nt

ij
 at time t:

The term nt
ij
 denotes the set of index tuples, which identifies 

the set of all adjacent sites involved in the local interaction, 
and depends on the local state and mucus configuration at 
time t. The function fij represents the local mucociliary 
interactions.

It is important to realize that the distribution of mucus 
droplets determines the topology of the network, as the 
update of mucus-free nodes is not affected by their local 
environment. As soon as an actuator gets occupied by a 
mucus droplet, it gets functionally connected to its neighbor-
ing nodes, as its subsequent state depends on the local state 
and mucus configuration. Consequently, in our network not 
only the network’s state is exposed to dynamics, but also the 
network’s topology, as the (re-)distribution of the droplets 
depends on the state transitions of the nodes and vice versa. 
Networks exhibiting such a feedback loop between the net-
work’s state and its topology are called coevolutionary or 
adaptive networks (Gross and Blasius 2008).

Concise formal model description

The state of the network is denoted by the two-dimensional 
Boolean state array � t = {� t

ij
} , where i ∈ {1, 2,… , I} 

denotes the row and j ∈ {1, 2,… , J} the column (Fig. 2). 
Therefore, � t represents the collective state of N cells 
arranged along I rows and J columns at time t. Each cell �ij 
can be considered as a network node and either represents a 
ciliated cell, then � t

ij
∈ {0, 1} (see Fig. 1), or an unciliated 

cell (two empty fields), then � t
ij
= NaN (for ∀t ≥ 0 ). The 

oscillating motion of cilia is imported by the permanent 
attempt of a ciliated cell to reverse its state. The state of the 
array of cells � t is at any time associated with the distribu-
tion of mucus droplets, which is denoted by the array 
Mt = {mt

ijk
} , with mt

ijk
∈ ℕ0 representing the number of 

mucus droplets located on the field k ∈ {0, 1} of a site ij. 
After having initialized the Boolean state array � 0 and its 
associated mucus distribution M0 , the temporal evolution of 
the set of N actuators, as well as of its associated mucus 
distribution, is achieved by sequentially updating the actua-
tors as well as their mucus load. The state and mucus load 
of a Boolean actuator at time t + 1 is given as a function of 
its own state and mucus load as well as of the state and 
mucus load of its adjacent actuators at time t. This function 
imports the coarse-grained local hydrodynamic coupling 
between ciliated cells. The update of the state of a cell ij can 
be formulated as:

(4)� t+1
ij

= fij
(
{� t

pq
}pq∈nt

ij
, {mt

pq
}pq∈nt

ij

)
.

Fig. 10   The curves show the actuators’ cumulative energy dis-
tribution FU(u) for different values of the energy parameter: 
� ∈ {

1

4
,
1

2
,
3

4
, 1} and for � → 0
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The XOR function imports the actuators’ permanent attempt 
for state reversal, which represents the collectively synchro-
nized oscillatory ciliary motion within a cell. The term ct

ij
 

represents the local coupling among the nodes. If ct
ij
 gets 

true, the actuator’s state is reversed, i.e., � t+1
ij

= � t
ij
 , and in 

case ct
ij
 gets false, the actuator remains in its current state, 

i.e., � t+1
ij

= � t
ij
.

The local coupling term ct
ij
 is given as:

�(x) denotes the Heaviside step function, such that �(0) = 1 . 
The first term NOR(l0, l1) in Eq. (6) imports a condition, 
which makes sure that an actuator can move in neither of 
the two possible “locked configurations” denoted by l0 and 

l1 (Fig. 8). For the choice of the square-lattice alignment l0 
and l1 are formally given as:

If the considered actuator ij is not situated in a locked con-
figuration (NOR(l0, l1) = 1 ), it can invert its state, if its 
inversely sampled energy ut

ij
= F−1

U
(rt

ij
) , with rt

ij
 being a uni-

formly distributed random number rt
ij
∈ [0, 1) , is at least as 

large as Δwt
ij
 , which denotes the amount of energy required 

to push the mucus load mt
ij
 away (see Fig. 7). Prior to each 

attempt an actuators’ energy ut
ij
 was obtained by reverse sam-

pling according to the following cumulative energy 
distribution:

where the parameter � ∈ [0, 1] parameterizes the actuators’ 
energy. Therefore, the term �

[
rt
ij
− FU(Δw

t
ij
)
]
 imports an 

“energetic condition” for an actuator not being situated in a 
locked configuration (NOR(l0, l1) = 1 ) to move, which is 

(5)� t+1
ij

=

{
XOR{� t

ij
, ct

ij
}, if � t

ij
∈ {0, 1}

NaN, if � t
ij
= NaN .

(6)ct
ij
= NOR(l0, l1) ⋅�

[
rt
ij
− FU

(
Δwt

ij

)]
.

(7)
l0 = AND

[
�
(
mt

ij
− 1

)
,� t

ij
,� t

ij−1
,� t

i+1j
,� t

ij+1

]

l1 = AND
[
�
(
mt

ij
− 1

)
,� t

ij
,� t

ij−1
,� t

i−1j
,� t

ij+1

]

(8)FU(u) =

{(
𝜖

1−𝜖
exp(−u) + 1

)−1

, for ∀u > 0

0, for u = 0,

subject to stochasticity. The term 1 − FU(Δw
t
ij
) can be con-

sidered as the situation-specific moving probability.
Prior to each attempt of an actuator to move, we allow the 

mucus droplets to relax by invoking the maximum entropy 
principle. The mucus droplets are therefore most uniformly 
distributed over all locally involved adjacent fields maximiz-
ing the multiplicity, which is achieved by minimizing the 
denominator of the adopted multinomial coefficient:

with M =
∑

pq∈nt
ij

mt
pq

 and the constraint: |mpq − mp�q� | ≤ 1 , 
for p ≠ p� ∨ q ≠ q� . The term nt

ij
 denotes the set of index 

tuples, which identifies the set of all adjacent sites, which 
are involved in the local interaction. The formal denotation 
of nt

ij
 is somewhat complicated and reads as follows (see also 

Fig. 9):

The amount of energy required for pushing the mucus load 
mt

ij
 away, which is denoted by Δwt

ij
 , was determined accord-

ing to:

Wn−1 denotes the multiplicity after the actuator ij would have 
cleared itself from the mucus load mt

ij
 , which would there-

fore relax over #nt
ij
− 1 actuators. Wn−1 is consequently given 

as:

where mt+1
ij

= 0 and � t
ij
∈ {0, 1} . Equation (12) implicitly 

specifies the update rule for the local mucus distribution, i.e., 
mt+1

pq
 with pq ∈ nt

ij
 , which is subject to stochasticity and fully 

specified by Eq. (12), or Eq. (9) in case that ut
ij
< Δwt

ij
 , with 

the constraints: |mt+1
pq

− mt+1
p�q�

| ≤ 1 (for p ≠ p� ∨ q ≠ q� ) and 
M =

∑
pq∈nt

ij

mt
pq

=
∑

pq∈nt
ij

mt+1
pq

 .

(9)Wn = max

⎛
⎜⎜⎝
M! ∕

�
pq∈nt

ij

mt
pq
!

