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ABSTRACT

INTRODUCTION: Kawasaki disease (KD) is a type of childhood febrile systemic 
vasculitis. Inflammasomes control inflammatory signaling and are related with the 
development of KD. In this study, we performed a survey of transcripts and global 
DNA methylation levels of inflammasome sensors of NOD-like receptors (NLRs) and 
the downstream interleukin 1β (IL-1β).

MATERIALS AND METHODS: In this study, for the chip studies, we recruited a 
total of 18 KD patients, who we analyzed before receiving intravenous immunoglobulin 
(IVIG) and at least 3 weeks after IVIG treatment, as well as 36 non-fever controls 
by Illumina HumanMethylation 450 BeadChip and Affymetrix GeneChip® Human 
Transcriptome Array 2.0. A separate group of 78 subjects was performed for real-
time quantitative PCR validations.

RESULTS: The expressions of mRNA levels of NLRC4, NLRP12, and IL-1β were 
significantly upregulated in KD patients compared to the controls (p<0.05). Once KD 
patients underwent IVIG treatment, these genes considerably decreased. In particular, 
the methylation status of the CpG sites of these genes indicated a significant opposite 
tendency between the KD patients and the controls. Furthermore, mRNA levels of 
IL-1β represented a positive correlation with NLRC4 (p=0.002). We also observed 
that the mRNA levels of NLRP12 were lower in KD patients who developed coronary 
arterial lesions (p<0.005).

CONCLUSION: This study is among the first to report epigenetic hypomethylation, 
increased transcripts, and the upregulation of NLRC4, NLRP12 and IL-1β in KD 
patients. Moreover, a decreased upregulation of NLRP12 was related to coronary 
arterial lesion formation in KD patients.

INTRODUCTION

Kawasaki disease (KD), also known as mucocutaneous 
lymph node syndrome or infantile periarteritis nodosa, 
inflames the walls of both small- and medium-sized blood 
vessels (vasculitis), particularly coronary arteries, throughout 
the body. In general, KD is found in children under the 
age of 5 years old [1]. KD’s most serious cardiovascular 
complications are caused by coronary artery lesions (CALs) 

and include coronary artery fistula formations [2], arterial 
remodeling, and coronary artery aneurysms (CAAs) [3]. 
Although this disease can be treated, nearly 20% of children 
who do not receive treatment suffer a CAA [2], which, in 
severe cases, may even cause death.

Toll-like receptors (TLRs) function as the sensor arm 
of the innate immune system and induce proinflammatory 
cytokine expressions [4]. We previously found that TLRs, 
particularly TLR1, 2, 4, 6, 8, and 9, were capable of 
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stimulating the immunopathogenesis of KD [5]. Activating 
the inflammasome is the key function facilitated by the 
innate immune system [6]. Furthermore, growing evidence 
has linked inflammasomes to various autoinflammatory 
diseases [6], and our research team also provided evidence 
that KD is an autoimmune-like disease [7]. In recent years, 
researchers have strongly suggested that autoinflammatory 
diseases are disorders of the innate immune system, are 
characterized by systemic inflammation often caused 
by inflammasomes, and are free from infection and 
autoreactive antibodies or antigen-specific T cells [8]. 
NOD-like receptors (NLRs) are intracellular sensors of 
exogenous pathogens and endogenous damage-associated 
molecular pattern [9]. Once inflammasomes are activated 
by NLRs, the activation of caspase-1 is activate to 
control the expression of such inflammatory cytokines 
as interleukin 1β (IL-1β) and IL-18 [10]. Furthermore, 
several clinical and experimental animal models have 
strongly implicated the function of IL-1β in KD [11–14].

Epigenetics indicates the DNA methylation and 
acetylation pattern of the genome and subsequently results 
in changes in the chromatin structure [15]. Previously, we 
found in another study that treatment with IVIG drastically 
altered methylation patterns in KD patients [5, 16, 17]. KD 
patients showed considerably increased mRNA expressions 
in TLRs and hypomethylation at the gene promoters of 
TLRs [5], and IVIG treatment can restore the methylation 
level of TLRs and decrease their mRNA expression [5]. 
However, no studies have yet surveyed the global gene 
expressions and methylation profiles in the NLRs of 
KD patients. Therefore, we aimed to comprehensively 
examine the mRNA expressions of these genes and analyze 
methylation level changes in two different stages of KD 
patients, as well as in control subjects.

