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Abstract

CHIP (carboxyl terminus of heat shock 70-interacting protein) has long been recognized as

an active member of the cellular protein quality control system given the ability of CHIP to

function as both a co-chaperone and ubiquitin ligase. We discovered a genetic disease, now

known as spinocerebellar autosomal recessive 16 (SCAR16), resulting from a coding muta-

tion that caused a loss of CHIP ubiquitin ligase function. The initial mutation describing

SCAR16 was a missense mutation in the ubiquitin ligase domain of CHIP (p.T246M). Using

multiple biophysical and cellular approaches, we demonstrated that T246M mutation results

in structural disorganization and misfolding of the CHIP U-box domain, promoting oligomeri-

zation, and increased proteasome-dependent turnover. CHIP-T246M has no ligase activity,

but maintains interactions with chaperones and chaperone-related functions. To establish

preclinical models of SCAR16, we engineered T246M at the endogenous locus in both

mice and rats. Animals homozygous for T246M had both cognitive and motor cerebellar

dysfunction distinct from those observed in the CHIP null animal model, as well as deficits in

learning and memory, reflective of the cognitive deficits reported in SCAR16 patients. We

conclude that the T246M mutation is not equivalent to the total loss of CHIP, supporting the

concept that disease-causing CHIP mutations have different biophysical and functional
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repercussions on CHIP function that may directly correlate to the spectrum of clinical pheno-

types observed in SCAR16 patients. Our findings both further expand our basic understand-

ing of CHIP biology and provide meaningful mechanistic insight underlying the molecular

drivers of SCAR16 disease pathology, which may be used to inform the development of

novel therapeutics for this devastating disease.

Author summary

CHIP is a multi-functional protein that bridges two opposing cellular processes: protein

refolding and protein degradation. Mutations in CHIP are drivers of a debilitating and

fatal disease, called spinocerebellar ataxia autosomal recessive 16 (SCAR16). Patients with

CHIP mutations suffer from pathologies in both the brain, neuroendocrine, and muscle

systems. Why or how CHIP mutations drive disease is unclear. At this early stage in

understanding SCAR16, it is imperative to establish preclinical models to help understand

the pathophysiology and mechanism of the disease, as well as to use as a platform to

design and test therapies. In this manuscript we identified the structural, biochemical, cel-

lular, and in vivo repercussions of the first mutation described in SCAR16 patients using

two rodent models engineered with CRISPR/Cas9 editing to mimic a disease-causing

human mutation. We established a new framework to better understand diseases involv-

ing the loss of CHIP function, the spectrum of disease-causing mutations, and the affected

pathways that, in turn, will allow precision medicine approaches to treat this disease.

Introduction

Protein quality control (PCQ) involves a specialized cellular surveillance system that monitors

protein integrity, identifies unfolded or damaged proteins, and then either repairs or targets

them for degradation. CHIP is abundantly expressed in most tissues and plays a central role in

maintaining protein quality control [1]. CHIP is uniquely suited as a regulator of protein qual-

ity control due to its dual functions as both a co-chaperone protein and ubiquitin ligase

enzyme. As a co-chaperone, CHIP interacts with heat shock protein (HSP)-bound proteins to

aid in substrate stabilization and refolding [2]. Conversely, as a ubiquitin ligase CHIP ubiquiti-

nates terminally-defective proteins and prepares them for degradation by the Ubiquitin Pro-

teasome System (UPS) [3]. Since the discovery of CHIP in 1999 [1], numerous reports

detailing CHIP’s co-chaperone and ubiquitin ligase activities in both the brain and heart have

been published [4–7]. However, recent reports describing surprising new roles for CHIP have

emerged. These roles include autonomous chaperone activity [8,9], the regulation of cardiac

metabolic homeostasis via the metabolic sensor AMPK (AMP-activated protein kinase) [9],

and DNA damage repair [10]. Most recently, CHIP was implicated in the pathophysiology

associated with the disease spinocerebellar autosomal recessive 16 (SCAR16) [11,12], repre-

senting the first direct association between a CHIP polymorphism and a human disease.

SCAR16 is a form of autosomal recessive spinocerebellar ataxia that can also be accompa-

nied with hypogonadism, similar to the clinical phenotype of Gordon Holmes Syndrome

(GHS) [13]. Despite over 100 years of clinical recognition, only recently have causal mutations

for GHS been identified. These mutations include the ubiquitin ligase RNF216 and deubiquiti-

nase OTUD4 [14], which suggest that faulty ubiquitination plays an essential role in the patho-

physiology of ataxia. Using exome sequencing, we identified a mutation in STUB1 (the gene
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encoding CHIP) in two patients initially diagnosed with GHS [11]. We found that this STUB1
mutation (p.T246M) resulted in a loss in the ubiquitin ligase function of CHIP [11]. Combined

with our studies demonstrating that mice lacking the expression of CHIP display motor defi-

ciencies and some aspects of the hypogonadism observed in patients with STUB1 mutations,

our CHIP knockout mouse represented the first animal model of SCAR16 [11]. Subsequently,

numerous clinical studies identified STUB1 mutations, confirming our initial identification of

a new disease [12,15–22]. Additional studies using in vitro models suggest that CHIP muta-

tions can impart differential biochemical characteristics [23,24], although how these character-

istics relate to cellular function and diseases processes are not known.

The amino acid substitutions reported in cases of SCAR16 result in nonsense, missense,

frameshift, or splicing mutations; the majority of which are predicted to significantly alter pro-

tein function [12]. Given the clinical heterogeneity of neuroendocrine phenotypes in SCAR16

patients, specific CHIP mutations likely have varying biophysical and functional consequences

to CHIP function. In this context, an animal model with a total loss of CHIP may not ade-

quately represent the spectrum of human disease represented by SCAR16. For these reasons,

we complemented the biophysical and cellular repercussions of CHIP-T246M with two rodent

models engineered with CRISPR/Cas9 to mimic this human mutation. Additionally, we per-

formed in-depth behavioral assessments to determine the effects of T246M mutation at a

whole-animal level to establish a suitable preclinical model for SCAR16. Studying CHIP muta-

tions both in vitro and in vivo allows us to delineate the contribution of co-chaperone, ubiqui-

tin ligase, and other emerging CHIP activities to specific deficits observed in a disease-relevant

context in vivo. These results provide insights that are valuable for the development of effective

therapies for this devastating degenerative disease.

Results

Biochemical and cellular analysis of CHIP-T246M

The T246M mutation destabilizes the structure of the U-box and CHIP-T246M forms deca-

mers and dodecamers in vitro and in cells: Asymmetric homodimerization of CHIP as well as

conformational flexibility are required for CHIP ubiquitin ligase activity. Critical to both the

dimerization and conformational flexibility is the U-box domain [3,25] where T246 is located

and is a highly conserved residue across CHIP homologs [11]. Furthermore, T246 is located in

the core of a conserved beta hairpin turn that lies at the interface between the two molecules of

the CHIP dimer (Fig 1A). Modeling of the T246M amino acid substitution predicts that this

mutation would, in the absence of any structural rearrangement, result in a clash between

M246 and L275. Thus, the T246M mutation likely perturbs the hydrophobic core of the U-

box, impacting the tertiary structure of the U-box and hence disrupting the formation of func-

tional dimers, consequently reducing or abolishing CHIP’s ubiquitin ligase function towards

both chaperone and non-chaperone substrates. To test the effects of T246M substitution on

U-box structure, we performed solution NMR on purified WT and T246M CHIP U-

box domains. Whereas WT CHIP U-box exhibit distinct peaks spread throughout the 2D
15N-1H HSQC spectrum characteristic of a stable, structured domain (Fig 1B), the T246M

spectrum is collapsed and has broad resonances, suggesting the loss of stable globular struc-

ture, multiple conformations and aggregation (Fig 1B). Additionally, circular dichroism spec-

tra were acquired for the isolated WT and T246M CHIP U-box domains. Compared to the

secondary structure content of the WT U-box, the signal from T246M U-box was consistent

with loss or regular secondary structure and a shift to random coil conformation (Fig 1C). Fur-

ther, we monitored the protein melting temperature (Tm) at 222 nm, the characteristic wave-

length for α-helices. The WT U-box exhibited a sigmoidal curve consistent with unfolding of a
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Fig 1. CHIP-T246M disrupts the structure of the U-box and promotes the formation of soluble oligomers. (A) The

structure of the U-box β-hairpin harboring residue 246 is shown for CHIP-WT (purple) and a Rosetta-relaxed model of

CHIP-T246M (orange). The left panels show the CHIP-WT and CHIP-T246M backbones and the side chain of T246.

The middle panels show the CHIP-T246M model. The right panels show T246M and the clashes (red discs) that would

occur without adjustment of the U-box backbone structure. The lower panels shows identical structures rotated 90˚

about the x-axis from the view in the upper panels. Hydrogen bonds between residue 246 and neighboring residues are

shown as black dashed lines for the left and middle panels. (B) 600-MHz 15N-1H transverse relaxation-optimized

spectroscopy-HSQC spectra collected at 293 K for 2H,15N-labeled WT (left) and T246M (right) CHIP U box (218–303).

(C, upper) Circular dichroism spectroscopy data collected for the U-box of WT (purple) and T246M (orange). (C, lower)

Melting point determinations for the U-box of WT and T246M CHIP at 222nm. (D) Size distribution of full-length

proteins of either WT (purple), T246M (orange), K30A (blue) and H260Q (green) CHIP determined by size-exclusion

chromatography and multi-angle lights scattering. The molecular mass of oligomeric species of each protein are indicated

(left Y-axis, thick lines) and the Rayleigh ratio chromatographs represent the amount of light scattering (right Y-axis, thin

lines). (E) COS-7 cells were co-transfected with the indicated vectors (CTRL = pcDNA3, WT = pcDNA3-mycCHIP,

T246M = pcDNA3-myc CHIP-T246M, K30A = pcDNA3-mycCHIP-K30A, H260Q = pcDNA3-mycCHIP-H260Q). Cells

were collected on ice and total protein collected and freshly separated by BN PAGE under native conditions or

SDS-PAGE under reducing conditions and immunoblotted with an anti-myc (CHIP). Locations of molecular weight

standards in kilodaltons (kD) are indicated. (F) COS-7 cells were co-transfected with the indicated transgenes. 24 hours

post transfection cells were fixed and immunostained for myc-CHIP expression (scale bar = 20 microns).

https://doi.org/10.1371/journal.pgen.1007664.g001
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globular, folded domain with a Tm of 30 ˚C, whereas T246M appeared to be unfolded at room

temperature and did not undergo any change with temperature (Fig 1C). Together these data

suggest the T246M mutation destabilizes the U-box domain, resulting in a loss of secondary

and tertiary structure.

Previous size exclusion chromatography (SEC) analysis suggested that full-length CHIP

harboring the T246M formed large aggregates greater than 670 kDa [23,24], however, SEC

alone cannot account for differences in protein conformation or account for protein-column

interactions [26]. Given the known dynamics of CHIP conformation in solution, we used an

analytical approach, SEC coupled with multi-angle light scattering, to determine true

molar mass and radius in solution and compared these data to the composition of native

CHIP-T246M when expressed in cells using blue native PAGE and immunoblot analysis. We

included in these analyses two synthetic and domain inactivating mutations of CHIP, K30A

and H260Q. These mutations abolish either the chaperone binding or ubiquitin ligase function

of CHIP, respectively [27]. As expected, both the WT protein and the K30A mutant were pre-

dominantly dimers, 72 kDa (Fig 1D, Table 1). However, the U-box domain mutants T246M

and H260Q were detected as higher-order oligomers, suggesting CHIP-T246M exist in cells

predominantly as 10-12mers (Fig 1D). Native gels of WT CHIP and the same point mutants

expressed in COS-7 cells also confirmed that CHIP-WT and CHIP-K30A form dimers

whereas CHIP-T246M and CHIP-H260Q form higher-order oligomers (Fig 1E). Next, we per-

formed indirect immunofluorescence to observe CHIP localization and expression patterns in

the same cell model. Not surprisingly, CHIP-WT protein is detected as diffuse staining

throughout the cytoplasm and within the nucleus, while CHIP-T246M protein appears as

punctate staining in the cytoplasm and perinuclear regions, perhaps reflective of CHIP-T246M

oligomers (Fig 1E). Taken together, these data suggest that the mutation destabilizes the U-

box domain resulting in the loss of ubiquitin ligase activity of CHIP-T246M previously

observed [11] and promotion of oligomerization.

CHIP-T246M maintains chaperone activity in vitro. The oligomerization of

CHIP-T246M observed in vitro could explain the loss of ubiquitin ligase activity we previously

observed [11], as well as alter chaperone and co-chaperone activities. CHIP can directly chap-

erone the refolding of heat-denatured luciferase and can further increase HSP-mediated

refolding of heat-denatured luciferase [8]. Moreover, CHIP increases the activity of AMP-acti-

vated kinase (AMPK) in vitro [9]. To determine if CHIP-T246M also results in a loss of chap-

erone-related activities, we tested the effect of this mutation on luciferase refolding and AMPK

activity in vitro. Despite the oligomeric state of CHIP-T246M, this mutant was able to promote

the refolding of heat denatured luciferase both in the absence and presence of the chaperones

HSP40 and HSP70 (Fig 2A), unlike the synthetic K30A mutant that cannot bind chaperones

and has decreased chaperone activity, as previously described [8]. Likewise, CHIP-T246M still

functioned as an AMPK chaperone, with a similar EC50 to that of CHIP-WT (Fig 2B), an

effect that required full-length CHIP, as U-box constructs had no effect on AMPK activity (Fig

2B).