⎞
⎟⎟⎠
,

(10)nt
ij
=

⎧⎪⎨⎪⎩

{(i + 1, j) ∶ � t
i+1,j

∈ {1, NaN}, (i, j + 1) ∶ � t
i,j+1

∈ {0, NaN}, (i, j − 1) ∶ � t
i,j−1

∈ {0, NaN}}, if � t
ij
= 0

{(i, j + 1) ∶ � t
i,j+1

∈ {1, NaN}, (i − 1, j) ∶ � t
i−1,j

∈ {0, NaN}, (i, j − 1) ∶ � t
i,j−1

∈ {1, NaN}}, if � t
ij
= 1

{(i + 1, j) ∶ � t
i+1,j

∈ {1, NaN}, (i, j + 1), (i − 1, j) ∶ � t
i−1,j

∈ {0, NaN}, (i, j − 1)}, if � t
ij
= NaN .

(11)Δwt
ij
= ln(Wn∕Wn−1) .

(12)Wn−1 = max

⎛⎜⎜⎝
M! ∕

�
pq∈nt

ij

mt+1
pq

!

⎞⎟⎟⎠
,
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Simulations and results

Initial state

Prior to simulation, the state of the virtual epithelium has 
to be initialized. First, an array of N actuators with random 
states is generated, i.e., � 0 , where �ij ∈ {0, 1} are uniformly 
distributed. Second, as the fraction f represents the propor-
tion of unciliated cells, f ⋅ N randomly chosen sites are set to 
NaN. A certain amount of mucus droplets is then seeded on a 
randomly chosen site (uniformly distributed). For the sake of 
comparability between open and toric boundary conditions, 
the amount of mucus droplets was held constant during the 
simulation. Therefore, when applying open boundaries the 
mucus droplets leaving the modeling area were refed on a 
randomly chosen site. This way, we principally assumed the 
mucus excretion to be proportional to the mucus transport, 
which would of course need some kind of internal regulation 
mechanism in a real trachea.

Parameter study

In order to assess under which circumstances our model self-
organizes toward a self-cleaning virtual epithelium and how 
it reaches its properly functioning states dynamically, the 
influence of the model parameters, introduced in the previ-
ous chapter, on the network dynamics has been studied. The 
main parameter study encompasses the variation of the six 
model parameters in the following ranges. All cell align-
ments (USL, UHL, BHL, BHL + L), all update schemes 

(DAU, RAU1, RAU2, SRAU1, SRAU2) and all boundary 
conditions (OP, HC, VC, TO) have been used. The amount 
of mucus lumps has been varied in the range of 0.5%, 1%, 
2%, 4%, ..., 256% of the total number of actuators in the 
grid (an amount of 4% corresponds to 0.04 ⋅ N mucus drop-
lets). The amount of unciliated cells has been set to 0%, 
5%, 10%, 15%, 20%, 25%, and finally, the energy parameter 
has been set to 0, 0.25, 0.5, 0.75 and 1. Consequently, our 
main parameter study encompasses 24,000 simulation runs, 
which have been iterated for 105 time steps using a grid size 
of 50 × 50 cells. These simulations can be seen as a starting 
point of further simulations we conducted. Each simulation 
run is characterized by its corresponding parameter setting. 
A specific parameter set is denoted as a combination of the 
form: (grid size, cell alignment, update scheme, boundary 
condition, mucus amount, energy parameter, amount of 
unciliated cells).

Observables

To provide a qualitative impression of the self-organizing char-
acter of the network model and to illustrate the meaning of the 
chosen observables, we present first a typical simulation run. 
The parameters have been set to ( 50 × 50 , USL, DAU, TO, 16%, 
0.5, 0%). Figure 11 shows the state of the network at three dif-
ferent stages of the self-organization process. Figure 11 repre-
sents a substitute for the temporal evolution of the network’s 
state, which is best visualized by the Online Resource 1. Actua-
tors are colored in dark gray if � t

ij
= 1 or in bright gray if � t

ij
= 0 . 

(a) (b) (c)

Fig. 11   The panels show the network state of an exemplary simula-
tion run at three different stages of the self-organization process. The 
crosshairs in the second row visualize the mucus transport velocity 
��(t

�) for each stage (the radial tick interval corresponds to 0.2 (cells/
it)). a Initial network state: randomly distributed states. b Network 

state after 100 iterations: due to the local interactions the emergence 
of order becomes visible. c After 1500 iterations: the self-organized 
cooperative behavior of actuators forms spatiotemporal patterns and 
exhibits efficient self-organized transport
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Mucus lumps are shown in white. Figure 11a shows the initial 
network state displaying the randomly generated initial configu-
ration of states and mucus lumps. Figure 11b visualizes the state 
of the network after 100 iterations, representing an intermediate 
stage of the self-organization process, as the emergence of global 
order becomes clearly visible. Finally, Fig. 11c shows the net-
work state after 1500 iterations. At this stage, the fascinating 
self-organization process has almost completed, and the actua-
tors finally behave strongly coordinated at a global scale.

By examining the successive network states in movie_S1 
(Online Resource 1), one can observe that the particles get ini-
tially moved around disorderly. Quickly, the actuators start to 
cooperate by adjusting their oscillations to the oscillations of 
the surrounding actuators until the particles get efficiently trans-
ported into a well-defined direction—what we call self-organ-
ized transport. Consequently, in our models the self-organization 
process is actually twofold. As in accordance with the emer-
gence of spatiotemporal patterns, the virtual epithelium exhibits 
self-organized transport. This coevolution of the network state 
and its associated mucus transport has been quantified in terms 
of several observables, which are introduced in the following.

Mucus transport velocity

For each actuator at the position ij at time t, we assign a local 
mucus velocity in terms of the local displacement of the 
center of mass (CM), which we denote as �ij(t) and has been 
calculated (if mt

ij
> 0 ) according to:

�ij(t) measures the redistribution of mucus droplets in the 
neighborhood nt

ij
 of the activated actuator at ij in terms of the 

local displacement of the CM. �ij − �pq denotes the distance 
vector pointing from the activated actuator at ij to the neigh-
boring actuators at pq. This relative distance vector gets 
weighted by the redistributed mucus droplets (mt+1

pq
− mt

pq
).

In order to quantify the global transport velocity �g(t�) 
(remind that t� ≐ t∕N  ), we calculate the mucus-weighted 
average over the whole array of actuators of the formerly 
defined local velocity of the CM in Eq.(13) according to:

�g(t
�) represents an approximation to the actual average 

mucus transport velocity, as droplets moving more than 
one field in one single time step are neglected. As these 
movements only happen due to fluctuations originating from 

(13)�ij(t) ≐

∑
pq∈nt

ij

(�ij − �pq)(m
t+1
pq

− mt
pq
)

∑
pq∈nt

ij

mt
pq

(14)�g(t
�) ≐

∑
ij �ij(t

�)
∑

pq∈nt
ij

mt�

pq∑
ij

∑
pq∈nt

ij

mt�

pq

.

mucus relaxation, �g(t�) represents a good measure for the 
area-averaged mucus transport velocity.