RESULTS

Differential expression of NLRC4 and NLRP12 
mRNA levels in KD patients and controls and 
changes following IVIG treatment

To investigate the transcript expressions of NOD-
like receptors (NOD1, 2, NLRC 3-5, and NLRP 1-14) [18], 
we used Affymetrix GeneChip® Human Transcriptome 
Array 2.0 to identify their expression levels. As shown in 
Table 1, KD patients demonstrated differential expression 
of NOD-like receptors when compared to both the healthy 
and febrile control subjects. The mRNA levels of NLRC4 
and NLRP12 were significantly higher in KD patients than 
in the healthy control and febrile control groups. These 
NLRC4 and NLRP12 values significantly decreased, 
while NOD-1 significantly increased in KD patients after 
receiving IVIG treatment (Table 1). However, we found 
no remarkable differences in the remaining NLRCs and 
NLRPs among the groups or in the KD patients after 
undergoing IVIG treatment.

Significantly altered CpG sites on NOD-like 
receptors between KD patients and controls

We adopted Illumina HumanMethylation450 
BeadChip (Illumina) to evaluate CpG site methylation 
patterns on NLRCs and NLRPs between KD patients and 
both febrile and healthy control subjects (Supplementary 
Table 1). We found that the NLRC and NLRP methylation 
levels varied considerably in patients in the acute stage 
of KD compared to the healthy and febrile controls 
(Table 2). Furthermore, methylation levels were generally 
significantly lower in acute-stage KD patients compared 
to the healthy and febrile controls (Supplementary Table 
1). Decreased methylation causes greater gene expression 
[16], so we focused on the relationship between DNA 
methylation patterns and gene expressions. Figure 1 shows 
that both NLRC4 (a) and NLRP12 (b) demonstrate a hypo-
methylated status in KD patients that have not yet been 
treated with IVIG compared to the control subjects and the 
KD patients already treated with IVIG. Consequently, the 
mRNA expression level and DNA methylation of NLRC4 
and NLRP12 have a negative correlation, which suggests 
that DNA methylation can repress gene expression.

Upregulated transcripts with epigenetic 
hypomethylation of IL-1β among KD patients 
and controls and changes following IVIG 
treatment

We explored whether inflammasome activation 
was capable of eliciting the expression of downstream 
proinflammatory cytokines IL-1β. The mRNA levels of 
IL-1β were significantly elevated in KD patients compared 
to the healthy control and febrile control groups (Table 
1). Furthermore, the mRNA expression level and DNA 
methylation of IL-1β have a negative correlation, which 
suggests that DNA methylation is able to repress gene 
expression (Figure 2).

NLRC4 and NLRP12 expressions in the 
peripheral white blood cells (WBCs) of KD 
patients and controls

We used real-time PCR to investigate the mRNA 
levels of NLRC4, NLRP12, and IL-1β in a separate cohort 
of 43 KD patients and 35 febrile controls. In doing so, we 
found elevated NLRC4 (p <0.001), NLRP12 (p <0.001), 
and IL-1β mRNA levels (p = 0.021) in the WBCs of KD 
patients compared to those of the controls, as shown in 
Figure 3. These findings agree with the results obtained 
with Affymetrix GeneChip® Human Transcriptome Array 
2.0. Furthermore, the mRNA level of IL-1β positively 
correlates with NLRC4 but not NLRP12, which suggests 
that NLRC4 was associated with IL-1β genes expression 
in KD patients (Figure 4). Moreover, the NLRP12 mRNA 
level was lower in KD patients who developed CAL than 
those who did not (p = 0.0067) (Figure 5).
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DISCUSSION

As far as we know, our study is the first to perform a 
comprehensive survey of global DNA methylation levels 
and transcripts of inflammasome sensors of the NOD-like 
receptors between KD patients and control subjects. Our 
observations of particular interest include the epigenetic 
hypomethylation and upregulation of NLRC4 and 
NLRP12 in KD, as well as the increase of the downstream 
inflammatory cytokine IL-1β in KD patients. Furthermore, 

IL-1β expression levels positively correlate with NLRC4, 
while NLRP12 was lower in KD patients who developed 
CAL than those who did not.