The T246M mutation increases co-chaperone activity. When cells are exposed to heat

or when CHIP expression is increased, the co-chaperone activity of CHIP initiates the heat

shock response through the activation of heat shock factor 1 (HSF1). At the same time, heat

induces the oligomerization of CHIP both in vitro and in cells, enhancing the chaperone activ-

ity of the protein while not affecting ubiquitin ligase activity [8]. Remarkably, the oligomeriza-

tion of CHIP-WT that occurs with heat resembles the oligomerization of CHIP-T246M and–

H260Q [8]. Given T246M increased the interaction between CHIP and HSC70/HSP70 [11],

the oligomeric status of CHIP-T246M (Fig 1E), and our observation that CHIP-T246M retains

in vitro co-chaperone activity (Fig 2A), we hypothesized that CHIP-T246M would still have

Preclinical genetic models of SCAR16
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the ability to co-chaperone HSF1 in cells. To test whether CHIP’s regulation of HSF1 remains

intact with T246M, we transiently expressed CHIP constructs in COS-7 cells and measured

the nuclear translocation of HSF1 and changes in HSF1 transcriptional activity. As previously

reported [28], we observed that expression of CHIP-WT promotes the nuclear translocation of

HSF1 (Fig 3A) and stimulates HSF1 activity (Fig 3B) in cells cultured at physiological tempera-

ture. Remarkably, expression of CHIP-T246M also promoted HSF1 nuclear translocation to

the same extent as CHIP-WT (Fig 3A) and further enhanced HSF1 transcriptional activity (Fig

3B). In contrast, abolishing chaperone interactions via the K30A mutation of CHIP did not

affect HSF1 dynamics (Fig 3A and 3B), whereas the H260Q mutant increased HSF1 activity, as

previously shown [29]. The ability of T246M to affect HSF1 was dependent on a functional

TPR domain, as the effect of T246M on HSF1 activity is lost with the K30A-T246M double

mutant (Fig 3B).

Co-expression of CHIP-WT and CHIP-T246M does not alter oligomerization or locali-

zation. The recessive basis of SCAR16 suggests that the wild-type allele is sufficient to over-

come the disease-bearing mutated allele. Given the U-box is important to dimerization of

CHIP we hypothesized that CHIP-WT would not interact with CHIP-T246M. Interestingly,

using extracts from cells expressing both CHIP-WT and CHIP-T246M, these two proteins co-

immunoprecipitated each other (Fig 3C) suggesting the two forms of CHIP can interact with

each other. However, when we directly separated the lysates via BN-PAGE immunoblot

Table 1. SEC-MALS analysis of CHIP proteins. The true molecular weight (mw) in Daltons is provided along with the fractional contribution of each oligomeric species

(Xmer) of CHIP identified. With some proteins, a small amount was detected as very high molecular weight (VWMW).

Protein 2mer 4mer 6mer 10mer 20mer 50mer VHMW

WT (mw) 7.62E+04 1.43E+05 2.32E+05 4.87E+06

WT (%) 69.7% 25.2% 4.8% 0.4%

K30A (mw) 7.31E+04 1.38E+05 2.51E+05 1.86E+07

K30A (%) 80.4% 16.4% 2.6% 0.7%

T246M (mw) 4.13E+05 8.01E+05 1.99E+06

T246M (%) 91.0% 7.4% 1.6%

H260Q (mw) 8.13E+04 3.97E+05 8.29E+05

H260Q (%) 28.5% 67.8% 3.5%

https://doi.org/10.1371/journal.pgen.1007664.t001

Fig 2. CHIP-T246M has chaperone activity in cell-free assays. (A) Relative luciferase activity on heat-denatured

luciferase after one hour incubation with the indicated CHIP proteins (CTRL = no protein, IgG = immunoglobulin G),

either in the absence (left) or presence of HSP40 and HSP70, represented by dot plot and summarized by the mean ± 95%

CI, N = 4 experimental replicates: �, ���� correspond to p< 0.05, and 0.0001 via Tukey’s post hoc test compared to

CHIP-WT, †, †††† correspond to p< 0.05, and 0.0001 via Tukey’s post hoc test compared to IgG; ns indicates p> 0.05

compared to IgG. (B) AMPK kinase activity towards the Z’LYTE peptide substrate in the presence of increasing amounts

of the indicated recombinant CHIP proteins or IgG protein control represented by scatter plot and summarized by the

mean ± 95% CI, N = 3 experimental replicates. The half maximal effective concentration (EC50) for each protein is

included.

https://doi.org/10.1371/journal.pgen.1007664.g002

Preclinical genetic models of SCAR16

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007664 September 17, 2018 6 / 36

https://doi.org/10.1371/journal.pgen.1007664.t001
https://doi.org/10.1371/journal.pgen.1007664.g002
https://doi.org/10.1371/journal.pgen.1007664


Fig 3. Cellular characterization of CHIP-T246M revealed enhanced activation of HSF1, changes in solubility,

and increased turnover. (A) Immunoblot analysis of HSF1, CHIP, HP1α (nuclear marker) and MEK (cytosolic

marker) in cytosolic (C) and nuclear (N) fractions from COS-7 cells transiently transfected with the

indicated vectors (CTRL = pcDNA3, WT = pcDNA3-mycCHIP, T246M = pcDNA3-mycCHIP-T246M,

K30A = pcDNA3-mycCHIP-K30A) treated with or without heat shock as indicated. Densitometry of relative HSF1

protein is represented by the bar graph and 95% CI, N = 3 biological replicates; effect of heat shock: ‡ and † correspond to

p< 0.01 and 0.0001 via Sidak’s post hoc comparison test to cytosolic or nuclear HSF1 in control conditions at 37 ˚C;

Preclinical genetic models of SCAR16
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analysis, we observed only subtle differences in oligomerization patterns when CHIP-WT and

CHIP-T246M are co-expressed compared to the single protein expression conditions (Fig

3D). Given that BN-PAGE can limit antibody detection of proteins given the native condi-

tions, possibly obscuring changes in visualizing heterocomplexes, we also analyzed expression

via indirect immunofluorescence, and we observed that the localization of CHIP-WT was

unaffected by co-expression of CHIP-T246M (Fig 3E) despite extensive overlap in the localiza-

tion of CHIP expression within cells (Fig 3E). Together, these data suggest that while WT and

T246M CHIP interact in crude extracts, the localization and dimerization status of CHIP-WT

is largely unaffected by the presence of CHIP-T246M. Therefore, CHIP function likely also

remains intact in the heterozygous condition and the presence of WT CHIP does not appear

to alter the oligomerization or distribution of CHIP-T246M, consistent with the recessive

nature of this disease-causing mutation.

Change in solubility and increased proteasome-dependent turnover of CHIP-T246.

We consistently observed lower levels of soluble CHIP-T246M, CHIP-H260Q, and

CHIP-K30A/T246M protein relative to CHIP-WT when transiently transfecting equal

amounts of vector DNA (Fig 3B). We hypothesized that this decrease in soluble CHIP-T246M

expression could be due to changes in solubility and/or stability. To test for changes in solubil-

ity, we performed SDS-PAGE and immunoblot analysis of CHIP in both the soluble and insol-

uble fraction of whole cell lysates. We observed CHIP-T246M, -H260Q, and -K30A-T246M

CHIP in both the soluble and insoluble fraction; in contrast, CHIP-WT or -K30A was found

only in the soluble fraction (Fig 3F). In addition to the change in solubility, we also observed a

shorter half-life of soluble CHIP-T246M compared to CHIP-WT, an effect that that was

dependent on proteasome activity (Fig 3G). Taken together, our data suggest that the T246M

mutation results in altered cellular distribution, solubility, and stability, likely contributing to a

change in CHIP function.

Protein levels of CHIP-T246M are reduced in fibroblasts from SCAR16 patients and

mice engineered with the equivalent mutation. Prior to this report, analyses of

CHIP-T246M by others were limited to in vitro analyses or exogenous expression of CHIP in

cells that robustly express endogenous CHIP [23,24]. Thus, we utilized primary embryonic

fibroblasts (MEFs) isolated from mice engineered with the corresponding murine amino acid

substitution at the endogenous CHIP locus (T247M) [30]. Consistent with our exogenous

expression models, soluble CHIP protein levels were robustly reduced in MEFs isolated from

effect of CHIP transgene: � p< 0.05 via Dunnett’s post hoc comparison to nuclear HSF1 levels in control conditions. (B)

Bar graph of HSF1 transcription activity represented by the mean and 95% CI normalized to control vector (pcDNA)

conditions in COS-7 cells transiently transfected with increasing amount if DNA using the indicated vectors

(K30A-T246M = pcDNA3-mycCHIP-K30A-T246M, GFP = green fluorescent protein), N = 4 biological replicates,
��� p< 0.0001 via Dunnet’s multiple comparison test to WT conditions. Immunoblot analysis of the myc-tag and β-

tubulin confirmed transgene expression. (C) COS-7 cells were co-transfected with the indicated vectors (transgenes,

HA-WT = pcDNA3-HA-CHIP, Myc-TM = pcDNA3-mycCHIP-T246M, WT + TM = HA-WT and Myc-TM). CHIP

protein was immunoprecipitated with Anti-HA or Anti-Myc affinity gel. The inputs and resulting precipitants (IP)

were separated by SDS-PAGE and immunoblotted with the indicated antibodies. (D) COS-7 cells were co-transfected

with the indicated transgenes and cell lysates were separated by BN-PAGE and immunoblotted with the indicated

antibodies. Locations of molecular weight standards in kilodaltons (kD) are indicated. (E) Micrographs of indirect

immunofluorescence from COS-7 expressing the indicated transgenes to detect CHIP-WT (left), CHIP-T246M (center),

or both (right). DAPI nuclear staining is also included (right panels) and the scale bar represents 20 microns. Co-

localization of HA-WT and Myc-TM is represented by scatter plot and the indicated Pearson correlation (ρ). (F)

Solubility analysis (in 1% Triton X-100, TX-100) of CHIP proteins, HSP70, and AMPKα in COS-7 cells determined by

immunoblot analysis. (G) Immunoblot analysis of CHIP expression (top) in COS-7 cells treated with 50 μg/ml

cycloheximide (CHX) for the indicated time (h) in the presence or absence of 20 μM MG132. β-tubulin. Densitometry

analysis (bottom) represented by dot plot and summarized by the mean ± 95% CI of relative levels of CHIP protein were

normalized to β-tubulin, N = 3 biological replicates, ‡, ‡‡, ‡‡‡ correspond to p< 0.05, 0.01, 0.0001 compared to starting

expression levels within each construct via Tukey’s post hoc test.

https://doi.org/10.1371/journal.pgen.1007664.g003
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different M246/M246 mouse embryos relative to either T246/T246 or T246/M246 littermates

(Fig 4A); however the cellular localization of endogenous CHIP protein did not appear to be

affected by the T246M mutation (Fig 4B). The decrease in steady-state CHIP in M246/M246

MEFs appeared to be at the post-translational level, as mRNA levels of Stub1 were equal across

all three genotypes (Fig 4C). We isolated protein extracts from patients homozygous for the

CHIP-T246M mutation, and again, we found a decrease in steady-state soluble CHIP-T246M

protein (Fig 4D). Together these data suggest that the reduction in CHIP-T246M protein is

likely a result of post-translational regulation.

High molecular weight species of endogenous CHIP-T246M in mouse tissue. The

decrease in steady-state CHIP-T246M was also observed in protein extracts prepared from

mouse cerebellum (Fig 4E). We analyzed potential differences in the migration of CHIP using

blue native PAGE from fresh tissue isolated from either T246/T246 or M246/M246 mice. In

protein extracts from wild-type mouse cerebellum and testes, we observed CHIP-reactive

bands predominantly at the same size as the recombinant CHIP-WT dimer (Fig 4E). In con-

trast, in samples from M246/M246 mouse cerebellums we did not observe any lower molecular

weight CHIP species, rather we observed a distinct CHIP-reactive band at the same size of

recombinant CHIP-T246M (Fig 4E), and a similar distinct, higher molecular weight species in

protein extracts isolated from testes (Fig 4E). These data suggest that even at reduced levels of

steady-state expression, CHIP-T246M does not appear to form dimers, moreover, the migra-

tion of CHIP-T246M is consistent with a specific oligomeric state.

Endogenous CHIP-T246M is degraded by the proteasome. Given the difference in

steady-state soluble protein levels of CHIP-T246M in primary cells from patients and our pre-

clinical models, we evaluated the turnover rate of CHIP in MEFs. Similar to exogenously

expressed CHIP proteins (Fig 3G), the turnover of soluble CHIP-T246M protein was rapid

(t1/2 = 1.2 h) compared to the stable, CHIP-WT protein (Fig 4F). In fact, CHIP-T246M protein

was undetectable after 6 hours of cycloheximide chase compared to approximately 75% of

CHIP-WT protein that remained after 6 hours (Fig 4F). To evaluate the solubility distribution

of CHIP-T246M and whether this distribution was effected by proteasome inhibition, we

treated MEFs with 20 μM MG132 or 0.05% DMSO for 4 hours. We collected soluble, insoluble

and total protein fractions from samples containing equal cell numbers and analyzed protein

levels using immunoblot analysis. Total T246M protein is dramatically reduced compared to

WT protein (Fig 4G). Secondly, the change in total protein levels is dramatically higher with

proteasome inhibition for T246M (4-fold) protein compared to WT, suggesting a robust pro-

teasome-dependent turnover of endogenous CHIP-T246M (Fig 4G).

CHIP-T246M maintains protein-protein interactions and the response to heat shock.