Figure 12 shows the temporal evolution of the global 
mucus transport speed |�g(t�)| for an ensemble consisting of 
100 simulation runs differing only by their initial state. Each 
ensemble member corresponds to a simulation run for which 
the parameter setting ( 50 × 50 , BHL + L, RAU1, OP, 10%, 
1, 0%) has been used. The curve shows the temporal evolu-
tion of the ensemble mean (solid line) and its standard devia-
tion (shaded area) and displays the typical saturation-like 
behavior of the average mucus transport speed, which has 
been observed for each parameter setting showing a self-
organizing behavior. Accordingly, we can define the initial 
mucus transport velocity �g0 ≐ lim

t�→0
�g(t

�) and the final mucus 
transport velocity �g∞ ≐ lim

t�→∞
�g(t

�) . Consequently, the 
global average transport velocity can be expressed as

where Δ�g(t�) can be seen as the effectively self-organized 
mucus transport velocity.

Mucus transport direction

We observed that some parameter sets drive the model 
toward well-organized network states exhibiting non-neg-
ligible area-averaged transport speeds. However, some of 
these well-organized states exhibit unrealistic velocity fields.

The network state shown in Fig. 13
(upper panel), and its corresponding (temporally aver-

aged) velocity field (lower panel) has been generated by 
applying the parameter set ( 50 × 50 , UHL, DAU, OP, 64%, 
1, 0%). It can be seen that even if the network state is well 
organized the corresponding velocity field appears to be 
rather disordered. A closer look reveals that the network 

(15)�g(t
�) = �g0 + (�g(t

�) − �g0) ≐ �g0 + Δ�g(t
�),

Fig. 12   Temporal evolution of the average mucus transport speed of 
an ensemble consisting of 100 simulation runs. The typical limited 
growth behavior was omnipresent in all of our simulation runs dis-
playing a self-organizing behavior
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state as well as its corresponding velocity field is divided 
into two parts. The right half transports the mucus with a 
tendency to the right, while the transport on the left half 
tends to the left. The global average velocity amounts to 
�g∞ = (− 0.14,− 0.03) cells/it.

In order to classify parameter sets generating such odd 
velocity fields as malfunctioning, we measured the spread 
of the (temporally averaged) local velocity fields in terms of 
⟨cos �⟩ ≐ ⟨cos �ij⟩ij , where ⟨⋯⟩ij indicates spatial averaging. 
We defined cos �ij as:

where ⟨⋯⟩t′ indicates temporal averaging (over the last 103 
iterations of each simulation). For the velocity field shown 
in Fig. 13 ⟨cos �⟩ amounts to 0.18 indicating not properly 
directed transport.

Transient time

Figure 14 depicts the temporal evolution of two ensem-
bles consisting of 100 ensemble members differing only 
by their initial condition. The brighter band corresponds 
to the curve presented in Fig. 12 showing the evolution of 
the average mucus transport speed being generated with 

(16)cos �ij ≐ lim
t�→∞

⟨�ij(t�)⟩t� ⋅ ⟨�g(t�)⟩t�
�⟨�ij(t�)⟩t� � ⋅ �⟨�g(t�)⟩t� � ,

the parameter setting ( 50 × 50 , BHL + L, RAU1, OP, 10%, 
1, 0%). The darker curve has been generated with exactly 
the same parameter settings apart from the update scheme. 
Instead of RAU1, the update DAU was used. Both ensem-
bles show the typical saturation-like temporal evolution of 
the average transport speeds, which reflects the capturing 
of the system dynamics. We calculated the transient time 
based on the transient behavior of the average transport 
speed, which roughly follows an exponential behavior: 
|�g(t�)| = |�g0| + exp(−t�∕��) ⋅ (|��∞| − |���|) . The transient 
time � has been defined as � ≐ 3 ⋅ �′ . As one can notice in 
Fig. 14, the transient time for the ensemble simulation using 
the deterministic update scheme DAU is roughly four times 
shorter than the one for which the update scheme RAU1 was 
used. This behavior may be more fundamental and shall be 
discussed later.

Autocorrelation

In order to characterize the coordination among the actuators 
in a particular network state, we use the spatial autocorrela-
tion function C (Δi,Δj, t�) =

∑
i,j

� (i, j, t�)� (i + Δi, j + Δj, t�) , 

where Δi and Δj denote the shifts into the i- and j-direction, 
respectively. As we would like to compare different simula-
tion runs with respect to the emergent spatial order, we used 
the autocorrelogram to determine the spatial autocorrelation 
length �c , representing a measure for the degree of order in 
a network state. As most correlograms appear to be strongly 
elongated as illustrated in Fig. 15, we determined the auto-
correlation length along the direction of maximum correla-
tion, which is indicated by the gray plane in Fig. 15. Note 
that in roughly 95% of all self-organized properly 

Fig. 13   Example of a highly ordered network state (top) displaying 
a disordered (temporally averaged) velocity field (bottom). The gray 
level indicates the droplets’ speed (cell/it.)

Fig. 14   The curves show the temporal evolution of the average mucus 
speed for two ensemble simulations differing only by their update 
scheme. The darker and brighter curves correspond to simulations for 
which DAU and RAU1 have been applied, respectively. Simulations 
initialized with the update scheme DAU exhibit an accelerated self-
organization reaching saturation roughly four times faster than those 
simulations initialized with RAU1, which is indicated by the corre-
sponding transient times �1 and �2
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self-cleaning states, the direction of maximum correlation 
coincides with the direction of mucus transport. As most 
correlograms show an exponential-like decrease along the 
direction of maximum correlation, the autocorrelation length 
�c has been determined according to:

Equation (17) delivers the autocorrelation length �c along 
the line of maximum correlation, which is represented by 
the parameterization �(v).

Coevolution of spatiotemporal patterns 
and transport

The coevolution of self-organized transport and spatiotem-
poral patterns is illustrated in Fig. 16. The brighter curve 

(17)�c(t
�) = max

{
1

2

∑
v=v1…v2

C(v, �(v), t�)

}

shows the area-averaged transport speed |��(t�)| (according to 
Eq. (14)) illustrating the build up of self-organized transport. 
The darker curve represents the autocorrelation length of the 
network’s state at time t′ . As at the beginning of the simula-
tion the mucus droplets get displaced almost erratically, the 
corresponding area-averaged transport speed almost van-
ishes. As time passes, the average particle speed grows until 
the coordination of the actuators reaches a maximum. The 
three vertical dashed lines indicate the moments at which the 
three network states shown in Fig. 11 have been recorded.
Interestingly, all model settings leading to self-organized 
transport have shown a similar growth behavior with respect 
to the global average transport speed as the one depicted in 
Fig. 16. This typical transient dynamical behavior reflects 
the restricted growth of the cooperation among the actua-
tors. This sigmoid logistic-like dynamical behavior can 
be observed in other studies investigating self-organizing 
processes as well and appears to be omnipresent for self-
organizing processes. An example is provided by Fig. 2 in 
Niedermayer et al. (2008), in which the self-organized syn-
chronization and wave formation in one-dimensional cilia 
arrays has been studied.

Our model typically exhibits a coevolution of the net-
work’s state and its associated mucus transport. As indi-
cated earlier, we suggest to see this twofold self-organization 
in the context of adaptive Boolean networks. Since mucus 
droplets functionally connect an actuator to its surround-
ing and disconnect an actuator when squeezed away, the 
network topology is exposed to dynamics and interrelated 
to the dynamics of the network’s state. Consequently, we 
observe not only dynamics on the network, represented by 
state transitions, but also dynamics of the network, caused 
by the transportation of the mucus droplets. This means that 
changes in the network’s state are affected by the network’s 
topology and vice versa, forming a feedback loop between 
the topology and the state of the network. The resulting 
coevolution of the network state and the network topology 
represents the characteristic property of coevolutionary or 
adaptive (Boolean) networks (Gross and Blasius 2008; Rohlf 
and Bornholdt 2009).