Growing evidence has suggested that cytokine 
profiles are associated with the pathogenesis of 
KD, but the actual CALs involved are still unclear. 
In our previous studies, we found that KD patients 
demonstrated considerably increased mRNA expression 
in TLRs and hypomethylation at TLR gene promoters 
[5]. Inflammasomes are multimeric protein complexes 

Table 1: Transcripts expressions of nucleotide-binding oligomerization domain, leucine rich repeat with caspase 
recruitment domain (NLRCs) and with pyrin domain (NLRPs), interleukin 1 beta and interleukin-18 between 
Kawasaki disease patients and control subjects

Symbol RefSeq Column ID Fold-Change
(KD1 vs. HC)

p value
(KD1 vs. 

HC)

Fold-Change
(KD1 vs. FC)

p value
(KD1 vs. 

FC)

Fold-Change
(KD3 vs. KD1)

p value
(KD3 vs. 

KD1)

NOD1 NM_006092 TC07001249.hg.1 1.008 0.897 -1.050 0.459 -1.080 0.254

NOD2 NM_022162 TC16000442.hg.1 1.248 0.066 1.154 0.206 -1.402 0.012*

NLRC3 NM_178844 TC16000820.hg.1 -1.187 0.024* -1.136 0.072 1.174 0.031*

NLRC4 NM_001199138 TC02001723.hg.1 4.454 0.000* 2.159 0.015* -4.761 0.000*

NLRC5 NM_032206 TC16000482.hg.1 1.022 0.804 1.015 0.859 -1.032 0.718

NLRP1 NM_001033053 TC17001059.hg.1 -1.361 0.032* -1.122 0.364 1.338 0.040*

NLRP2 NM_001174081 TC19000887.hg.1 -1.052 0.480 -1.226 0.018* -1.002 0.973

NLRP3 NM_001079821 TC01002008.hg.1 -1.040 0.750 1.131 0.325 -1.046 0.715

NLRP4 NM_134444 TC19000913.hg.1 -1.052 0.515 -1.074 0.370 1.103 0.226

NLRP5 NM_153447 TC19000915.hg.1 -1.016 0.803 -1.036 0.580 1.067 0.323

NLRP6 NM_138329 TC11000007.hg.1 1.059 0.448 1.080 0.319 1.026 0.731

NLRP7 NM_001127255 TC19001853.hg.1 1.039 0.604 -1.096 0.231 1.032 0.671

NLRP8 NM_176811 TC19000914.hg.1 1.022 0.668 -1.019 0.715 1.010 0.844

NLRP9 NM_176820 TC19001880.hg.1 1.010 0.865 1.011 0.858 1.069 0.274

NLRP10 NM_176821 TC11001381.hg.1 -1.026 0.764 1.015 0.864 1.070 0.442

NLRP11 NM_145007 TC19001881.hg.1 -1.001 0.986 -1.058 0.371 1.095 0.168

NLRP12 NM_033297 TC19001826.hg.1 1.466 0.000* 1.158 0.022* -1.496 0.000*

NLRP13 NM_176810 TC19001882.hg.1 -1.019 0.867 -1.004 0.974 1.192 0.138

NLRP14 NM_176822 TC11000143.hg.1 -1.033 0.624 -1.017 0.800 1.097 0.190

IL-1β NM_000576 TC02002219.hg.1 1.677 0.066 2.195 0.012* -2.475 0.006*

IL-18 NM_001562 TC11002293.hg.1 1.411 0.012* 1.115 0.338 -1.417 0.011*

KD1: Kawasaki disease before IVIG treatment; KD3: Kawasaki disease > 3 weeks after IVIG treatment; FC: febrile control; HC: healthy control.