We previously demonstrated that exogenous CHIP-T246M immunoprecipitates more chaper-

one clients, such as HSP70 and HSC70, compared to CHIP-WT [11]. However, given the

strong decrease in steady-state CHIP-T246M protein expression seen in primary cells, it is

possible that these interactions are lost, resulting in a CHIP null phenotype. Remarkably, in

primary cells we found that CHIP-T246M maintains interactions with its chaperone substrate

AMPK (Fig 4H), as well as HSC70 (Fig 4I), at levels similar to CHIP-WT, consistent with our

observations that CHIP-T246M exhibits activity towards these proteins in vitro (Fig 2). CHIP

plays an important role in inducing the heat shock response via activation of HSP70, as such,

we exposed primary cells to heat and to determine if cells expressing CHIP-T246M still

respond to heat shock. M246/M246 cells still maintained activation of HSP70 during the

recovery period following heat shock (Fig 4J), whereas cells completely lacking CHIP expres-

sion had an attenuated response, as previously described [28]. These data demonstrate that

CHIP-T246M may retain some chaperone function, despite the increase in turnover.
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Fig 4. CHIP-T246M expressed from the endogenous locus results is regulated post-translationally resulting in

decreased steady-state protein levels, however, interactions between CHIP and known interactors are not affected.

(A) Immunoblot analysis of CHIP and β-tubulin protein in primary fibroblasts (MEFs) isolated from T246/T246 (T/T),

T246/M246 (T/M), or M246/M246 (M/M) mouse embryos (B) Maximum intensity projections of CHIP

immunofluorescence in MEFs treated with 0.05% DMSO or MG132. (C) qPCR analysis of Stub1 mRNA levels in MEFs

represented by the dot plot and summarized by the mean and 95% confidence intervals. (D) Immunoblot analysis of

CHIP and β-actin protein in fibroblasts isolated from control patients (WT) or siblings that are homozygous for

CHIP-T246M (II-1 and II-2). (E) Immunoblot analysis of CHIP under reducing SDS-PAGE (left) or blue native PAGE

(right) of varying amounts of protein extracts (μg) from cerebellum (Cbl) or testes (Ts) from mice with the indicated

genotypes. Protein loading on the reducing blot was confirmed via stain-free technology. As a reference, migration of

recombinant CHIP protein is provided (purple). The dashed boxes identify the regions used for longer exposure. (F)

Immunoblot analysis of CHIP and β-tubulin in soluble cell lysates from either T/T or M/M, fibroblasts, or fibroblasts

isolated from CHIP−/− embryos (KO) after exposure to cycloheximide (CHX) indicated in hours (h). Two exposures of

CHIP immunoblots are provided to help visualize M/M conditions. (G) Immunoblot analysis of CHIP and β-actin in

either the soluble or insoluble fraction of lysates or whole cell lysates from T/T or M/M MEFs treated with 20 μM MG132

or 0.05% DMSO control for 4 hours. (H) Immunoblot analysis of AMPKα1 and CHIP in cell lysates from T/T or M/M
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Preclinical models of SCAR16

Generating in vivo models of CHIP-T246M. Given the advantages of both mouse and

rat models to study neurological disease, we developed a rat model also harboring the same

endogenous CHIP-T246M mutation. Similar to the decrease seen in fibroblasts isolated from

patients with T246M mutations, steady-state levels of CHIP-T246M expression are 40% lower

in protein extracts isolated from the cerebellums, whole brain, and testes of T246M rats (Fig

5A) and further decrease with age (Fig 5B). The effect of the T246M mutation on CHIP expres-

sion in the cerebellum at 32 weeks of age was also evident via immunohistochemical reactivity

(Fig 5C) and indirect immunofluorescence analysis (Fig 5D) in the rat model where we also

identified Purkinje cell degeneration, evidenced by decreased calbindin staining (Fig 5D and

5E). In mice, we observed a similar decrease in CHIP-T246M expression in the brain and tes-

tes (Fig 5F) as well as in the cerebellum, where CHIP-T246M further declined in aged mice

(Fig 5G). As we previously described, CHIP is robustly expressed in Purkinje cells [11], and

much like the rat model, in aged CHIPM246/M246 mice, we observed a decrease in CHIP

reactivity in Purkinje cells as well as a loss in calbindin-positive cells (Fig 5H), similar to our

CHIP null phenotype [11]. As seen in primary cells (Fig 4C) the decrease in tissue expression

of CHIP-T246M was not due to differences in levels of the mRNA that encodes CHIP (Fig 5I).

Decreased survival, body weight, and brain mass in CHIP-T246M models. We

observed an increase in mortality in M246/M246 rats (Fig 6A), similar to what was observed in

CHIP null mice [31]. We also found lower body weights across ages in M246/M246 rats (Fig

6B) and mice (Fig 6C). In addition to lower body weights, there was a selective, age-dependent

atrophy in the brain of M246/M246 mice, whereas the heart was not affected (Fig 6D).

Together, these data demonstrate that our two preclinical models of T246M recapitulate clini-

cal features of SCAR16 in patients including decreased protein expression of CHIP, neurode-

generation, as well as neuro- and gonadal-atrophy.

M246 results in progressive ataxia and alterations in gait. One measure of ataxia in

rodent models is measured by performance on a rotating rod, known as the rotarod test. In

rats, we found robust decreases in rotarod performance in M246/M246 mice at ages as young

as 12 weeks of age that persisted for the duration of the experiment (up to 64 weeks of age, Fig

7A and S1 Video). The loss in rotatrod performance was also accompanied by changes in gait

(Fig 7B–7E), and much like the effect on motor performance, the effect on gait was exacer-

bated by age with notable differences occurring at 32 weeks of age. In mice, we found that

young M246/M246 mice performed similarly to T246/T246 and T246/M246 mice during the

initial training on the rotarod (Fig 7F), however, with age, rotarod performance in M246/

M246 mice decreased starting around 30 weeks of age (Fig 7F), consistent with an age-depen-

dent effect on motor function. Remarkably, similarly aged mice that completely lack CHIP

expression (CHIP−/−) had a complete lack of learning of rotarod behavior (Fig 7G) [11], sug-

gesting that the CHIP-T246M model may differ in disease progression compared to the CHIP

null model. To explore this concept, we utilized a second metric of ataxia progression. This

MEFs either before (input) or after immunoprecipitation (IP) of the indicated protein. Control samples (C) contained a

mixture of 50% T/T and T/M and were immunoprecipitated with either rabbit IgG or goat IgG as controls for the CHIP

and AMPKα1 antibodies, respectively. (I) Immunoblot analysis of HSC70 and CHIP in cell lysates from T/T or M/M

MEFs either before (input) or after immunoprecipitation (IP) of CHIP. Control samples (C) contained a mixture of 50%

T/T and T/M and were immunoprecipitated with rabbit IgG to control for the CHIP antibody. (J) Immunoblot analysis

of HSP70 and CHIP in MEFs with the indicated genotypes that were treated without heat shock (no) or with heat shock

(HS) followed by the indicated recovery time. Densitometry of relative HSP70 protein is represented by the bar graph

and 95% CI, N = 3; ��, † correspond to p< 0.01 or 0.05 via Tukey’s post hoc test comparing M/M to either T/T or CHIP

−/−, respectively, at the indicated time point.

https://doi.org/10.1371/journal.pgen.1007664.g004
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Fig 5. Rodents engineered with CHIP-T246M had decreased expression of CHIP in the brain and testes, Purkinje

cell degeneration, increased mortality, and selective tissue atrophy. (A) Immunoblot analysis of CHIP and β-actin in

the cerebellum (cereb), brain, and testes of rats with either T246/T246 (T/T), T246/M246 (T/M), or M246/M246 (M/M)

genotypes at harvested at different ages. (B) Densitometry analysis of relative CHIP protein represented by dot plot and

summarized by the mean ± 95% CI: ��� p< 0.001 compared to T/T or T/M; ‡, ‡‡‡ correspond to p< 0.05, or 0.001

compared to previous time point via Tukey’s post hoc test. (C) Representative micrographs of immunohistochemical

detection of CHIP expression in rat cerebellums, 32 weeks of age, scale bar = 100 microns. (D) Indirect

immunofluorescence of either calbindin or CHIP expression and the false color overlap (co-expression) in cerebellums of

rats with the indicated genotypes, 32 weeks of age, scale bar = 100 microns. (E) Average number of Purkinje cells per

section from rats at 32 weeks of age, summarized by the mean and 95% CI, N = 3 animals per genotype. Immunoblot

analysis of CHIP in (F) brain and testes (26 weeks of age) or (G) cerebellum of mice of varying age, with the indicated

genotypes. Densitometry analysis of relative CHIP protein levels, N = 3, � p< 0.05 via t-test in comparing CHIP in M/M

mice at 52 versus 26 weeks normalized to stain-free protein levels. (H) Representative micrographs of

immunohistochemical detection of either CHIP or calbindin expression in mouse cerebellums with the indicated

genotypes, 52 weeks of age, scale bar = 200 microns. (I) qPCR analysis of Stub1 mRNA levels in four different tissues
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composite test is comprised of hind limb clasping, ledge test, gait, and kyphosis [32] and was

used to measured ataxia onset and progression in both the CHIP-T246M and CHIP−/−mouse

lines (Fig 7H). Remarkably, we found that CHIP−/− mice were already ataxic at weaning

(score = 4.4, S2 Video), and the rate of ataxia progression was equivalent to wild-type mice

(rate = 0.16 vs. 0.20 points/week in −/− vs. +/+ mice, respectively). In contrast, M246/M246

mice had a high rate of disease progression, 0.38 point/week (S3 Video), suggesting the T246M

mouse may reflect a more suitable preclinical model for SCAR16 compared to the CHIP

−/− mouse. Thus both the mouse and the rat model of CHIP-T246M demonstrate progressive

ataxia that worsens with age and recapitulates the clinical phenotype observed in SCAR16

patients that suffer from an early adult-onset progressive ataxia [12].

Behavioral repercussions of CHIP-T246M include loss of prepulse inhibition, hyperac-

tivity, and cognitive dysfunction. We utilized our rodent models to determine effects of the

T246M mutation on the additional clinical hallmarks of SCAR16—decreased sensorimotor

reflexes and cognitive dysfunction. Given the onset of ataxia phenotype in both the mouse and

rat models were observed around 30 weeks of age (Fig 7A and 7F), we tested mice at ages both

before and after this time point, 8–12 and 33 weeks, respectively. Using the acoustic startle and

prepulse inhibition test, we found that M246 had no effect on the amplitude of the acoustic

startle response in either young or adult mice (Fig 8A) suggesting a lack of an overt motoric

defect. Similarly, all young mice had comparable levels of prepulse inhibition (Fig 8B); how-

ever, older M246/M246 mice exhibited robust decreases in prepulse inhibition, indicating the

emergence of sensorimotor gating deficits by the 33 weeks of age (Fig 8B). These degenerative

deficits in prepulse inhibition are consistent with other mouse models of cerebellar degenera-

tion with profound Purkinje cell loss [33]. Interestingly, CHIP−/− mice had a profound defect

in startle amplitude (Fig 8A) and reaction time (S1 Fig), consistent with the strong motoric

defect we observed (Fig 7G); however, CHIP−/− mice, unlike M246/M246 mice, did not

exhibit any prepulse inhibition (Fig 8B).

Mice were tested in the elevated plus maze (EPM) at eight weeks of age and there was no

difference between genotypes in any of the parameters measured (Table 2). The effect of

T246M on the activity in the EPM was similar to CHIP−/− mice, in which we did not observe

increased levels of activity (Table 2); however, CHIP−/− mice spent more time in the open

arms, consistent with an aberrant pattern of exploration (Table 2). The EPM is usually given as

the first behavioral test to avoid the possible effects of extensive handling, therefore, we used

the open field test to observe any age-dependent changes in activity and impulsivity. The

M246/M246 mice traveled father (Fig 8C) and spent more time in the center of the field (Fig

8D) compared to control mice or when the mice were younger. Interestingly, a different pat-

tern emerged for rearing movements, a measure of vertical activity, as the M246/M246 mice

had reduced levels of rearing at the beginning of each session (Fig 8E), indicating a deficit in

the initial exploration of the open field, however, in older mice, higher levels of rearing

emerged in the mutant group in the last half of the session, consistent with a hyperactive phe-

notype (Fig 8E). In a similar open field test, CHIP−/− mice trended towards increased activity

(Table 2) [11], although not to the same extent as M246/M246 mice.

Additional testing in the 3-chamber choice test found that the M246/M246 genotype associ-

ated with altered social behavior (Fig 8F–8I), such that M246/M246 mice had increased prefer-

ence for social novelty towards the newly-introduced stranger 2 (Fig 8H and 8I). Further

behavioral testing revealed the M246/M246 mice had reduced marble burying, indicating a

(heart, liver, brain, testes) isolated from mice with the indicated genotypes, N = 3 mice per tissue. Relative mRNA levels

are represented by the dot plot and summarized by the mean and 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1007664.g005
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Fig 6. Decreased mortality and weight in CHIP-T246M rodents. (A) Survival analysis of rats with the indicated

genotypes (Mantel-Cox test) with the median survival (ms) indicated in weeks (w), N = 12 animals per genotype. Total

body weight of (B) rats or (C) mice with the indicated genotypes over age represented by scatter plot and summarized by

the mean ± 95% CI. For rats, N = 10 (per genotype); for mice, N = 30, 29, and 18 for T/T, T/M, and M/M, respectively.