Characteristics of attractor states

Attractor states

Since � t′ represents the state of the Boolean network at time 
t′ containing N Boolean variables, the set of all 2 N possible 
network states forms the state space of the Boolean network. 
The successive network states � 0,� 1,� 2 … form a trajec-
tory in the state space. In the case of deterministic Boolean 
networks, a network sooner or later reaches a state, which 
has been reached before (due to the finite state space) and 
consequently enters a cycle consisting of a subset of states of 

Fig. 15   The autocorrelograms of self-organized network states typi-
cally display an elongated shape along a certain direction (indicated 
by the bright gray vertical plane), along which we determined the 
autocorrelation length �c

Fig. 16   The graph illustrates the coevolution of the autocorrelation 
length of the network state along the direction of maximum correla-
tion �c(t�) (dark curve) and the area-averaged mucus transport speed 
|��(t�)| (bright curve). The vertical dashed lines indicate the initial 
( t� = 0 ), an intermediate ( t� = 100 ) and a final stage ( t� = 1500 ) of 
the self-organization process
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the state space, which is called an attractor. A more general 
definition for dynamical systems says that an attractor is a 
set of states to which the system evolves after a long enough 
time (Greil 2009). The transient time � is the number of 
states a network undergoes (starting from an initial state), 
before it reaches an attractor (Wuensche 1998; Gershenson 
2004a; Greil 2012).

We used the term “attractor” according to the following 
definition: as soon as the successive network states � t′ have 
started to revisit a small subset of states of the state space 
(and therefore, t′ ≥ � ), we say that the network has reached 
an attractor. In this definition of the term “attractor,” we 
therefore only consider the state of the network nodes � , i.e., 
the collective state of the actuators, while the distribution of 
the mucus droplets M was not taken into account. Due to the 
coevolutionary character of the network, the (re-)distribu-
tion of the mucus droplets reaches, however, another kind of 
“attractor.” The exclusion of the (re-)distribution of mucus 
droplets allowed to detect deterministic attractors, i.e., a 
deterministic succession of states � t′ (with t′ ≥ � , where � 
denotes the transient time) the network cyclically undergoes, 
while the trajectories of the (re-)distribution of the mucus 
droplets continue to be subject to local stochasticity in these 
(state) attractors.

Within the meaning of the state space concept, the curves 
in Fig. 16 can be seen as the network’s transient behavior. 
The saturation-like behavior reflects the capture of the net-
work dynamics by an attractor. Accordingly, the strongly 
ordered network state shown in Fig. 11 represents an attract-
ing state.

Transport of attractor states

Figure 17 presents an overview of the terminal mucus trans-
port ( m ⋅ �g∞ ), the terminal mucus transport velocity ( �g∞ ) 
and the initial mucus transport velocity ( �g0 ) for each cell 
alignment (column-wise). The first row indicates to which 
cell alignment each column corresponds to and illustrates 
the sequences after which the actuators have been acti-
vated when the deterministic update scheme DAU has been 
applied. Apparently, the globally averaged terminal transport 
velocities have a clear preference considering their direction 
for each cell alignment. Generally, the preferred transport 
direction seems to be oppositely-oriented to the direction of 
the deterministic update signal. However, for a small set of 
the settings using BHL or BHL + L the transport shares the 
direction of the update signal.

Classification attempt

Figure 18 illustrates how the transport capability (upper 
colormap) and the transport speed (lower colormap) of 

attractor states are related to the correlation length. The gray 
scale indicates the frequency density.

Considering the attractors’ function and structure a rough 
classification into the following four classes (C1–C4) seems 
appropriate: C1: nontransporting disorganized states, C2: 
transporting disorganized states, C3: nontransporting struc-
tured states and C4: transporting structured states. We meas-
ured the transport capability in terms of the transport speed 
|��∞| and the degree of the organization of the expression 
patterns in terms of �c . States/settings exhibiting a higher 
|�g∞| than 0.1 (cells/it.) are considered as transporting, while 
states/settings exhibting a |�g∞| of less than 0.01 (cells/it.) 
have been considered as nontransporting. States satisfying 
𝜌c > 2 (cells) have been classified as organized and states 
with a �c of less than 1.5 (cells) as disorganized ( �c of ran-
domly generated initial states were shorter than 1.6 cells).

Here, we just note that attractor states of class 4 still con-
tain many states exhibiting odd velocity fields, like bisected 
or disordered ones, which still reach considerable termi-
nal transport speeds. Consequently, only a subset of class 
4 is considered as “properly self-cleaning” attractor states, 
whose velocity fields shall fulfill further conditions specified 
in the next section.

Effectively self‑organized properly self‑cleaning attractors

In order to find the parameter values allowing the network to 
self-organize toward properly self-cleaning attractor states, 
we finally classified the settings as “functioning” or ”mal-
functioning.” A certain parameter set is classified as func-
tioning, if the following four conditions are simultaneously 
fulfilled after an integration time of t� = 105. (1) The glob-
ally averaged transport speed |�g∞| is faster than 0.1 cells/
it., which would roughly correspond to 20 μm/s in the real 
system (assuming a ciliary beat frequency of 10 Hz and the 
diameter of a ciliated cell being 10 μm). (2) We require the 
velocity field being sufficiently directed by: ⟨cos 𝜃⟩ > 0.65. 
(3) The velocity field must be self-organized and not simply 
being imposed by the choice of a parameter set leading to 
an initial tendency of the transport direction. Consequently, 
by requiring |Δ�| ≐ |��∞ − ���| > 0.1, we demand that the 
velocity field changes (at least its direction) in the course 
of a simulation. (4) The autocorrelation length �c has to be 
longer than two cells. The number of iterations may be seen 
as a fifth condition considering the efficiency of the self-
organization process. As thus, the transient time � has to be 
shorter than 105 iterations. The classification of parameter 
sets as functioning and malfunctioning was applied to the 
parameter study encompassing 24,000 parameter sets. 564 
out of 24,000 settings ( ̂=2.4% ) have been classified as func-
tioning. Table 1 shows how these functioning settings spread 
across the different cell alignments and update schemes (val-
ues are listed in (%)). Table 1 summarizes the following 
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observations. The cell alignment USL can cope with the 
largest set of parameter settings and makes up 84.2% of all 
functioning settings. 98.2% of all functioning settings are 
made up by settings using either the cell alignment USL 
or BHL + L. The deterministic update scheme DAU can 
cope with each cell alignment and 89.6% of all functioning 
settings were generated by this update scheme. None of the 
settings using the completely random update RAU2 evolves 
the network to a self-organized self-cleaning state. The cell 
alignment BHL + L (lowest row in Table 1) can cope with 
all update schemes except the fully random update scheme 

RAU2. Apparently, a certain degree of local determinism 
is advantageous for an efficient self-organization toward 
properly transporting attractor states, since all functioning 
parameter settings either involve DAU or BHL + L.