Table 2: Basal characteristics of controls and patients with Kawasaki disease (KD)

Characteristic Healthy controls
(n=18)

Febrile controls
(n=53)

Patients with KD
(n=79)

Male gender 50% 57% 68%

Mean (SD), age (y) 2.8±1.5 2.6±1.2 1.8±1.6

Age range (y) 1-6 0-5 0-9
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Figure 1: Integration of CpG marker methylation patterns and gene expression profiles of NLRC4 and NLRP12. The 
methylation patterns of the representative CpG markers ((a) cg07055315 for NLRC4 and (c) cg22337438 for NLRP12) and gene expression 
profiles showed negative tendencies and were observed to change in both the healthy and febrile control subjects, as well as KD patients 
before and after undergoing intravenous immunoglobulin treatment. The histogram and curve are presented as mean ± standard error. (b, d) 
We adopted scatter plots to represent the relationship between mRNA levels and DNA methylation, which demonstrate that mRNA levels 
were negatively correlated with DNA methylation (Pearson's correlation coefficient approximately -0.683 and -0.451, all p< 0.001).

Figure 2: Integration of CpG marker methylation patterns and gene expression profiles of IL-1β. (a) The methylation 
patterns of the representative CpG marker and gene expression profile of IL-1β showed negative tendencies and were observed to change 
in both the healthy and febrile control subjects, as well as KD patients before and after undergoing intravenous immunoglobulin treatment. 
The histogram and curve are presented as mean ± standard error. (b) We adopted scatter plots to represent the relationship between 
mRNA levels and DNA methylation, which demonstrate that mRNA levels were negatively correlated with DNA methylation (Pearson's 
correlation coefficient approximately -0.321 and p< 0.001).
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Figure 3: Analyses of (a) NLRC4, (b) NLRP12, and (c) IL-1β mRNA in the peripheral blood mononuclear cells of KD patients (n = 43) 
and controls (n = 35) using a real-time quantitative polymerase chain reaction. Data are expressed as mean ±standard error. *indicates p < 
0.05 and ***indicates p < 0.001 between the groups.

Figure 4: Correlation plots between (a) NLRC4 and (b) NLRP12 and IL-1β mRNA levels. The mRNA levels of IL-1β have a positive 
correlation with NLRC4 expression.

Figure 5: Comparison of (a) NLRC4 and (b) NLRP12 and (c) IL-1β mRNA levels in KD patients without (n =20) and with (n =23) 
coronary artery lesion (CAL) before being treated with intravenous immunoglobulin. Data are presented as mean ±standard error. **indicates 
p < 0.01 between the groups.
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that gather in cellular cytosol after sensing innate immune 
system receptors and sensors in response to external 
infectious microbes or molecules from host proteins 
[6]. Activating inflammasome signaling is a key part in 
the pathogenesis of various cardiovascular disorders, 
including coronary ischemia, cardiomyopathy, and 
KD [19]. In this study, we have discovered significant 
epigenetic hypomethylation, increased transcripts, and the 
upregulation of the NLRC4 and NLRP12 inflammasome 
sensors. Our study is in line with that of Ikeda et al., 
who also found up-regulated NLRC4 in acute-phase KD 
in microarray study [20]. Not only is NLRC4 involved 
in sensing more than one bacterial molecule, but it also 
participates in a number of immune complexes [21]. 
Kitamura et al. identified a missense mutation in NLRC4 
in patients with familial cold autoinflammatory syndrome, 
which promoted the formation of NLRC4-containing 
inflammasomes that cleave procaspase-1 and increase 
IL-1β production in order to promote the genesis of 
inflammatory diseases [22]. Another study identified that 
the somatic mutation of NLRC4 causes autoinflammatory 
symptoms that are compatible with neonatal-onset 
multisystem inflammatory disease [23].

NLRP12 is a cytoplasmic sensor that can be 
categorized as a negative regulator of inflammation 
[24] and is related to autoimmune diseases [25, 26]. 
Meanwhile, NLRP12 mutations cause hereditary periodic 
fever syndromes [27] and systemic autoinflammatory 
diseases [28]. Of particular note, Jin et al. observed that 
decreased NLRP12 in heart tissue from PM2.5 -induced 
mice was associated with cardiac inflammatory injury [29]. 
Furthermore, NLRP12 has anti-inflammatory function 
and down-regulation of NLRP12 is required for dextran 
sodium sulfate -induced release of proinflammatory 
cytokinesIL-1β [30]. Likewise, we also found that 
NLRP12 was lower in KD patients who developed CAL 
than those who did not, as well as that IL-1β mRNA 
levels do not have a positive correlation with NLRP12. 
Both of these findings support the theory that NLRP12 
functions as a negative regulator of inflammation in KD 

patients. Based on the findings, we may apply NLRC4 and 
NLRP12 gene expressions and DNA methylation as KD 
biomarkers and develop a high-performance KD diagnosis 
model.