Tukey’s post hoc test: � p< 0.05 M/M vs. T/T; †, ††, ††† correspond to p< 0.05, 0.01, 0.001 comparing M/M to T/T and

T/M; # p< 0.05 M/M vs. T/M. (D) brain weight or (E) heart weight normalized to tibia length from mice with indicated

genotypes represented by dot plot and summarized by the mean ± 95% CI: ††† corresponds to p< 0.001 comparing M/

M to T/T and T/M.

https://doi.org/10.1371/journal.pgen.1007664.g006
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decrease in exploratory digging (Table 2); moreover, no effects of genotype were observed for

olfactory ability in a buried food test (Table 2).

Our data suggest CHIP-T246M results in impulsive and risky exploration, as observed in

mouse models for mania and impulsivity and overt hyperactivity [34,35]. Interestingly, both

impulsivity and hyperactivity have been attributed to cognitive cerebellar dysfunction in

humans [36–38]; therefore, we evaluated cognitive function using the Morris water maze and

the conditioned fear response test, in rats and mice, respectively. We observed impaired learn-

ing in both young and adult M246/M246 rats measured by a decrease in the escape latency

from the water maze (Fig 9A). Moreover, young M246/M246 rats had a 42% decrease in plat-

form zone occupancy that worsened in older animals (Fig 9B), consistent with a profound def-

icit in memory recall. Likewise, M246/M246 mice had impairments in the conditioned fear

procedure, both in contextual and cue-dependent learning (Fig 9C and 9D). On the initial

training day, all genotypes had similar, low levels of freezing before any exposure to the aver-

sive foot shock. On the next day, or two weeks later, the lack of learning in M246/M246 mice

was apparent, as they did not increase their freezing time to either a contextual (Fig 9C) or

Fig 7. CHIP-T246M in rodents resulted in progressive ataxia and altered gait. Changes in (A) rotatrod performance, (B) support

base, (C) stride, and (D) support ratio over time in rats with the indicated genotypes represented by line plot and summarized by the

mean ± SEM (N = 6 animals/genotype), Tukey’s post hoc test: a, b, c, and ††† correspond to p< 0.05, 0.01, 0.001, and 0.0001

comparing M/M to T/T and T/M. (E) Graphical representation of gait parameters with foot locations indicated (RH = right hand,

RF = right foot, LH = left hand, LF = left foot). (F) Rotarod analysis during the initial learning phase (left) or over time (right)

represented by a line graph of the change in latency to fall over the first three trials, including a re-test (R) two days later,

summarized by the mean ± SEM (N = 10–20 animals/genotype), Dunnett’s post hoc test: #, ## correspond to p< 0.05, 0.01 within T/

T and T/M mice compared to trial 1; ††† p< 0.001 within all three genotypes compared to trial 1; 0.001 compared to previous time

point; Tukey’s post hoc test: �, �� correspond to p< 0.05, 0.01 comparing M/M vs. T/T. (G) The initial rotarod performance in CHIP

null mice (−/−) or wild-type mice (+/+) over the first three trials, including a re-test (R) two days later, summarized by the

mean ± SEM (N = 10 animals/genotype), Tukey’s post hoc test: ‡ corresponds to p< 0.05 compare to trial 1; �, �� correspond to

p< 0.05, 0.01 comparing genotypes. (H) Composite ataxia score of mice with the indicated genotypes including wild-type (+/+),

heterozygous (+/−), and homozygous (−/−) knockouts of the CHIP allele represented by scatterplot and summarized by the

mean ± SEM (N = 12 animals/genotype). Results of the linear regression analysis are depicted by the line and equation provided and

results of the mixed model analysis provided. In comparing slopes, only M/M mice had a different slope at α = 0.05.

https://doi.org/10.1371/journal.pgen.1007664.g007
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cue-dependent (Fig 9D) stimulus. This lack of response could not be attributed to hearing

impairment, since the mutant mice had normal performance in the acoustic startle test (Fig

8A). Together these data suggest significant impairment in learning and memory as a result of

CHIP-T246M and are consistent with the clinical phenotype of patients with T246M [11].

Overall, the results of the battery of behavioral assessments performed suggest that M246/

M246 leads to the dysregulation of inhibitory processes governing activity, exploration, and

sensorimotor gating, as well as impaired learning and memory in tests for conditioned fear

and cognition. Interestingly, impaired conditioned fear and decreased marble-burying were

reported in mice with deletion of maternal E3 ubiquitin ligase Ube3a, a model for Angelman

Fig 8. CHIP-T246M resulted in age-dependent deficits in sensorimotor skills, increased anxiety, and changes in sociability in

mice. (A) The amplitude of startle response (red and green are no stimulus and acoustic startle stimulus alone trials, respectively)

and (B) the amount of prepulse inhibition over increasing levels of sound, decibels (dB) in mice of the indicated genotypes. (C) The

distance traveled, (D) time spent in the center, and (E) the number of rearing movements in open field test over time. Tests (A-E)

were performed on mice with the indicated genotypes at 11–13 w of age (young) and repeated at 33 w of age (adult) and are

represented by line plot and summarized by the mean ± SEM (N = 10–20 animals/genotype), Tukey’s post hoc test: �, �� correspond

to p< 0.05, 0.01 comparing M/M to T/T (or +/+ to −/−); †, ††, ††† correspond to p< 0.05, 0.01, 0.001 comparing M/M to T/T and

T/M; ‡ corresponds to p< 0.001 compared to the initial stimulus within the genotype (learning), ns = p> 0.05. (F) Time spent and

(G) number of entries in either the side with stranger 1 (S) compared to an empty cage (E). (H) Time spent and (I) number of entries

in either the side with previous stranger 1 (1) or novel stranger 2 (2). Tests F-I were performed on mice with the indicated genotypes

represented by dot plot and summarized by the mean ± 95% CI (N = 10–20 animals/genotype), Tukey’s post hoc test: ‡, ‡‡, ‡‡‡

correspond to p< 0.05, 0.01, 0.001 within genotype; � p< 0.05 M/M vs. T/T.

https://doi.org/10.1371/journal.pgen.1007664.g008

Preclinical genetic models of SCAR16

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007664 September 17, 2018 16 / 36

https://doi.org/10.1371/journal.pgen.1007664.g008
https://doi.org/10.1371/journal.pgen.1007664


syndrome [39], again highlighting the critical role of protein ubiquitination in cerebellar

homeostasis.

Alterations in the T246M proteome identified both known and potentially novel sub-

strates of CHIP-dependent regulation. Given the role of CHIP as a chaperone, co-chaper-

one, and ubiquitin ligase it is likely that disruption in CHIP function alters the regulation of

proteins critical to cerebellar function and protein homeostasis. To identify candidate proteins

that may mediate the pathogenesis of SCAR16, we performed unbiased proteomics via mass

spectroscopy to identify differentially expressed proteins in cerebellar lysates prepared from

either T246/T246 or M246/M246 rats at 32 weeks of age. We identified 63 and 80 unique pro-

teins that were either less or more abundant, respectively, in M246/M246 relative to T246/

T246 cerebellums (Fig 10A, S2 Fig, S1 Table). As expected, we identified a 50% decrease in

CHIP protein in M246/M246 brains as measured via MS (mean ratio = 0.5, p = 3.47E-08). We

confirmed the differential levels of selected proteins that were either increased in M246/M246

cerebellums including PDE9A and TAU, or decreased in M246/M246 cerebellums, such as

PHLPP1, SNCA, CHIP, and Pink1 (Fig 10A). We then used samples spanning multiple ages

and found that the expression levels of these proteins changes with age (Fig 10B, S3 Fig). More-

over, both the direction and magnitude of change was similar in the whole brain and cerebel-

lum, likely reflecting the important role of CHIP throughout the brain, not just in cerebellar

homeostasis. Next, we analyzed the dataset using known and predicted protein-protein associ-

ation data combined with functional enrichment analysis via the STRING database [40] to

identify proteins or pathways that may play a role in the neuro-pathophysiology of SCAR16.

Of the 143 initial proteins, 60 proteins were identified in a total of 21 protein-protein interac-

tion clusters (S2 Table) including a family of six proteins that contained CHIP and other regu-

lators of protein quality control, such as BAG3 and several F-box proteins (Fig 10C).

Additionally, we identified a cluster of proteins known to be affected by CHIP expression

including TAU (MAPT), alpha-synuclein (SNCA), and PINK1 [5,41,42]. Of note, a seven

member cluster that was also functionally enriched for coagulation processes (wound healing)

and extracellular matrix function was identified (Fig 10C), and in total, 16 proteins involved in

coagulation were affected by CHIP-T246M. Coagulation was recently identified as a significant

component of spinocerebellar ataxia disease signatures (without Friedreich ataxia) from a

Table 2. Elevated plus maze, marble burying, olfactory sensing, and open field testing in mice. The performance measurements from the elevated plus maze test, the

marble-burying assay, and buried food test for olfactory function are represented by the mean ± SEM from mice with the indicated genotypes, † p< 0.05 comparing M/M

to T/T and T/M; ‡ p< 0.05 and ¶ p = 0.07 comparing −/− and +/+.

T246/T246 T246/M246 M246/M246 CHIP+/+ CHIP−/−
Elevated plus maze

Percent open arm time 32 ± 3 30 ± 4 36 ± 4 6 ± 3 30 ± 10 ‡

Percent open arm entries 39 ± 2 41 ± 2 42 ± 3 81 ± 4 60 ± 11

Total number of entries 28 ± 2 27 ± 2 28 ± 3 21 ± 4 27 ± 6

Number of marbles buried

First test (age 12 w) 16 ± 0.6 18 ± 0.4 11 ± 1.7 †

Second test (age 32 w) 17 ± 0.4 16 ± 0.7 13 ± 1.3 †

Olfactory test

Latency to find food (s) 267 ± 74 189 ± 52 289 ± 95

Percent of group finding food 80% 95% 89%

Open field test

# of crossings, Test 1 124 ± 43 289 ± 72 ¶

# of crossings, Test 2 313 ± 39 433 ± 94

https://doi.org/10.1371/journal.pgen.1007664.t002
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Fig 9. CHIP-T246M rodents developed cognitive deficits. In rats, (A) the average latency to find the platform over

four consecutive training days in the Morris Water maze task is represented by line plot and summarized by the

mean ± SEM. (B) The amount of time spent in the target quadrant when the platform was removed after the last trial is

represented by dot plot and summarized by the mean ± 95% CI. Tests A-B were administered on rats with the

indicated genotypes at 16 w of age (young) and repeated at 36 w of age (adult), N = 6 animals/genotype, Tukey’s post
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large-scale analysis of 80,000 samples [43] and our analysis of CHIP-T246M cerebellums sup-

port the notion that coagulation may represent new targets for therapeutic interventions.

Discussion

CHIP plays a vital role in cerebellar homeostasis, however, how do the various mutations that

cause SCAR16 drive the disease pathogenesis? The simplest explanation is that the CHIP

mutations that destabilize the protein lead to an effective CHIP null condition. However, a

varying degree of CHIP protein levels is found in fibroblasts isolated from patients with CHIP

mutations. For example, the N65 mutation results in an 80% loss of CHIP protein [21],

whereas other mutations, such as T246M (Fig 4D) and the compound mutation M211I/E238�

have more modest effects, approximately at the level of haploinsufficiency [16]. Moreover, the

R119�/I294F and K145Q/P243K compound mutations do not appear to affect CHIP turnover

[20]. Given the recessive nature of this disease in patients [12], and the lack of phenotype

observed in our three rodent models of CHIP haploinsufficiency (Figs 6, 7, 8 and 9), these data

suggest that either the loss or change in specific activities of CHIP drive the pathophysiologies

as well as the clinical heterogeneity associated with SCAR16.

We identified that the T246M disrupts the U-box structure (Fig 1A, 1B and 1C), and the

effect of the T246M conformational change on CHIP function appears to be three-fold. First,

the destabilization of the U-box results in no appreciable ligase activity as demonstrated previ-

ously by our group [11] and others [23,24]. Secondly, CHIP-T246M is degraded in a protea-

some-dependent manner at a higher rate than CHIP-WT, both when expressed exogenously

(Fig 3G) and under native genomic conditions (Fig 4F and 4G), resulting in decreased steady-

state levels that we observed both in both T246M patients (Fig 4D) and in our rodent models

(Figs 4E, 5A, 5B, 5C, 5D, 5F, 5G and 5H). Lastly, and more surprisingly, the T246M mutation

promotes the formation of soluble oligomeric forms of CHIP, comprised of 10–12 mers in

vitro (Fig 1D and 1E) that retain chaperone activity (Fig 2). CHIP functions as a dimer [27,44],

however under heat stress, CHIP forms higher-order oligomers that appear to have increased

chaperone activity [8]. Therefore, we tested the effect of T246M on the chaperone-mediated

activation of HSF1 and found that T246M stimulates nuclear localization of HSF1 (Fig 2A)

and increased HSF1 activity (Fig 2B). We initially considered that CHIP-T246M was activating

HSF1 simply because the cells were responding to a misfolded protein insult, and not a specific

effect of CHIP-T246M on HSF1. To account for this, we engineered a CHIP-T246M protein

that also contained the K30A mutation that abolishes the interaction between CHIP and its

chaperone binding partners. Unlike T246M, the K30a-T246M double mutant had little effect

on HSF1 activity (Fig 3B) despite similar levels of insoluble CHIP protein (Fig 3F). Impor-

tantly, our data suggest that these higher-ordered oligomers of CHIP-T246M occur in vivo

and are not artifacts of over-expression (Fig 4E). Therefore, while the T246M may abolish

ligase activity, it appears that one consequence of these mutations may be altering chaperone

function by failing to process substrates usually triaged by the CHIP-HSC(P)70 complex in a

manner distinct from the CHIP null condition. We previously observed increased pulldown of

HSP70 and HSC70 with CHIP-T246M [11], and even in our rodent model with reduced

hoc test: �� corresponds to p< 0.01 comparing M/M vs. T/T; †, ††, ††† correspond to p< 0.05, 0.01, 0.001 comparing

M/M to T/T and T/M; ‡ corresponds to p< 0.05 within genotype. Conditioned fear testing was measured in mice by

calculating the percentage of time freezing (no movement) during either (C) context or (D) cue-dependent learning

during the training day (D1), and over 5 minute periods either a day after training (left) or two weeks later (right).