Mean wave propagation direction in stereotypical 
functioning states

The set of functioning parameter values drives the model 
toward families, or stereotypes, of attractor states comprising 
very similar attractor states. In order to determine the mean 

Fig. 17   The rows present the distribution of the 24,000 mucus transport vectors m ⋅ �g∞ (#m⋅cells/it.), average terminal velocities �g∞ (cells/it.) 
and the initial velocities �g0 (cells/it.) for each alignment (column-wise)
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direction of wave propagation in these stereotypical attractors, 
we employed the concepts outlined by Ryser et al. (2007) and 
examined sequences of sequential attracting states of one spe-
cific representative parameter set for each stereotype. Here, 
we would like to report the summarizing comparison between 
the direction of the mean wave propagation and the direction 
of transport, what can be found in Table 2. Note that mean 
k-vectors visualized by double arrows indicate that the mean 
direction of wave propagation could not be determined unam-
biguously, which comes from the Boolean nature of the model 
(undersampling).

Dynamical characteristics

Imposed asymmetry as a starting assistance 
for self‑organized self‑clearing

In this section, we discuss the potential role of imposed 
asymmetries as a control parameter. As shown in Table 1 
functioning settings either include DAU or BHL + L, or 
both—all other settings do not result in self-organized self-
clearing states. Consequently, these settings may reveal a 
common characteristic which ultimately leads to self-organ-
ized self-cleaning. We realized that properly functioning 
parameter sets consistently impose an initial tendency of 
the transport direction. The initial area-averaged transport 
speed |�g0| can be used in order to quantify the anisotropy of 
the transport at time t� = 0 . In order to estimate the expected 
initial transport speed at t� = 0 of a certain parameter setting, 
we used a grid consisting of 1500 × 1500 actuators, which 
have been updated for a single time step ( � 0

→ � 1 ). This 
has been done for an ensemble of 100 simulation runs. The 
ensemble mean provides an estimate for the imposed initial 
transport speed |�g0| . Figure 19 illustrates the frequency dis-
tribution of functioning (dark gray bars) as well as malfunc-
tioning (bright gray bars) parameter sets considering their 
corresponding |�g0|-classes (10 logarithmically spaced |�g0|
-classes between 10−5 and 1). Note that the scale of the two 
ordinates differs by one order of magnitude.

It can be particularly seen that the relative frequency of 
functioning parameter sets increases with increasing |�g0|
-values. Moreover, all functioning parameter sets correspond 
to |�g0|-values being faster than 0.01 cells/it.

Correspondingly, the measures |Δ�| , �c , ⟨cos �⟩ and |�∞| 
classifying the parameter sets tend to increase with increas-
ing values of |�g0| , which is illustrated in Fig. 20. Conse-
quently, Figs. 19 and 20 indicate that |�g0| may trigger the 
model toward self-organized self-clearing.

The box plots shown in Fig. 21 (whiskers are set in order to 
indicate the range covered by 95% of all values) display how 
the |�g0|-values distribute over the different update schemes 
and cell alignments. One can see that the highest values for 
|�g0| are reached by settings using DAU or BHL + L. This 
clearly suggests that update schemes with local determinism 
impose an asymmetry among the local interactions, what trig-
gers efficient self-organization toward self-clearing states.

Effect of the update scheme on the network dynamics

As settings using the locally prescribed four-phase sequence 
(BHL + L) can cope with each update scheme (except with 
the complete random scheme RAU2), we compared the 
dynamic behavior produced by the different update schemes 
by simulating an ensemble of 100 simulation runs using 
the parameter settings: ( 50 × 50,BHL + L, ∗ , OP, 10%, 1, 

Fig. 18   Distribution of the frequency densities of attracting states 
considering their transport rate (top) and transport speed (bottom) 
with respect to their corresponding correlation length

Table 1   The table shows how the functioning states spread across the 
different topologies and update schemes

The values represent the corresponding proportions of all functioning 
states in (%)

DAU RAU1 RAU2 SRAU1 SRAU2

USL 84.2 0.0 0.0 0.0 0.0
UHL 1.2 0.0 0.0 0.0 0.0
BHL 0.5 0.0 0.0 0.0 0.0
BHL + L 3.7 1.6 0.0 0.9 7.8
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0%), where ∗∈ {DAU, RAU1, SRAU1, SRAU2} . Figure 22 
shows the transient behavior for the average mucus transport 
speed of the four ensembles, which correspond to the dif-
ferent update schemes. Each setting produces a saturation-
like behavior reflecting the capturing of the dynamics by 
attractors. As one can see, settings using SRAU2 and DAU 
reach their attractors considerably faster than settings using 
SRAU1 and RAU1. In order to characterize the state space 
corresponding to each setting, we counted the number of 

attractors and the attractor periods. It turned out that the 
four ensembles specified above, all reach cyclic determin-
istic attractors with a period of four, which result from the 
prescribed cyclic four-phase sequence. Furthermore, SRAU2 
and RAU1 drive each of the 100 different initial conditions 
toward the same attracting state, which is shown in Fig. 23. 
DAU and SRAU1 produce more realistic dynamics, as the 
100 simulation runs were driven toward 90 and 95 different 
attracting states, respectively. For DAU and SRAU1, two 
exemplary attracting states are depicted in Fig. 23. Even if 
SRAU1 drives different initial conditions toward different 
attracting states, the attracting states strongly resemble each 
other, as indicated in Fig. 23. DAU produces more different 
emerging structures. In order to verify this observation, we 
ran 5 simulation runs for each update scheme, which dif-
fered by their initial state. But this time we prescribed how 
much their initial state shall differ against a reference run. 
Namely, we switched the state for 1%, 2%, 3% and 4% of all 
actuators, respectively, and compared the networks’ state at 
each time step to the reference run in terms of the normal-
ized Hamming distance1 (e.g., Greil 2009) see Fig. 24). The 

Table 2   The table reports the parameter sets of stereotypical representatives, the typical appearance of attracting states, the transport speed and 
particularly, the direction of transport as well as of the mean wave propagation is visualized

Fig. 19   The histograms depict the frequency distributions of func-
tioning (dark gray bars) and malfunctioning (bright gray bars) param-
eter sets considering their respective values of |�g0|

1  Oscillations of 0.5 in the normalized Hamming distance (caused by 
the XOR function and the BHL + L setting) are suppressed by taking 
the minimum of four consecutive Hamming distances.
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average Hamming distance corresponding to SRAU2 and 
RAU1 decreases to zero, which means that all states reach 
the same attractor. On the other hand, SRAU1 and DAU pro-
duce different attractors, but the attractors produced by DAU 
show an almost maximum Hamming distance. This behavior 
reflects the ability of the system to find new attractors in case 
of a perturbation and to conform to changes, which is an 
important characteristic for living systems. Consequently, if 
an attractor which has been reached by applying DAU gets 
perturbed, the system conforms to changes and runs into a 
new attractor.