Activated macrophage produces IL-1β, a master 
cytokine of systemic inflammation, which has a vital 
function in auto-inflammatory diseases [31, 32] and 
has been more recently connected to KD vasculitis 
[11–13]. Maury et al. found that the serum level of IL-
1β is significantly increased in KD patients [33]. IL-1β 
polymorphism has been associated with KD susceptibility 
[34] and IVIG resistance in Taiwanese children with 
KD [35]. Furthermore, IL-1β has been shown to induce 
myocarditis and coronary aneurysm formation in the 
Lactobacillus casei cell-wall extract mouse model of 
KD [12, 13]. In consistence with our findings in KD 
[36, 37], IL-1β pathway stimulation leads to excess 
production of hepcidin, which could be causative to 
anemia of inflammation [38]. In fact, three clinical trials 
of IL-1 blockade enrolling KD patients are currently being 
conducted in the U.S. and Europe, and these studies may 
be able to change the outcome of KD [39].

MATERIALS AND METHODS

Patients

In this study, we analyzed the DNA methylation 
levels of NLRs in 18 KD patients, before treatment 
and after at least 3 weeks from receiving intravenous 
immunoglobulin (IVIG), and in 36 healthy (non-fever) 
controls by Illumina HumanMethylation 450 BeadChip 
and Affymetrix GeneChip® Human Transcriptome Array 
2.0. Subsequently, we validated the mRNA levels of 
NLRs in 43 KD patients and 35 febrile subjects by real-
time quantitative PCR (Table 2). KD patients met the 
American Heart Association’s diagnosis criteria for KD, 
which is characterized by extended fever for more than 
five days, conjunctivitis, diffuse mucosal inflammation, 
polymorphous skin rashes, indurative edema of the hands 

Table 3: Primers list

Gene symbol Accession number Hybridization Primers (5’ to 3’)

RNA18S NR_003286.2 forward GTAACCCGTTGAACCCCATT

reverse CCATCCAATCGGTAGTAGCG

NLRC4 NM_001199138.1 forward GCCTCAGGCTGCAAATAAAG

reverse GGCTTCCACCATGAGAGAATAA

NLRP12 NM_033297.2 forward GGCTCATGTATGTAATCCTAGCA

reverse CGGGTTCAAGCGATTCT

IL-1β NM_000576 forward CAAAGGCGGCCAGGATATAA

reverse CTAGGGATTGAGTCCACATTCAG
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and feet associated with peeling of the finger tips in the 
subacute stage, and non-suppurative lymphadenopathy 
[40, 41], and treated with once dose of high-dose IVIG 
treatment (2 g/kg) over 12 h at our hospital. The patients in 
the fever control group had diagnoses of acute tonsillitis, 
croup, acute bronchitis, bronchopneumonia, acute 
sinusitis, or urinary tract infection. We took peripheral 
blood samples from KD patients prior to undergoing IVIG 
treatment (pre-IVIG) and then at least three weeks after 
completing the IVIG treatment, as previously described 
in another of our studies [42]. A CAL was defined as a 
coronary artery with an internal diameter of at least 
3 mm (4 mm if the patient was older than 5 years) or a 
segment with an internal diameter at least 1.5 times larger 
than that of an adjacent segment, as observed through 
echocardiography [43, 44]. This study was approved by 
the Chang Gung Memorial Hospital’s Institutional Review 
Board (IRB No.:101-4618A3), and we obtained written 
informed consent from the parents or guardians of all 
subjects. All of the methods that we used complied with 
the relevant guidelines established.