Tests C-D are represented by line plot and summarized by the mean ± SEM (N = 10–20 animals/genotype), Tukey’s

post hoc test: †, ††, ††† correspond to p< 0.05, 0.01, 0.001 comparing M/M to T/T and T/M; ‡ corresponds to

p< 0.001 compared to the initial stimulus within the genotype (learning), ns = p> 0.05.

https://doi.org/10.1371/journal.pgen.1007664.g009
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Fig 10. Changes in the cerebellar proteome due to CHIP-T246M. (A) Heatmap (left) of cerebellar proteins determined

to be differentially expressed in M246/M246 relative to T246/T246 rats and immunoblot analysis (right) of selected

proteins in either cerebellums or whole brain in rats with the indicated genotype, GAPDH was used as a loading control.

(B) Densitometry analysis of selected proteins from either cerebellum (Cbl) or brain (Brn) from rats of the indicated

genotypes at different ages, represented by line plot and summarized by the mean ± SEM (N = 2 animals per tissue per

genotype per timepoint). 3-way ANOVA analysis identified interactions between age and genotype for all five proteins

(p< 0.0001) and no interaction between age, genotype, and tissue type (p range 0.14–0.91). Tukey’s post hoc test: ��, ���,
���� correspond to p< 0.01, 0.001, 0.0001 comparing M/M to T/T and T/M in both tissues. (C) Protein interactions

analysis identified both the interaction clusters and functional enrichment of the differentially expressed proteins

identified due to CHIP-T246M. The interaction clusters are connected with solid lines and additionally indicated by

colored protein labels. Functional enrichment analysis is labeled by the colored spheres.

https://doi.org/10.1371/journal.pgen.1007664.g010
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steady-state levels of CHIP-T246M, this interaction is maintained (Fig 4H). In fact, compara-

ble amounts of HSC70 as well as the chaperone substrate of CHIP, AMPK, immunoprecipitate

with CHIP or CHIP-T246M (Fig 4H and 4I) suggesting that even though the expression of

CHIP-T246M is reduced, it is still engaging with known client proteins at similar levels and

maintains activity towards these substrates (Fig 2). In cell culture models, the synthetic CHIP

mutation, H260Q, acted in similar to T246M regarding HSF1 activation (Fig 2B), confirming a

previous report that also identified that a U-box mutation led to changes in BAG3 protein lev-

els and suppression of the macro autophagy pathway [29]. Likewise, it was proposed that

enhancing either macro or chaperone-mediated autophagy may be beneficial in CHIPopathies

[16]. Interestingly, our proteomics analysis of the T246M rodent cerebellum revealed a

decrease in Bag3 protein levels (S2 Fig, S1 Table), so one distinct possibility for the pathology

associated with SCAR16 may be a disruption in either the macro autophagy or chaperone-

mediated autophagy pathways, rendering cells susceptible to proteinopathies. Alteration of

these autophagy pathways is implicated in other ataxias, such as spinocerebellar ataxia type 1,

3 7, and 14, [45–48]. It is important to point out that our proteomics approach does not

account for changes in cell-type distributions during neurodegeneration. Future work will

include histological analysis of these candidate proteins in the brain and cerebellum to deter-

mine the cell populations that are driving these changes.

Central to disease-based research is the establishment of preclinical models that can be used

as a platform to both better understand the mechanism of disease and to test therapies. There-

fore, we created both a mouse and rat model that genocopies the human T246M. We found

that these models recapitulate the key features of SCAR16, notably: decreased steady-state pro-

tein expression due to proteasome-dependent turnover (Figs 4E, 4F, 4G, 5A, 5B, 5F and 5G);

brain atrophy (Fig 6D); increased mortality (Fig 6A); loss of motor function (Fig 7A and 7F);

age-dependent impairment of sensorimotor function (Fig 8B); overt hyperactivity (Fig 8C, 8D

and 8E); and impaired cognitive function (Fig 9A, 9B, 9C and 9D). Given these phenotypes

were exacerbated with age, these models provide us with the ability to interrogate the patho-

physiology at difference time points in disease progression. These data further support our

previous findings that CHIP plays a critical role in cerebellar maintenance [11]. Interestingly,

some of the behavioral deficits in M246/M246 rodents overlap with those observed in CHIP

−/− mice [11], whereas others were unique to T246M mutation, further supporting our

hypothesis that disease-causing mutations in CHIP and the total loss of CHIP are not func-

tionally equivalent. For example, M246/M246 mice exhibited overt hyperactivity (Fig 8C),

risky behavior (Fig 8D), and deficits in sensory motor gaiting (Fig 8B), phenotypes not

observed in CHIP−/− mice (Table 2, Fig 8B) [11]. Conversely, CHIP−/− mice have profound

motoric defects (Fig 7G) that is apparent even at weaning (Fig 7H). Moreover, M246/M246

rodents suffer from progressive phenotypes (Figs 7H, 8B, 8C, 8D, 8E and 9A) whereas CHIP

−/− mice start with a high ataxic burden that progresses similar to healthy mice (Fig 7H). This

could be due to developmental differences in the null versus hypomorph conditions, however,

we hypothesize that the phenotypic differences observed between CHIP−/− mice and T246M

mice are likely reflective of our cell-based and in vitro findings that while T246M CHIP no lon-

ger functions as an E3 ubiquitin ligase, other CHIP functions remain intact despite this

mutation.

Perhaps even more intriguingly, the T246M mutation may modify the co-chaperone activ-

ity of CHIP in a deleterious manner. For example, mutant CHIP may be unable to either ubi-

quitinate chaperone-engaged proteins or promote the refolding of proteins that are usually

degraded by the proteasome. Similarly, mutant CHIP may promote the activation of compen-

satory pathways involved in proteins degradation or clearing protein aggregates such as autop-

hagy [29,49] that could sensitize the cells to additional proteotoxic stress. Moreover, the
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formation of soluble CHIP oligomers that alter the chaperone or co-chaperone functions of

CHIP may also contribute to the pathophysiology. Remarkably, the oligomerization of

CHIP-WT with heat is thought to increase its intrinsic chaperone activity by enhancing the

binding activity of CHIP to substrates [8], thereby providing an additional mechanism

through which coding mutations could affect CHIP activity. Alternatively, CHIP could func-

tion as a sink for other components of the ubiquitin proteasome system, such as E2 enzymes,

ultimately altering the fate of proteins that are usually modified either by CHIP or other E3

enzymes that share the same E2 enzymes. In total, our data support our previous findings that

highlight the role of aberrant ubiquitination in the pathogenesis of SCAR16; however, the loss

of CHIP ubiquitin ligase activity alone may not fully explain the molecular mechanisms under-

lying the diverse pathophysiology observed in the heterogeneity of SCAR16 disease.

CHIP mutations associated with SCAR16 occur in all three of CHIP’s functional domains,

although interestingly the majority are concentrated in the charged domain and the U-

box domain. Biochemical studies using in vitro approaches demonstrated wide variance

regarding how individual properties of CHIP change given the location of the mutation

[23,24]; clearly, more cell-based and in vivo approaches are needed to fully understand how

these mutations drive a disease that has a spectrum of clinical phenotypes. Given the diversity

of mutations and the clinical heterogeneity of the ARCA patients harboring STUB1 mutations,

we originally hypothesized that the affected protein domain might directly correlate to clinical

phenotype. For example, cognitive impairment occurred in all SCAR16 patients described in

the literature that harbor mutations in the U-box domain [11,15,17–20,22], such that residual

CHIP activity involving a defective or truncated U-box domain but intact TPR domain could

directly correlate to specific clinical symptoms in some patients. Our extensive behavioral anal-

ysis of two T246M mammalian models provides direct evidence to support this hypothesis,

demonstrating that particular cognitive deficits are in fact associated in vivo with a U-

box domain point mutation that has been demonstrated in vitro and in cells to have a partially

functionally intact TPR domain. The development of additional animal models with specific

domain mutations may help to further validate this hypothesis and identify how the multifunc-

tional roles of CHIP contribute to particular clinical pathologies. It seems clear, however, that

while defective ubiquitination contributes to SCAR16 pathology, CHIP mutation as a driver of

disease is not limited to loss of ubiquitin ligase activity but may represent a more multi-faceted

disruption of CHIP-mediated PQC.

In light of the identification of T246M CHIP mutation and subsequent designation of

SCAR16, the establishment of preclinical models of SCAR16 represents novel and important

tools to evaluate CHIP dysfunction in vivo in a disease-relevant context. Our biophysical, cellu-

lar and in vivo characterization of T246M mutation provides significant insight into both the

molecular mechanisms driving disease pathology in SCAR16 as well as basic CHIP biology, by

shedding new light on the structure-function relationship, particularly regarding the multifac-

eted activities of CHIP within the cell. Furthermore, we are hopeful these studies provide valu-

able insight required for the future development of effective therapies for this devastating

degenerative disease.

Materials and methods

Biochemical and cellular studies

Expression plasmids and recombinant proteins. Mammalian expression plasmids

pcDNA3-myc-CHIP, pcDNA3-myc-CHIP-K30A, pcDNA3-myc-CHIP-H260Q, HA-Ubiqui-

tin, FLAG-SIRT6, FLAG-HSP70, β-galactosidase, and GFP were used as described previously

[3,8,29,50,51]. CHIP, CHIP-H260Q, CHIP-K30A, CHIP-T246M and AMPK recombinant
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proteins were produced in Escherichia coli BL21(DE3) as His-tagged fusion proteins by induc-

tion with 0.1mM isopropyl-1-thio-β-D-galactopyranoside overnight at 18˚C followed by puri-

fication with HisTrap HP columns (GE Healthcare), concentrated, and stored in in 20 mM

HEPES pH 7.4 with 150 mM NaCl.

Mutagenesis. A point mutation of threonine to methionine at position 246 of CHIP was

created for generation of single T246M point mutant and K30A-T246M double point mutant

by site-directed mutagenesis using the Q5 Site-Directed Mutagenesis Kit (New England Bio-

labs, E0554S) according to manufacturer’s instructions using previously described pcDNA3-

myc-CHIP template or pcDNA3-myc-K30A CHIP template [3] and mutagenic primers 5’-

CCGTGCATCATGCCCAGTGGC-3’ and 5’-CTCCCGCATCAGCTCAAAGC-3’ (BaseChan-

ger software, New England Biolabs). The myc-CHIP-T246M and myc-CHIP-K30A-T246M

expression plasmids were produced by transformation in Escherichia coli DH5α, purified, and

the single-base pair substitution was verified by DNA sequencing.

Light scattering. The solution molecular weights of WT CHIP, K30A, H260Q and

T246M point mutant CHIP were determined by size exclusion chromatography followed by

multi-angle light scattering (SEC-MALS) of the eluant from a size exclusion chromatography

column. The SEC-MALS system consisted of a GE Superdex 200 column connected to Wyatt

DAWN HELEOS-II multi-angle light scattering instrument and a Wyatt T-Rex refractometer

(Wyatt Technology, Santa Barbara, CA, USA). 100 μl of 0.5 mg/ml of each sample was loaded

onto the column, and the light scattering and refractive index data were collected as the eluted

samples passed through light scattering system. The molar masses of the samples eluting in

various peaks were calculated from these data using ASTRA 6 software (Wyatt Technology).

Nuclear magnetic resonance spectroscopy. Human WT and T246M U-box (amino acid

residues 212–303) recombinant proteins were expressed and purified as previously described

for WT CHIP U-box [52]. NMR spectra were recorded using a Bruker Avance 600 MHz (1H)

spectrometer at 20 ˚C in buffer containing 20 mM HEPES (pH 7.5), 50 mM NaCl, and 1 mM

DTT as previously described [52]. NMR data were processed with NMRPipe [53] and analyzed

with SPARKY (T. D. Goddard and D. G. Kneller, SPARKY 3, University of California, San

Francisco).

Circular dichroism spectroscopy. CD spectra of WT and T246M U-box CHIP were col-

lected as previously described [54] at 0.25 mg/mL and 15 ˚C in 10 mM sodium phosphate (pH

7.0) with 20 mM NaCl and 1 mM DTT. The Tm for WT and T246M U-box CHIP was deter-

mined by monitoring the temperature dependence of CD at 222 nm.

Luciferase refolding: The HSP70/HSP40 Glow-Fold Protein Refolding Kit (Boston Bio-

chem) was used per the manufactures instructions. The luciferase was heat denatured for 15

min at 42 ˚C. CHIP proteins or IgG were added to the reactions at a final concentration of

0.28 mg/ml in the absence or presence of HSP40/70 and incubated for 60 min at 30 ˚C. Activ-

ity was measured by luminescence and data normalized to heat denatured luciferase in the

absence of any additional proteins.