Open boundaries: marginal nodes guiding the structure 
emergence

First of all we consider a completely dense carpet of cili-
ated cells represented by a parquet of actuators. In this 
“densely ciliated carpet case,” we observe that settings with 
open boundaries yield a structure emergence always start-
ing at the same open boundary, from which it spreads over 
the whole network. This behavior is illustrated in Fig. 25, 
where three snapshots of the network state at three different 
stages of the self-organizing process are shown. The graphs 
have been generated by applying open boundaries, RAU1 
and BHL + L. Further, we observed that settings leading 

Fig. 20   From top left to bot-
tom right: frequency densities 
(grayscales) illustrating the 
tendency toward higher values 
for �c , ⟨cos �⟩ , |Δ�g∞| and |�g∞| 
for settings imposing larger 
values of |�g0|

Fig. 21   Box plot diagrams to visualize the effect of the choice of the 
cell alignment and the update scheme on the initial transport speed. 
The box plots of each cell alignment correspond to the respective 
update scheme, according to the order: RAU1, DAU, RAU2, SRAU1, 
SRAU2

Fig. 22   The curves depict the temporal evolution of the average 
transport speed for four ensembles corresponding to different update 
schemes for which the cell alignment BHL + L was chosen
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to the “crystallization-process,” shown in Fig. 25, only 
show this self-organizing behavior as long as the bound-
ary, from which the structure spreads, is open. This means 
that similar network dynamics have been observed for open 
and horizontal cylindrical boundaries. On the other hand, if 
we chose toric or vertical cylindrical boundaries, for which 
the “structure-triggering” border is glued to the opposing 
border, the model displays a completely different dynamical 
behavior with much lower self-organized transport speeds 
and much less well-ordered network states. The only excep-
tion is given by the settings using the square-lattice align-
ment, which shows self-organized directed transport under 
each boundary condition.

(a) (b) (c)

(d) (e) (f)

Fig. 23   Examples of attracting states reached by applying four differ-
ent update schemes to the BHL + L alignment. From top left to bot-
tom right: attracting state reached by a SRAU1, b SRAU1, c RAU1, 
d SRAU2, e DAU, f DAU. For RAU1 and SRAU2 100 different ini-
tial states reached the same attracting network state shown in (c, d), 
respectively, whereas applying SRAU1 and DAU leads to a diversity 

of attracting network structures, which in contrast to the perfect regu-
lar structures generated by RAU1 and SRAU2, show “defects.” The 
crosshairs visualize the mucus transport direction and its magnitude 
of the corresponding attractors (the radial tick interval is set to 0.2 
[cells/it.]), i.e., ��,∞

Fig. 24   The curves show the average Hamming distance between the 
network state of a reference run and four simulation runs for which 
the initial state has been perturbed with respect to the reference run 
(1–4% of the nodes have been inverted)
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Online Resource 2, 3 and 4 illustrate the structure emer-
gence from an open boundary. They have been generated by 
applying ( 50 × 50 , USL, DAU, OP, 10%, 0, 0%), ( 50 × 50 , 
BHL + L, DAU, OP, 15%, 1, 0%) and ( 50 × 50 , BHL + L, 
RAU1, OP, 15%, 1, 0%), respectively.

Leaders and followers

Since we observed for the “densely ciliated carpet case” 
when using open boundaries that the emergence of highly 
ordered structures always sets in from the same boundary, 
the actuators at the boundary seem to play an important 
role for the self-organizing process, and consequently, it 
appears that there exists a kind of hierarchy among the 
actuators.

This hierarchy among the nodes is caused by the underly-
ing network topology and is primarily characterized by the 
distribution of in- and out-degrees. In Fig. 26, we illustrate 
the underlying network topology for an array consisting of 
5 × 5 cells arranged in a square lattice assuming open bound-
aries. The middle panel in Fig. 26 illustrates the network 

topology considering the possible pathways of the mucus 
droplets. The right panel illustrates the network topology 
considering the possible locked configurations. Arrows 
entering a node indicate which nodes may block its oscil-
lation. Arrows leaving a node indicate for which nodes its 
state, and mucus load is relevant to block the nodes the 
arrows are pointing at. The in-degree of a node is the sum 
of incoming arrows, and correspondingly, the out-degree 
is the sum of outgoing arrows. The grayscale in the graphs 
indicates the value of the in- and out-degrees and therewith 
the prevalent hierarchy among the nodes.

If we set open boundaries, marginal nodes in our net-
works are hardly influenced by their adjacent nodes. It is 
especially important that nodes at the left and right bound-
ary have no in-degree considering the locked configurations 
rule. Consequently, these nodes would not adapt their oscil-
latory motions according to their neighbors’ motion and act 
as “leading nodes.”

Finally, we observed that some settings need a very regu-
lar topology with a prevalent hierarchy among the agents. 
If this “leadership” of a few nodes is abandoned, which 

(a) (b) (c)

Fig. 25   Three snapshots of the network’s state at three different 
stages of the self-organization process (time increases from a–c). The 
network states were generated by applying RAU1 to the BHL  +  L 

alignment with open boundary conditions. The structure emergence 
sets in at the left boundary and spreads to the right over the whole 
network

Fig. 26   An array of 5 × 5 actua-
tors aligned in the square lattice 
is shown in (a). Actuators rep-
resent the nodes of the network 
and local interactions the links. 
b Shows the network topology 
considering the exchange of 
mucus particles among nodes. c 
Illustrates the network topology 
considering the state updates. b, 
c Correspond to open boundary 
conditions. In (c), it can be seen 
that open boundaries introduce 
“leading nodes” at the margin

(a) (b) (c)
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happens when applying toric boundary conditions or import-
ing unciliated cells, hardly any self-organization takes place.

Boundary‑driven structure emergence hindered 
by unciliated cells

Unciliated cells can only take up and release mucus droplets 
and are thus, only passively involved in the state update of 
adjacent actuators. This means that cells adjacent to uncili-
ated cells obtain a lower in-degree and therefore ascend the 
hierarchy of actuators. As we randomly distribute unciliated 
cells, “leading nodes” are no longer only found at the bound-
aries, but rather are distributed allover the network, and con-
sequently, the network topology becomes less regular.

It has been observed that the introduction of unciliated 
cells hinders the spreading of the structure emergence for 
those settings for which the structure spreads strictly from 
an open boundary. Consequently, it seems that some set-
tings require a very regular topology in order to be able 
to spread allover the network. The panels in Fig. 27 show 
three stages of a simulation for which we introduced 1 % of 
unciliated cells and otherwise applied the same settings as 
in Fig. 25. Unciliated cells are shown in black. It is clearly 
visible that the structure emergence is hindered by the intro-
duced unciliated cells, as the structure cannot spread further 
than to the first unciliated cells, seen from left. According 
to this simple observation, one could imagine that the influ-
ence of the boundaries gets the more restricted the more 
unciliated cells are incorporated. Further simulations have 
confirmed this idea.