Experiment design

We first collected whole blood samples from the 
subjects and submitted them to WBC enrichment, as 
previously described in another study [16]. The enriched 
WBC samples were then subjected to either RNA or 
DNA extraction. In accordance with the manufacturer’s 
instructions, we used an isolation kit (mirVana™ 
miRNA Isolation Kit, Catalog number: AM1560, Life 
Technologies, Carlsbad, CA) to isolate the total RNA 
and then calculated both the quality (RIN value) and 
quantity of the RNA samples using Bioanalyzer (ABI) 
and Qubit (Thermo). All RNA samples passed the 
criterion of RIN≧7. We isolated the DNA samples and 
treated them with bisulfite as previously described in 
another study [45].

Gene expression profiling with microarray

For strong, unbiased results, we created pooled 
RNA libraries by evenly pooling six RNA samples, 
resulting in three pooled healthy control, three fever 
control, three pre-IVIG, and three post-IVIG libraries. We 
performed microarray assay on the pooled RNA samples 
in order to establish the gene expression profiles and then 
further performed profiling with GeneChip® Human 
Transcriptome Array 2.0 (HTA 2.0, Affymetrix, Santa 
Clara). We used the WT PLUS Reagent kit to prepare the 
RNA samples and carry out hybridization on the HTA 2.0 
microarray chips. Following the Affymetrix instruction 
manual, we subjected the HTA 2.0 chips’ raw data to 
quality control examination, as previously described in 
another study [5].

DNA methylation profiling with Illumina M450K 
BeadChip

We adopted Illumina HumanMethylation450 
(M450K) BeadChip to perform genome-wide screening 
of DNA methylation patterns. The M450K BeadChip 
program was created to detect methylation patterns of 
approximately 450,000 CpG markers and thus spans 
the entire human genome. More information about 
M450 BeadChip can be found at the following website: 
http://support.illumina.com/array/array_kits/infinium_
humanmethylation450_beadchip_kit.html. For each 
M450K BeadChip assay, we applied 200 ng of bisulfite-
converted genomic DNA pursuant to the manufacturer’s 
instructions [16]. Then, we calculated the methylation 
percentage of cytosine for each CpG marker in each 
sample, which we referred to as the β value.

RNA isolation and real-time quantitative RT-PCR

To quantify the mRNA levels of NLRC4, NLRP12, 
and IL-1β, we used the LightCycler® 480 Real-Time 
PCR System (Roche Molecular Systems, Inc. IN, USA) 
to carry out real-time quantitative PCR. We separated 
the total mRNA from the WBC using an isolation kit 
(mirVana™ miRNA Isolation Kit, Catalog number: 
AM1560, Life Technologies, Carlsbad, CA) in accordance 
with the manufacturer’s instructions. We performed PCR 
using a SYBR Green PCR Master Mix containing 10 
μM of specific forward and reverse primers. The relative 
quantification of gene expression was carried out based 
on the comparative threshold cycle (CT) method, which 
enabled us to determine the target amount as 2−(ΔCT target − Δ 

CT calibrator) or 2−ΔΔCT [46]. Primers were designed to amplify 
the target genes, as shown in Table 3. We performed all 
experiments twice to verify and validate the amplification 
efficiencies.

Statistical analysis

We have presented all data as mean ± standard 
error. Once chips passed the quality control criteria, we 
evaluated them with Partek (Partek, St. Louis), which 
is commercial software specifically designed to analyze 
microarray data. Using Partek, we conducted ANOVA 
analysis and reported the p-values of comparisons of 
interest, as previously described [5]. We adopted Student’s 
t-test or one-way ANOVA as necessary to evaluate the 
quantitative data and the paired sample t-test to evaluate 
any data changes before and after IVIG treatment. All 
statistical analyses were carried out with SPSS version 
12.0 for Windows XP (SPSS, Inc., Chicago, USA), and we 
considered a two-sided p-value less than 0.05 statistically 
significant.
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CONCLUSIONS

Insights into the mechanisms that govern 
inflammasome activation in KD will help medical 
professionals to better understand the pathogenesis of KD. 
Our study is the first to observe DNA hypomethylation 
and increased NLRC4 and NLRP12 transcripts in KD 
compared to both kinds of control subjects. Furthermore, 
NLRC4 was correlated with the upregulation of IL-1β, 
while a decreased upregulation of NLRP12 was related to 
CAL formation in KD patients.
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