AMPK in vitro activity assay. Recombinant proteins CHIP, CHIP point mutants, and

AMPKα2β1γ1 in 20 mM HEPES pH 7.4 with 150 mM NaCl prepared as previously described

[9] were diluted to final concentrations of 730nM (pAMPKα2) or 7 point 5X serial dilution

curve starting from 2.8 μM in 1X kinase buffer A (50 mM HEPES pH7.5, 1 mM EGTA,0.01%

Brij-35 and 10mM MgCl2) and pre-incubated together at 30˚C for 30 min with gentle shaking.

Z’-LYTE Kinase Assay Kit-Ser/Thr 23 Peptide (Invitrogen) was utilized as per manufacturer’s

instructions to determine pAMPKα2 enzymatic activity in the presence of CHIP with each

condition measured in triplicate in 3 independent assays.

Cell culture and transfection. CHIP+/+, CHIP−/− and T246M CHIP mouse embryonic

fibroblasts (MEFs) were cultured as previously described [28]. COS-7 and shCTRL and
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shCHIP HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium (Invitrogen)

supplemented with 10% fetal bovine serum (Sigma) at 37 ˚C in an atmosphere of 5% CO2. Cell

transfections were performed using X-tremeGENE 9 (Roche) with the indicated plasmid DNA

at a 1:3 DNA to X-tremeGENE 9 ratio.

mRNA analysis. CHIP mRNA levels in primary MEFs or tissue were determined using

the SingleShot SYBR Green Kit (Biorad, 1725085) and Roche LightCycler 480 with

PrimePCR SYBR green primer assays (Biorad) targeting the indicated transcripts: Actb
(qMmuCED0027505), Gapdh (qMmuCED0027497), Hprt (qMmuCED0045738), Stub1
(qMmuCED0001075), Tbp (qMmuCID0040542). Relative expression values were calculated

using the ΔCT method correcting for PCR efficiency and mean centered across the three geno-

types. Expression was normalized to the geometric mean of Actb and Hprt, the two most stable

reference mRNAs across genotypes as determined via Normfinder (also tested: Gapdh and

Tbp) [55].

Protein and mRNA isolation/analysis from mouse tissue. Intact tissues were isolated

from anesthetized 4 month-old male littermates. Tissue was stored frozen in RNAlater solu-

tion (Ambion) until protein and mRNA were isolated using the Ambion PARIS Kit (Ambion,

AM1921) as per manufacturer’s instructions. Tissue disruption prior to protein/RNA isolation

was performed with Ambion PARIS Kit Cell Disruption Buffer and Qiagen TissueLyser LT

with 5 mm steel beads. Any contaminating DNA was removed from RNA prepared by PARIS

Kit by treatment with TURBO DNA-free Kit (Ambion) and mRNA was reverse transcribed

using the iScript cDNA synthesis kit (Bio-Rad). Real-time PCR was performed using Roche

LightCycler 480 and Sso Advanced Universal SYBR Green Supermix (Biorad) with PrimePCR

SYBR green primer assays targeting the indicated mRNAs (Biorad) and methodology listed

above. Expression was normalized to the geometric mean of Actb and Gapdh, the two most sta-

ble reference mRNAs across genotypes (also tested: Hprt and Tbp).

Cell lysate collection/nuclear fractionation/isolation of total, soluble and insoluble frac-

tions. For all assays, unless otherwise noted, cell lysates were prepared by first washing cells

in cold PBS and lysed in Cell Lytic M (Sigma) containing 1X HALT protease/phosphatase

inhibitor (Pierce) and 50 μM PR619 (Lifesensors). Lysates were clarified by centrifugation at

15,000 × g for 10 min at 4 ˚C. Total protein concentration was determined by BCA protein

assay (Pierce). Alternatively, cells were lysed on ice for 15 min in Triton X-100 cell lysis buffer

(50 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100, 1mM EDTA, protease inhibitor (Com-

plete; Roche), 50 μM PR-619 (LifeSensors). Triton X-100 insoluble material was collected by

solubilization of the insoluble pellet following 15,000 × g centrifugation by resuspension in 2X

Laemmeli Sample buffer (Biorad), brief sonication and heating for 5 min at 100 ˚C. Nuclear

fractions were prepared using the NE-PER kit (Pierce), as per manufacturer’s instructions.

Total, soluble and insoluble fractions as shown in were prepared by first trypsinizing and

counting P2 primary MEFs grown on 15-cm tissue-culture treated dishes to near 100% con-

fluency. Cells were then divided equally between two tubes, spun at 500 × g, pellet rinsed in

PBS and spun again at 500 × g. Cells for total protein fraction (tube 1) were then lysed in 2X

Laemmeli SDS sample buffer (65mM Tris-HCl, 10% Glycerol, 2% SDS), sonicated briefly on

ice and boiled at 100 ˚C for 5 min. The cell pellet in tube 2 was then lysed for collection of solu-

ble and insoluble fractions. This pellet was lysed in Triton X-100 cell lysis buffer as described

above and soluble protein collected following centrifugation at 15,000 × g for 10 min at 4 ˚C.

The insoluble pellet was then rinsed once in lysis buffer and spun again at 15,000 × g for 10

min at 4 ˚C. The pellet was then solubilized in 2X Laemmeli SDS sample buffer (65mM Tris-

HCl, 10% Glycerol, 2% SDS), sonicated briefly on ice and boiled at 100 ˚C for 5 min. Total pro-

tein concentrations in each fraction were then determined by 660nm Protein Assay (Thermo
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Scientific) and samples of equal total protein prepared for SDS-PAGE by addition of final con-

centrations of 0.025% bromophenol blue and 100mM DTT.

Polyacrylamide gel electrophoresis, Blue native polyacrylamide gel electrophoresis, gel

immunoblotting, and densitometry. For reduced and denatured conditions, protein sam-

ples were resolved on NuPAGE Novex Bis-Tris Gels (Life Technologies) using the MOPS/LDS

buffer system or Mini-PROTEAN TGX Precast Gels (Bio-Rad) using the Tris/Glycine/SDS

buffer. Native protein samples were resolved on 4–16% NativePAGE Novex Gels (Life Tech-

nologies) using 0.001% G-250 cathode buffer. Proteins were transferred to PVDF membranes

and incubated with primary antibodies overnight (see following table for antibody informa-

tion) and detected with either anti-rabbit or anti-mouse (GE Healthcare), or anti-goat (Sigma)

HRP-conjugated antibodies and visualized with ECL Advance substrate (GE Healthcare) using

the EC3 Imaging System (UVP). For quantification of relative protein levels, densitometry

analysis was performed using LI-COR Image Studio Lite. For blue native PAGE analysis of

mouse tissues, 50 mg wet weight of tissue was homogenized for 7 min at 50 Hz using the Tis-

sueLyzer II (Qiagen) in Native PAGE sample buffer (Invitrogen) with Halt protease and phos-

phatase inhibitors (Thermo) and 1% digitonin. Lysates were cleared at 20,000 × g for 30 min at

4 ˚C. G-250 Sample Additive (Invitrogen) was added to the samples and blue native PAGE

was run using the dark blue and light blue cathode buffer protocol per the manufactures

instructions (Invitrogen). Proteins were transferred and blotted as described above.

Immunoprecipitation/co-immunoprecipitation of AMPKα1/CHIP, Hsc70/CHIP from

primary MEFs. Primary MEFs were cultured as described above and plated in 2 × 15 cm tis-

sue culture dishes and incubated overnight under normal growth conditions. 24 h after plat-

ing, cells were treated with 20 μM MG132 or DMSO for 2.5 h prior to harvest. Cells were

washed 1X in cold PBS and lysed in Cell Lytic M (Sigma) containing 1X HALT protease/phos-

phatase inhibitor (Pierce) and 50 μM PR619 (LifeSensors). Lysates were clarified by centrifuga-

tion at 15,000 × g for 10 m. Total protein concentration was determined by BCA protein assay

(Pierce) and 1.5 mg total protein clarified lysates were incubated overnight at 4 ˚C with 10 μg

of anti-AMPKα1 (R and D Systems, AF3197), anti-CHIP (Abcam, ab4447), rabbit IgG or goat

IgG antibodies. 120 μl Protein-G Dynabeads (Invitrogen) was then added to each sample and

incubated for 0.5 h at room temperature with rotation. Beads were washed four times with

Phosphate-Buffered Saline with 0.05% Tween-20; subsequently, proteins were eluted in SDS-

sample buffer and analyzed by SDS-PAGE and western blotting using anti-CHIP (Sigma,

S1073), anti-AMPKα1/2 (Cell Signaling Technologies, 2532) or anti-Hsc70 (Enzo, ADI-SPA

815) antibodies.

CHIP immunofluorescence. Micrographs were obtained as previously described [56]

with the following modifications. Cells were fixed in 4% paraformaldehyde for 10 min, then

incubated in permeabilization buffer (PBS, 0.5% Triton X-100, 1% BSA) for 10 min. Primary

and secondary antibodies were prepared at dilutions of 1:500 (CHIP-Sigma HPA043531) or

(anti-c-myc, Sigma M4439) and 1:800 (Alexa-Fluor Goat anti-rabbit or Goat anti-mouse),

respectively, in blocking buffer (PBS, 0.05% Triton X-100, 1% BSA). Coverslips were mounted

using Vectashield Hardset with Dapi (Vector Laboratories). Cells were visualized using a Zeiss

LSM 710 spectral confocal. Co-localization analysis was performed using the Coloc2 plugin (v

3.0.0) with Fiji [57,58].

HSF1 luciferase reporter assay. COS-7 cells were cultured, plated at 5000 cells/well in

clear-bottom white 96-well plates (Thermo Scientific, 165306) and transiently transfected as

described above with the indicated transgene vectors and the Qiagen Cignal Heat Shock

Response Reporter (luc) Kit (CCS4023L) as per manufacturer’s instructions. 24 h post-trans-

fection cells, were lysed and luciferase assays were performed using a Dual-Luciferase Reporter

Assay System (Promega, Madison, WI) on a BMG Labtech CLARIOstar dual-injection plate
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reader following the manufacturer’s protocol. Transfection of each construct was performed

in triplicate in each assay and a total of three assays were performed on three separate days.

Empty vector was transfected in each plate in triplicate to be used for normalization purposes.

Ratios of Renilla luciferase readings to Firefly luciferase readings were taken for each experi-

ment and triplicates were averaged. The average values of the tested constructs were normal-

ized to the activity of the empty construct.

Cycloheximide chase. COS-7 cells were co-transfected with the indicated vectors and 24

h post-transfection treated with 50 μg/ml cycloheximide for 0, 1 or 2.5 h in the presence or

absence of 20 μM proteasome inhibitor MG132 and lysates collected and separated by

SDS-PAGE and immunoblotted with antibodies against His-CHIP and β-tubulin as described

above. Primary MEFs were plated and incubated for 24 h under normal growth conditions.

Cells were then treated with for 0, 2, 4 or 6 h with 50 μg/ml cycloheximide and lysates collected

and separated by SDS-PAGE and immunoblotted with antibodies against CHIP (ab4447) and

β-tubulin as described above.

Heat shock and recovery. Two models of heat stress and recovery were utilized. For mea-

sures of heat stress/CHIP-induced nuclear translocation of HSF1 in COS-7 cells, cells were

heat shocked in a water bath for 30 min at 42 ˚C prior to lysate collection and nuclear fraction-

ation as previously described [28]. For Hsp70 induction and recovery assays in primary MEFs,

cells were heat shocked in a water bath for 10 min at 42˚C prior to recovery at 37˚C under nor-

mal growth conditions for the indicated times.

Generation of the equivalent CHIP-T246M at the endogenous rodent locus

The generation of the CHIP-T246M and CHIP−/− mice were previously described [28,30].

CRISPR/Cas9 genetic editing was used to generate the same mutation in Rattus norvegicus

(S4A Fig).

Cas9-sgRNA targeting plasmid construction. The precut pCS(puro) plasmid was used

to express human codon-optimized Cas9 and sgRNA (S4B Fig). The sgRNA were comprised

of twenty nucleotides followed by the PAM sequence: Top oligo 5’-3’:CACCGGAACCCTG

CATTACACCCAG; Bottom oligo 5’-3’ AAACCTGGGTGTAATGCAGGGTTCC. The precut

pCS(puro) plasmid was ligated with the annealed oligos DNA to generate the Cas9-sgRNA tar-

geting plasmids for STUB1 (S4B Fig).

Donor vector construction. To minimize random integrations, we used a circular donor

vector for homologous recombination repair. The targeting construct consisted of rat genomic

fragment containing exons 1–6 of Stub1 (S4C Fig). The construct carried one nucleotide sub-

stitution in the initiation codon (ATG>ACA), and two homology arms of ~2 kb each were

used as templates to repair the double-strand breaks generated by Cas9. The donor vector was

prepared using an endotoxin-free plasmid DNA kit.

Microinjection. Sprague Dawley (SD) female rats were used as embryo donors as well as

for pseudo-pregnant foster mothers. Super-ovulated SD rats (3–4 weeks of age) were mated to

SD males, and fertilized embryos were collected from the ampullae. Cas9-sgRNA targeting

plasmids and donor vector were mixed at different concentrations and co-injected into the

cytoplasm of fertilized eggs at the one-cell stage. After injection, surviving zygotes were trans-

ferred into the oviducts of SD pseudo-pregnant females.

Genotyping. Before weaning, all rats were genotyped by polymerase chain reaction (PCR)

using tail DNA using a Stub1 forward primer: 5’-CTCATGGGCAGGCTCTGGTATGG-3’;

and a Stub1 reverse primer 5’-GAGCAGTTCAGAACCCATCATCAGG-3’. PCR products

were sequenced using sanger sequencing (S4D Fig). All rats were genotyped confirmed for a

second time, post-mortem.
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Behavioral studies

Data analysis: For all procedures, measures were taken by an observer blind to animal geno-

type. Behavioral data were analyzed using two-way repeated measures Analysis of Variance

(ANOVA). If F values were< 0.05 on any individual factor or interaction of factors, Tukey’s

multiple comparison test was used to compare means.