Modular self‑organization

If we arrange the actuators in the square lattice (USL) and 
introduce a certain amount of unciliated cells, the array of 

actuators efficiently evolves to a self-cleaning epithelium. In 
this case, the network topology considering the state update 
gets strongly changed, what becomes obvious when thinking 

(a) (b) (c)

Fig. 27   Three snapshots of the temporal evolution of the model when 
using the BHL + L alignment (time increases from a–c), open bound-
aries, RAU1 and 1% of randomly distributed unciliated cells. Note 

that the structure emergence is hindered by unciliated cells (which are 
black colored)

Fig. 28   The grayscale indicates the locally resolved transient time 
[network updates] (note that there are two different grayscales). Both 
panels correspond to ensemble averages. The upper panel corre-
sponds to runs having 100% ciliated cells, while the lower panel cor-
responds to runs with 90% of ciliated cells. The homogeneity in the 
lower panel indicates that boundary effects may be neglected in the 
network’s interior, if unciliated cells are considered
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of the case of sparsely distributed ciliated cells. One can 
imagine that a group of ciliated cells would be surrounded 
by unciliated cells forming thereby “ciliated islands” on an 
otherwise unciliated epithelium. These islands would be 
hardly interconnected among each others when concerning 
the state updates. How strongly these modules are intercon-
nected depends on the density of ciliated cells. In order to 
illustrate this modular character introduced by unciliated 
cells, the topology of the square lattice has been applied 
together with open boundary conditions and the update DAU 
for an ensemble with 100 members differing by their initial 
state. The grid size has been set to 300 × 300 cells. Figure 28 
illustrates the temporal evolution of the corresponding 
velocity fields. The grayscales illustrate the locally resolved 
transient time �ij (in effect the number of network updates it 
takes for an actuator to reach a local transport speed, which 
almost amounts to the final area-averaged transport speed). 
The upper panel in Fig. 28 corresponds to simulations ran 
with a dense mat of cells (100% ciliated cells), while in the 
lower panel 10% of randomly distributed unciliated cells 
were introduced. The panels represent the ensemble aver-
age of the spatially resolved transient times. The darker the 
color the longer it took until a certain actuator synchronized 
its movement. The discussed effect of the “leading bound-
ary” is clearly visible in the upper panel of Fig. 28, as the 
gradient in brightness from the left to the right indicates the 
structure emergence, which sets in at the left boundary and 
spreads toward the right boundary. On the other hand, as 
soon as one introduces unciliated cells the self-organization 
process gets a modular character, as the structure emergence 
does not start at a certain point from which it spreads allover 
the network, but spreads at several locations simultaneously, 
which is illustrated by the relatively homogeneous distribu-
tion of grayscale in the lower panel in Fig. 28. The influence 
of the boundary is strongly restricted to the marginal nodes 
at both sides. The larger one chooses the grid size, or the 
more unciliated cells are introduced, the less important the 
“dominance” of the marginal actuators gets.

In conclusion, unciliated cells introduce a certain degree 
of modularity in the network topology as well as in the self-
organizing process and therefore, the influence of the choice 
of boundary conditions can be neglected in the interior of 
the array, if the array size is chosen large enough and if a 
realistic amount of unciliated cells is considered.

The Online Resource 5 shows the evolution of the net-
work’s state of a simulation run generated with ( 100 × 100 , 
USL, DAU, OP, 20%, 0.5, 10%) exhibiting the typical modu-
lar self-organization process leading to modular expression 
patterns.

Transient time versus network size

In this section, we point out that unciliated cells may 
strongly influence the dynamics of ciliated epithelia. As 
outlined in the previous section unciliated cells import topo-
logical modularity. Modularity is an important and promis-
ing concept, which is inter alia studied in terms of modular 
random Boolean networks. Poblanno-Balp and Gershenson 
(2011) claimed that topological modularity reduces the 
probability for damage spreading over the network, what 
promotes robustness.

In the following we show how unciliated cells affect the 
dynamics of our network model. As the square lattice is the 
only cell arrangement leading to a properly self-cleaning 
state, when introducing unciliated cells, all the results shown 
in this section refer to the square-lattice arrangement.

The transient time has been determined for different array 
sizes in the range between 50 × 50 cells2 and 1000 × 1000 
cells2 as well as for different fractions of unciliated cells 
(0%, 2% and 10%). The collected data points are presented 
in Fig. 29. The lines are only guidelines for the eye. The dots 
correspond to the dense mat case for which all cells are cili-
ated. Diamonds and stars correspond to 98% and 90% cili-
ated cells, respectively. One can clearly see that the transient 
time is not only reduced when introducing unciliated cells, 
but varies substantially different with increasing array size. 
While the transient time continuously grows for an array 
representing a totally ciliated mat with increasing array 
size, the transient time runs into saturation with increasing 
array size if unciliated cells are present. As discussed in the 
former section unciliated cells import not only topological 
modularity, but also cause the self-organization process to be 
modular, as the emergence of structure and transport evolves 
simultaneously in different modules. This finding most prob-
ably explains the level off of the transient time with increas-
ing array size if unciliated cells are considered. As the self-
organization process takes place in a decentralized manner, 

Fig. 29   The graph shows the transient time [iterations] versus net-
work size [cells]. The dots correspond to a totally dense ciliated mat. 
Diamonds and stars correspond to an array containing 98% and 90% 
ciliated cells, respectively



42	 Theory in Biosciences (2020) 139:21–45

1 3

it does not depend upon the size of the actuator-array. On 
the other hand, the transient time continues to increase with 
increasing array size for an array purely consisting of cili-
ated cells, which is related to the nature of the structure 
emergence for these settings. According to the upper panel 
in Fig. 28 the self-organization process mainly starts at the 
left boundary, from where it spreads to the right allover the 
network. Accordingly, one would expect that the growth of 
the transient time continues with increasing network size, 
as it is the case in Fig. 29. (The transient time primarily 
depends on the length of the simulated actuator-array, as 
the ordered structures expand from the left to the right).As 
the transient time can be seen as a measure for robustness, 
our results suggest that the imported modularity promotes 
robustness. Consequently, it seems that the modular topol-
ogy imports modularity into the self-organization process, 
which means that the organization of a huge network gets 
decomposed into a simultaneous organization of submod-
ules. These submodules can be recognized by examining 
the spatial structure of the network’s state, as it has been 
observed that the modularity of the expression patterns 
clearly depend on the density of ciliated cells. The autocor-
relation length of attracting network states has been deter-
mined for settings differing by the amount of ciliated cells 
as well as the boundary conditions. As we are interested 
in the spatial structures of the expression patterns, the grid 
size has been chosen to 200 × 200 cells. Figure 30 shows the 
autocorrelation length �c (cells) versus the relative amount 
of unciliated cells (%) for open and toric boundary condi-
tions. It can be clearly seen that the autocorrelation length 
decreases with an increasing portion of unciliated cells. Fur-
thermore, the autocorrelation length is roughly given by the 
mean distance of unciliated cells. Consequently, unciliated 
cells may play a further role in the self-organization process 
on the ciliated airway epithelium, as the appearance of the 

previously described patch-work character may be strongly 
influenced by the distribution of unciliated and ciliated cells.

Discussion

The aim of this study is twofold: on the one hand, we want to 
make the self-organized spatiotemporally coordinated cili-
ary beat patterns as well as the self-organized fluid trans-
port across multiciliated epithelia plausible. We suggest that 
the cooperation among ciliated cells emerges from locally 
interacting oscillating cilia bundles belonging to different 
ciliated cells. As our goal was to keep our model as simple 
as possible, we present a virtual self-cleaning epithelium 
model based on symmetrically interacting two-state actua-
tors, which we formulate in terms of an adaptive Boolean 
network. In the framework of adaptive Boolean networks, 
the oscillatory motion of ciliated cells can be represented 
by “blinking nodes” and discrete mucus droplets establish 
the local interactions and therefore the network’s topology. 
In “Coevolution of spatiotemporal patterns and transport” 
section, we demonstrate the coevolution of the network’s 
state and its topology, which is a characteristic property of 
adaptivity and represents the self-organized coevolution of 
ciliary beating patterns and associated fluid transport.