Elevated plus maze for anxiety–like behavior. This procedure is based on a natural ten-

dency of mice to actively explore a new environment, versus their fear of being in an open

area. Mice were given one 5 min trial on the plus maze, which had two walled arms (the closed

arms, 20 cm in height) and two open arms. The maze was elevated 50 cm from the floor, and

the arms were 30 cm long. Animals were placed on the center section (8 cm × 8 cm), and

allowed to freely explore the maze. Measures were taken of time on, and the number of entries

into, the open and closed arms.

Marble-burying assay. Mice were tested in a Plexiglas cage located in a sound-attenuating

chamber with ceiling light and fan. The cage contained 5 cm of corncob bedding, with 20

black glass marbles (14 mm diameter) arranged in an equidistant 5 × 4 grid on top of the bed-

ding. Subjects were given access to the marbles for 30 min. Measures were taken of the number

of buried marbles (two-thirds of the marble covered by the bedding).

Buried food test for olfactory function. Several days before the olfactory test, an unfamil-

iar food (Froot Loops, Kellogg Co., Battle Creek, MI) was placed overnight in the home cages

of the mice. Observations of consumption were taken to ensure that the novel food was palat-

able. Sixteen to twenty hours before the test, all food was removed from the home cage. On the

day of the test, each mouse was placed in a large, clean tub cage (46 cm L × 23.5 cm W × 20 cm

H), containing paper chip bedding (3 cm deep), and allowed to explore for 5 min. The animal

was removed from the cage, and one Froot Loop was buried in the cage bedding. The animal

was then returned to the cage and given 15 min to locate the buried food. Measures were taken

of latency to find the food reward.

Open field test. Exploratory activity in a novel environment was assessed by a one-hour

trial in an open field chamber (41 cm × 41 cm × 30 cm) crossed by a grid of photobeams (Ver-

saMax system, AccuScan Instruments). Counts were taken of the number of photobeams bro-

ken during the trial in 5-min intervals, with separate measures for ambulation (total distance

traveled) and rearing movements. Time spent in the center region of the open field was mea-

sured as an index of anxiety-like behavior. Mice were tested at two ages: 8–9 weeks- and 32

weeks of age.

Rotarod. Mice and rats were tested for motor coordination and learning on an accelerat-

ing rotarod (Ugo Basile, Stoelting Co., Wood Dale, IL or Rot-Rod, Softmaze, respectively). For

mice, the first test session animals consisted of three trials, with 45 s between each trial. Two

additional trials were given 48 hours later. Rpm (revolutions per min) was set at an initial

value of three, with a progressive increase to a maximum of 30 rpm across 5 min (the maxi-

mum trial length). Measures were taken for latency to fall from the top of the rotating barrel.

Additional tests (two trials per test) were conducted at the indicated ages. For rats, each rat

was placed on the Rotarod at a constant speed (5 rpm) for a maximum of 5 min, and at an

accelerated speed (4 to 40 rpm in 5 min) for a maximum of 5 min. The latency to fall was

recorded. Rats perform four trials for each time point, with 15 min rest between trials. For

summary analysis, the mean latency to fall of each trial was used.

Sociability in a 3-chamber choice test. Mice were evaluated for differences in social pref-

erence. The test session consisted of three 10-min phases: a habituation period, a test for socia-

bility, and a test for social novelty preference. For the sociability assay, mice were given a

choice between being in the proximity of an unfamiliar conspecific (“stranger 1”), versus being
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alone. In the social novelty phase, mice were given a choice between the already-investigated

stranger 1, versus a new, unfamiliar mouse (“stranger 2”). The social testing apparatus was a

rectangular, 3-chambered box fabricated from clear Plexiglas. Dividing walls had doorways

allowing access into each chamber. An automated image tracking system (Noldus Ethovision)

provided measures of entries and duration in each side of the social test box, as well as time in

spent within 5 cm of the Plexiglas cages (the cage proximity zone).

At the start of the test, the mouse was placed in the middle chamber and allowed to explore

for 10 min, with the doorways into the two side chambers open. After the habituation period,

the mouse was enclosed in the center compartment of the social test box, and an unfamiliar,

sex-matched C57BL/6J mouse (stranger 1) was placed in one of the side chambers. The

stranger mouse was enclosed in a small Plexiglas cage drilled with holes, which allowed nose

contact, but prevented fighting. An identical empty Plexiglas cage was placed in the opposite

side of the chamber. Following placement of the stranger and the empty cage, the doors were

re-opened, and the subject was allowed to explore the entire social test box for 10 min. Mea-

sures were taken of the amount of time spent in each chamber and the number of entries into

each chamber by the automated tracking system. At the end of the sociability phase, stranger 2

was placed in the empty Plexiglas container, and the test mouse was given an additional 10

min to explore the social test box.

Acoustic startle and prepulse inhibition. This procedure was used to assess auditory

function, reactivity to environmental stimuli, and sensorimotor gating. The test was based on

the reflexive whole-body flinch, or startle response, which follows exposure to a sudden noise.

Measures were taken of startle magnitude and prepulse inhibition, which occurs when a weak

prestimulus leads to a reduced startle in response to a subsequent louder noise. Mice were

tested at two ages: 11–13 weeks and 33 weeks. For each test, mice were placed into individual

small Plexiglas cylinders within larger, sound-attenuating chambers. Each cylinder was seated

upon a piezoelectric transducer, which allowed vibrations to be quantified and displayed on a

computer. The chambers included a ceiling light, fan, and a loudspeaker for the acoustic sti-

muli. Background sound levels (70 dB) and calibration of the acoustic stimuli were confirmed

with a digital sound level meter (San Diego Instruments). Each session consisted of 42 trials

that began with a 5-min habituation period. There were seven different types of trials: the no-

stimulus trials, trials with the acoustic startle stimulus (40 msec; 120 dB) alone, and trials in

which a prepulse stimulus (20 msec; either 74, 78, 82, 86, or 90 dB) occurred 100 ms before the

onset of the startle stimulus. Measures were taken of the startle amplitude for each trial across

a 65-msec sampling window, and an overall analysis was performed for each subject’s data for

levels of prepulse inhibition at each prepulse sound level (calculated as 100—[(response ampli-

tude for prepulse stimulus and startle stimulus together / response amplitude for startle stimu-

lus alone) × 100].

Fear conditioning. Mice were evaluated for learning and memory in a conditioned fear

test, using the Near-Infrared image tracking system (MED Associates, Burlington, VT). The

procedure had the following phases: training on Day 1, a test for context-dependent learning

on Day 2, and a test for cue-dependent learning on Day 3. Follow-up tests for retention of

learning were conducted 2 weeks later.

Training. On Day 1, each mouse was placed in the test chamber, contained in a sound-

attenuating box, and allowed to explore for 2 min. The mice were then exposed to a 30 s tone

(80 dB), followed by a 2 s scrambled foot shock (0.4 mA). Mice received two additional shock-

tone pairings, with 80 s between each pairing.

Context- and cue-dependent learning. On Day 2, mice were placed back into the original

conditioning chamber for a test of contextual learning. Levels of freezing (immobility) were

determined across a 5 min session. On Day 3, mice were evaluated for associative learning to
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the auditory cue in another 5 min session. The conditioning chambers were modified using a

Plexiglas insert to change the wall and floor surface, and a novel odor (dilute vanilla flavoring)

was added to the sound-attenuating box. Mice were placed in the modified chamber and

allowed to explore. After 2 min, the acoustic stimulus (an 80 dB tone) was presented for a 3

min period. Levels of freezing before and during the stimulus were obtained by the image

tracking system. Two weeks following each test, mice were given second tests to evaluate reten-

tion of context- and cue-dependent learning.

Gait analysis. The CatWalk XT (Noldus information Technology, Wageningen, Nether-

lands) was used to analyze gait of unforced moving rats. CatWalk XT consists a hardware sys-

tem of a long glass walkway plate, illuminated with green light that is reflected within the glass

at points be touched, a high-speed video camera, and a software package for quantitative

assessment of animal footprints. The parameters we observed included stride length: the dis-

tance between successive placements of the same paw; base of support: the average width

between either the front paws or the hind paw; step cycle: the time in seconds between two

consecutive initial contact of the same paw. All rats were trained to cross the runway in consis-

tently at least six times a day for a week before any experimentation. A successful run was

defined as an animal finishing the run down the tracks without any interruption or hesitation.

Rats that failed the CatWalk training were excluded from the study. An average number of five

replicate crossings by each rat was recorded. Rats were subjected to computer-assisted Cat-

Walk monthly after 8 weeks of age.

Morris water maze. The Morris water maze task was used to assess learning and memory.

The task was conducted in a round tank, 160 cm in diameter and 54 cm deep, filled with

water. The wall was colored with non-toxic black paint to ensure opaqueness. Throughout test-

ing, the water temperature was monitored and maintained at 21 ˚C. The tank was divided into

four equally sized quadrants, and a circular acrylic escape platform was placed in one of the

quadrants. The escape platform was submerged in water by 2 cm so that it was not visible to

the animals. A camera mounted above the tank recorded the movement of the animals in each

trial. The Sunny Instruments Morris water maze Tracking Software was used to record the

latency to reach the escape platform and the time spent in the target quadrant. The water maze

task consisted of four training days with four trials on each day. In each trial, the animals were

placed in the water facing the tank wall and had to locate the escape platform. The initial posi-

tion of the animal was the vertices of one of the four quadrants and was different for each trial.

It was assigned randomly and counterbalanced for the genotypes. Animals could utilize exter-

nal visual cues on the walls surrounding the tank to locate the platform. The trial was com-

pleted when the animal either found the escape platform or 60 s had passed. If the animal was

unable to locate the platform in 60 s, it was gently led to the platform. Animals were allowed to

remain on the escape platform for 15 s before being removed and dried for the next trial. In

addition, the platform position was kept constant between trials and days. The four trials of

the first four training days were used as an indicator of spatial working memory. On day 5, the

animals performed a 60 s probe trial without the platform. During this trial, the time spent in

the target quadrant was recorded for each animal.

Study approval. All animal work was performed according to one of the following pro-

tocols: 1) the Guide for the Care and Use of Laboratory Animals under approved IACUC

animal use protocols within the AAALAC accredited program at the University of North

Carolina at Chapel Hill (Animal Welfare Assurance Number: A-3410–01); or 2) the require-

ments of the Medical Research Ethics Committee Board of the First Affiliated Hospital of

Zhengzhou University. All animals were euthanized according to the regulations of the gov-

erning protocol.
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Proteomic studies

Sample preparation, iTRAQ labeling, and LC-MS/MS analysis: Immediately after termination,

the cerebellum was dissected, briefly washed with PBS solution, snap-frozen in liquid nitrogen,

and stored at -80 ˚C until use. Frozen samples were obtained from both genotypes (N = 3) and

total proteins of each sample were extracted using lysis buffer (1% SDS, 50 mM Tris–HCl (pH

6.8), 10% glycerol, and 1× protease inhibitor). Lysates were boiled in water for 15 min, soni-

cated (80 W, pulse at 10 s then 15 s for 10 times), and then boiled again for 15 min. Finally,

lysates were centrifuged at high speed for 30 min, and supernatants collected and stored in ali-

quots at—80 ˚C (longer term).

Protein solutions (100 μg) containing 8 M urea was diluted four times with 100 mM

Triethylammonium bicarbonate. Trypsin Gold (Promega, Madison, WI, USA) was used to

digest the proteins with the ratio of protein: trypsin = 40:1 at 37 ˚C overnight. After trypsin

digestion, peptides were desalted with a Strata X C18 column (Phenomenex) and vacuum-

dried according to the manufacturer’s protocol. Samples were labeled using the iTRAQ

Reagent-8plex Multiplex Kit (AB SCIEX, Framingham, USA), according to the manufacturer’s

instructions. T246/T246 samples were labeled with iTRAQ tags 117, 118, and 119, while

M246/M246 samples were labeled with tags 114, 115, and 116 (three replicates from each

group). After 2 h of incubation at room temperature, labeled samples were mixed at equal

ratios, desalted with a Strata X C18 column (Phenomenex), and vacuum-dried according to

the manufacturer’s protocol.

The peptides were separated on a Shimadzu LC-20AB HPLC Pump system coupled with a

high pH RP column. The peptides were reconstituted with buffer A (5% acetonitrile, 95%

H2O, adjusted pH to 9.8 with ammonia) to 2 ml and loaded onto a column containing 5-μm

particles (Phenomenex). The peptides are separated at a flow rate of 1 mL/min with a gradient

of 5% buffer B (5% H2O, 95% acetonitrile, adjusted pH to 9.8 with ammonia) for 10 min,

5–35% buffer B for 40min, 35–95% buffer B for 1 min. The system was then maintained in

95% buffer B for 3 min and decreased to 5% within 1 min before equilibrating with 5% buffer

B for 10 min. Elution is monitored by measuring absorbance at 214 nm, and fractions are col-

lected every 1 min. The eluted peptides are pooled as 20 fractions and vacuum dried.