On the other hand, we report our insights to our system’s 
dynamics we gained by conducting parameter studies. In 
the following, we discuss the observed effects of the update 
scheme, the boundary conditions and the amount of uncili-
ated cells on the dynamics of our network model.

As we formulate our epithelium model in terms of a dis-
cretized asynchronous multi-agent network, the question of 
how to update the network arises. The introduced update 
schemes are meant to represent different possible intercel-
lular signaling mechanisms (membrane potentials and cal-
cium waves). Only settings using either the deterministic 
asynchronous update (DAU) or the alignment BHL + L, 
or both, guide the network toward properly self-cleaning 
states (Table 1). Settings using BHL + L or DAU introduce a 
local recurrent temporal coupling among adjacent actuators 
inducing an asymmetry of the local interactions. Figure 19 
suggests that the prevalent asymmetry, such as the initial 
speed associated with a specific parameter setting, increases 
the probability for efficient self-organization toward self-
cleaning states. In any case none of the roughly 11,000 
simulations exhibiting an initial transport speed of less than 
0.01 cells/it self-organizes efficiently toward a properly self-
cleaning state. The fundamental role of asymmetric interac-
tions on extended systems has been discussed previously. 
Asymmetry-induced effects on the synchronization process 
of a pair of coupled fields have been reported by Boccal-
etti et al. (2005), where it has been particularly argued that 
small changes in the asymmetry of the interactions could 

Fig. 30   The graph shows the autocorrelation length [cells] versus 
the relative amount of unciliated cells [%] for different boundary 
conditions. The black circles and bright gray squares correspond to 
data points derived when using toric and open boundary conditions, 
respectively
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be used as an efficient way to synchronize or desynchronize 
the dynamics, as well as select the main statistical proper-
ties of the synchronized motion in ensembles of interacting 
units and consequently, may have relevant consequences in 
natural systems. The synchronization process of a ciliary 
chain attached to a cylindrical surface has been investigated 
by Ghorbani and Najafi (2017). Each cilium is modeled in 
terms of a small sphere moving along an elliptic trajectory. 
It has been shown that an asymmetry in their orbits triggers 
the emergence of metachronal waves. Symmetrical settings 
have not shown any correlations in their beating patterns, 
what compares well to our results.

Furthermore, the application of the deterministic update 
scheme (DAU) seems to generate less well-ordered attract-
ing network states. This behavior is exemplary illustrated in 
Fig. 23 showing a perfectly ordered attracting state for the 
random asynchronous update (RAU1), slightly less well-
ordered network states for the semi-random update schemes 
(SRAU1 and SRAU2) and finally, the least ordered attract-
ing states for the deterministic update scheme (DAU). All 
settings using the deterministic update scheme have consist-
ently generated patterns showing “defects” perpendicular to 
the direction of the update scheme and maximum correlation 
along the direction of the update. Figure 15 represents an 
autocorrelogram of an extreme case: maximum correlation 
is found into the direction of the primary update direction 
(from right to left), which is most probably caused by the 
local temporal coupling among actuators, while there seems 
to be almost no local temporal coupling from the top to the 
bottom, what leads to typically elongated autocorrelograms 
if DAU is applied.

Finally, the less strict organization the network generates 
when using DAU may lead to more flexible dynamics as in 
the case of a perturbation the system does not simply recover 
its original attracting state, but conforms to the changes by 
running into a completely different attractor (see Fig. 24).

The effects of different update schemes on the dynamics 
of multi-agent systems are still being investigated. Corn-
forth et al. (2005) applied six different update schemes on 
one-dimensional cyclic cellular automata to compare the 
resulting dynamics. It has been concluded that determin-
istic update schemes confer a degree of flexibility upon 
the system dynamics, what compares well to the observed 
conforming character of our model settings using a deter-
ministic update scheme. Consequently, so far, the find-
ings show evidence that in various asynchronous processes 
leading to self-organization, a deterministic update scheme 
leads to more realistic dynamics (flexibility and robust-
ness) and may therefore be favored by evolution (Gersh-
enson 2004b). Recall, however, that “deterministic” does 
not mean that actuators would displace the mucus in a 
pre-determined direction. Rather, the transport direction 

evolves through the interplay between the update asym-
metry and the largely stochastic interactions.

Finally, we would like to point out the possible effect 
of unciliated cells on the dynamics on ciliated epithelia. 
The topology of our network model is primarily given by 
the formulation of the local interaction rules, the choice 
of the boundary conditions and the amount of unciliated 
cells. As we have outlined in “Modular self-organization” 
section the amount of unciliated cells introduces a certain 
degree of topological modularity. The topological modu-
larity in turn causes a modular self-organization, which 
means that the self-organization does not start at a specific 
point or boundary on the grid—as it has been observed 
for completely dense mats of ciliated cells—but starts in 
each module simultaneously. This modular character of 
the self-organization leads to the size independence of 
the transient time, reported in “Transient time versus net-
work size” section. Consequently, modularity may pro-
vide robustness even to networks as large as the human 
ciliated airway epithelium consisting of more than 109 
cells (Mercer et al. 1994), as perturbations quickly fade 
away. Furthermore, the modular topology leads to modular 
expression patterns, the size of which is roughly given by 
the mean distance of unciliated cells (as shown in Fig. 30). 
Finally, the finding of a modular self-organization caused 
by the underlying modular topology providing a highly 
robust patch-work among actuators provides a consistent 
explanation of the modular expression patterns previously 
reported in experimental studies aimed at the quantitative 
description of the modulation wave fields on the tracheal 
epithelium (Ryser et al. 2007).

As very recently pointed out by Dey et al. (2018), theoret-
ical studies investigating the collective dynamics of hydro-
dynamically interacting cilia have, so far, usually considered 
homogeneous carpets of cilia. Dey et al. (2018) investigated 
the role of a spatial heterogeneous ciliary distribution on 
coherent ciliary beating using one-dimensional arrays of 
cilia represented by rowers. It is particularly shown that 
the phase coherence of random clustered distributions of 
rowers is less sensitive to variations of the number density 
than (homogeneously) random distributions of rowers. This 
finding might be seen as another specific dynamical phe-
nomenon improving robustness by an underlying modular 
(network) topology.

We conclude that an intercellular signaling mechanism 
is probable on ciliated epithelia, as deterministic update 
schemes drive the model toward robust self-organized 
states, which can still conform to changes. We suggest that 
the patchy expression patterns of the modulation wave field 
observed on real ciliated epithelia may be the result of the 
underlying modular topology, which is primarily formed by 
the distribution of ciliated and unciliated cells. This patch-
work character among ciliated cells may be highly robust 
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due to a modular self-organization, which prevents pertur-
bations to spread over the whole network. Furthermore, the 
boundary conditions may become irrelevant on epithelia 
being either large enough or having a low amount of cili-
ated cells.

We close this study by hypothesizing that the modular 
organization of the dynamics on ciliated epithelia may 
be seen as a robust size-independent construction plan of 
nature, which leads to properly self-cleaning airways in 
organisms being as small as new born mice as well as in 
adult giraffes.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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