Each fraction was resuspended in buffer A (2% acetonitrile and 0.1% formic acid in water)

and centrifuged at 20,000 × g for 10 min. The supernatant was loaded onto a C18 trap column

5 μl/min for 8 min using an LC-20AD nano-HPLC instrument (Shimadzu, Kyoto, Japan) by

the autosampler. Then, the peptides were eluted from trap column and separated by an analyti-

cal C18 column (inner diameter 75 μm) packed in-house. The gradient was run at 300 nl/min

starting from 8 to 35% of buffer B (2% H2O and 0.1% formic acid in acetonitrile) in 35 min,

then going up to 60% in 5 min, then maintenance at 80% B for 5 min, and finally returned to

5% in 0.1 min and equilibrated for 10 min.

Data acquisition was performed with a TripleTOF 5600 System (SCIEX, Framingham, MA,

USA) equipped with a Nanospray III source (SCIEX, Framingham, MA, USA), a pulled quartz

tip as the emitter (New Objectives, Woburn, MA) and controlled with software Analyst 1.6 (AB

SCIEX, Concord, ON). Data were acquired with the following MS conditions: ion spray voltage

2,300 V, curtain gas of 30, nebulizer gas of 15, and interface heater temperature of 150 ˚C. High

sensitivity mode was used for the whole data acquisition. The accumulation time for MS1 is

250ms, and the mass ranges were from 350 to 1500 Da. Based on the intensity in MS1 survey, as

many as 30 product ion scans were collected exceeding a threshold of 120 counts per second

(counts/s) and with charge-state 2+ to 5+. The dynamic exclusion was set for 1/2 of peak width

(12 s). For ITRAQ data acquisition, the collision energy was adjusted to all precursor ions for

collision-induced dissociation, and the Q2 transmission window for 100Da was 100%.
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Protein identification. The raw MS/MS data were converted into MGF format by Proteo-

Wizard tool msConvert, and the exported MGF files were searched using Mascotversion

2.3.02 in this project against the selected database. At least one unique peptide was necessary

for the identified protein. The databases used were: NCBInr, SwissProt, UniProt. An auto-

mated software called IQuant was used for quantitatively analyzing the labeled peptides with

isobaric tags. It integrates Mascot Percolator, a well-performing machine learning method for

rescoring database search results, to provide reliable significance measures. To assess the confi-

dence of peptides, the PSMs were pre-filtered at a PSM-level FDR of 1%. Then based on the

"simple principle" (the parsimony principle), identified peptide sequences are assembled into a

set of confident proteins. To control the rate of false-positive identifications at the protein

level, an FDR threshold of 1% was used, which is based on Picked protein FDR strategy, will

also be estimated after protein inference (protein-level FDR < = 0.01). The protein quantifica-

tion process includes the following steps: protein identification, tag impurity correction, data

normalization, missing value imputation, protein ratio calculation, statistical analysis, results

presentation. Protein identification was supported by all peptide matches with 95% confi-

dence. Comparisons were made between genotypes and proteins were considered to be differ-

entially that met the criteria of p< 0.05 and absolute fold change > 1.2.

StringDB analysis. Differentially expressed proteins were analyzed using STRING analy-

sis [40]. We filter excluded any proteins lacking interactions and used the Markov cluster algo-

rithm (MCL) with an inflation parameter of three to identify clusters of related proteins based

on their interaction network. Simultaneously, we used functional enrichment to identify bio-

logical processes, cellular components, and pathways that were over-represented in our pro-

tein list using a false discovery rate of less than 5%.

Supporting information

S1 Video. Performance on the accelerating rotoarod is decreased in adult rats homozygous

for CHIP-T246M. Three rats with either the M246/M246 (left) or T246/T246 (right) geno-

types were placed on the non-moving rod. Once the rod starts to rotate, M246/M246 mice fall

off within 15 s.

(MP4)

S2 Video. The effect of CHIP-T246M on hind limb clasping. Mice with the M246/M246

(left, blue glove) or T246/T246 (right, white glove) genotype were tested for hind limb clasping.

Increased clasping was observed in M246/M246 mice and further increased with age, relative

to control mice.

(MOV)

S3 Video. The effect of CHIP gene disruption on hind limb clasping. Mice that lack CHIP

expression (left, blue glove) or a wild-type litter mate (right, white glove), were tested for hind

limb clasping. Increased clasping was observed in CHIP−/− mice and further increased with

age, relative to control mice.

(MOV)

S1 Table. Proteomics analysis of differentially expressed cerebellar proteins identified in

the CHIP-T246M rat model. The protein name is provided along with the values of each pro-

tein from biological replicates of M246/M246 cerebellums (M1, M2, and M3) relative to the

mean values of three T246/T246 biological replicates. The mean of all three replicates, the stan-

dard deviation (SD), and the p value comparing M246/M246 vs. T246/T246 conditions are

indicated. Additional annotations of each protein, including database ID, the mass, and
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decryption are provided.

(XLSX)

S2 Table. Cluster analysis of interacting proteins. Each cluster was color coded as found in

Fig 10B. The number of proteins in each cluster, the protein name, ID, and description is pro-

vided.

(XLSX)

S1 Fig. Reaction time in the acoustic startle response. The reaction time of the startle follow-

ing the acoustic stimulus (AS) in CHIP null mice (−/−, N = 6) and wild-type mice (+/+,

N = 10) represented by the mean ± SEM: 2-way ANOVA, p< 0.001 on genotype (main effect),
� corresponds to p< 0.05 comparing genotypes via Sidak’s post hoc test.

(TIF)

S2 Fig. Unsupervised cluster analysis of differentially expressed proteins due to

CHIP-T246M. Proteins were clustered using Ward linkage analysis. Each column is the mean

of a biological replicate of an M246/M246 cerebellum relative to T246/T246 control cere-

bellums. The two primary clusters represent proteins that are either increased (left) or

decreased (right) in M246/M246 cerebellums as indicated by the color bar.

(TIF)

S3 Fig. Immunoblots of differentially expressed proteins due to CHIP-T246M with age.

Representative immunoblots of the indicated proteins from either cerebellum or brain extracts

isolated from rats with the indicated genotypes and age.

(TIF)

S4 Fig. Generation the corresponding CHIP-T246M mutation at the endogenous locus of

Stub1 in Rattus norvegicus using CRISPR/Cas9. (A) Schematic of targeting vector used for

in vivo genome editing, targeting the Cas9 nuclease to exon 6. (B) Map of Cas9 vector. (C)

Map of Stub1 T247M targeting vector (rodents have an additional coding exon relative to

humans). (D) Sanger sequencing confirmation of the T246M mutation, changing the coding

exon from ACA (threonine) to ATG (methionine).

(TIF)

Acknowledgments

We thank members of the Schisler Laboratory for critical review of the manuscript; the Willis,

Jensen, McLean, and Stouffer Laboratories for support; and The McAllister Heart Institute

administration team. We thank John B. Belcher, Alex Eaker, and Anna Beth Robertson for

their help with animal studies. We also thank the core facilities at The University of North

Carolina at Chapel Hill for their services, including the Mouse Behavioral Phenotyping Core

(Sheryl Moy, PhD), the Animal Histopathology and Lab Medicine Core (Dawud Hilliard), and

the Macromolecular Interactions Facility (Ashutosh Tripathy, PhD). All authors approved the

final version of the manuscript and agree to be accountable for all aspects of the work in ensur-

ing that questions related to the accuracy or integrity of any part of the work are appropriately

investigated and resolved. All persons designated as authors qualify for authorship, and all

those who qualify for authorship are listed.

Author Contributions

Conceptualization: Chang-he Shi, Carrie Rubel, Cam Patterson, Yu-ming Xu, Jonathan C.

Schisler.

Preclinical genetic models of SCAR16

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007664 September 17, 2018 32 / 36

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007664.s005
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007664.s006
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007664.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007664.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007664.s009
https://doi.org/10.1371/journal.pgen.1007664


Data curation: Chang-he Shi, Sarah E. Soss, Rebekah Sanchez-Hodge, Shuo Zhang, Holly

McDonough, Cheng-yuan Mao, Hai-Yang Luo, Donte A. Stevens, Mi-bo Tang, Zheng-wei

Hu, Jonathan C. Schisler.

Formal analysis: Chang-he Shi, Carrie Rubel, Sarah E. Soss, Shuo Zhang, Richard C. Page,

Walter J. Chazin, Cheng-yuan Mao, Hai-Yang Luo, Mi-bo Tang, Zheng-wei Hu, Jonathan

C. Schisler.

Funding acquisition: Cam Patterson, Yu-ming Xu, Jonathan C. Schisler.

Investigation: Chang-he Shi, Sabrina C. Madrigal, Saranya Ravi, Yu-sheng Li, Donte A. Ste-

vens, Jonathan C. Schisler.

Methodology: Pan Du, Yao-he Wang, Jonathan C. Schisler.

Project administration: Jonathan C. Schisler.

Resources: Pan Du, Yao-he Wang, Yu-ming Xu, Jonathan C. Schisler.

Supervision: Yu-ming Xu, Jonathan C. Schisler.

Visualization: Chang-he Shi, Carrie Rubel, Rebekah Sanchez-Hodge, Richard C. Page, Donte

A. Stevens, Jonathan C. Schisler.

Writing – original draft: Chang-he Shi, Carrie Rubel, Sarah E. Soss, Walter J. Chazin, Jona-

than C. Schisler.

Writing – review & editing: Monte S. Willis, Jonathan C. Schisler.

References
1. Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, et al. Identification of CHIP, a novel tetratri-

copeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates

chaperone functions. Mol Cell Biol. 1999; 19: 4535–4545. PMID: 10330192

2. Kampinga HH, Kanon B, Salomons FA, Kabakov AE, Patterson C. Overexpression of the cochaperone

CHIP enhances Hsp70-dependent folding activity in mammalian cells. Mol Cell Biol. 2003; 23: 4948–

4958. https://doi.org/10.1128/MCB.23.14.4948-4958.2003 PMID: 12832480

3. Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, et al. CHIP is a U-box-dependent E3 ubiquitin

ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem. 2001; 276: 42938–44. https://

doi.org/10.1074/jbc.M101968200 PMID: 11557750

4. Al-Ramahi I, Lam YC, Chen HK, de Gouyon B, Zhang M, Perez AM, et al. CHIP protects from the neuro-

toxicity of expanded and wild-type ataxin-1 and promotes their ubiquitination and degradation. J Biol

Chem. 2006; 281: 26714–26724. https://doi.org/10.1074/jbc.M601603200 PMID: 16831871

5. Dickey CA, Patterson C, Dickson D, Petrucelli L. Brain CHIP: removing the culprits in neurodegenera-

tive disease. Trends Mol Med. 2007; 13: 32–38. https://doi.org/10.1016/j.molmed.2006.11.003 PMID:

17127096

6. Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC, et al. Deletion of the ubiquitin ligase

CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-

cleaved tau species. J Neurosci. 2006; 26: 6985–6996. https://doi.org/10.1523/JNEUROSCI.0746-06.

2006 PMID: 16807328

7. Shin Y, Klucken J, Patterson C, Hyman BT, McLean PJ. The co-chaperone carboxyl terminus of

Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteaso-

mal and lysosomal pathways. J Biol Chem. 2005; 280: 23727–23734. https://doi.org/10.1074/jbc.

M503326200 PMID: 15845543

8. Rosser MFN, Washburn E, Muchowski PJ, Patterson C, Cyr DM. Chaperone Functions of the E3 Ubi-

quitin Ligase CHIP. J Biol Chem. 2007; 282: 22267–22277. https://doi.org/10.1074/jbc.M700513200

PMID: 17545168

9. Schisler JC, Rubel CE, Zhang C, Lockyer P, Cyr DM, Patterson C. CHIP protects against cardiac pres-

sure overload through regulation of AMPK. J Clin Invest. American Society for Clinical Investigation;

2013; 123: 3588.

Preclinical genetic models of SCAR16

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007664 September 17, 2018 33 / 36

http://www.ncbi.nlm.nih.gov/pubmed/10330192
https://doi.org/10.1128/MCB.23.14.4948-4958.2003
http://www.ncbi.nlm.nih.gov/pubmed/12832480
https://doi.org/10.1074/jbc.M101968200
https://doi.org/10.1074/jbc.M101968200
http://www.ncbi.nlm.nih.gov/pubmed/11557750
https://doi.org/10.1074/jbc.M601603200
http://www.ncbi.nlm.nih.gov/pubmed/16831871
https://doi.org/10.1016/j.molmed.2006.11.003
http://www.ncbi.nlm.nih.gov/pubmed/17127096
https://doi.org/10.1523/JNEUROSCI.0746-06.2006
https://doi.org/10.1523/JNEUROSCI.0746-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16807328
https://doi.org/10.1074/jbc.M503326200
https://doi.org/10.1074/jbc.M503326200
http://www.ncbi.nlm.nih.gov/pubmed/15845543
https://doi.org/10.1074/jbc.M700513200
http://www.ncbi.nlm.nih.gov/pubmed/17545168
https://doi.org/10.1371/journal.pgen.1007664


10. Ronnebaum SM, Wu Y, McDonough H, Patterson C. The Ubiquitin Ligase CHIP Prevents SirT6 Degra-

dation through Noncanonical Ubiquitination. Mol Cell Biol. 2013; 33: 4461–4472. https://doi.org/10.

1128/MCB.00480-13 PMID: 24043303

11. Shi C-H, Schisler JC, Rubel CE, Tan S, Song B, McDonough H, et al. Ataxia and hypogonadism caused

by the loss of ubiquitin ligase activity of the U box protein CHIP. Hum Mol Genet. 2014; 23: 1013–1024.

https://doi.org/10.1093/hmg/ddt497 PMID: 24113144

12. Ronnebaum SM, Patterson C, Schisler JC. Emerging evidence of coding mutations in the ubiquitin–pro-

teasome system associated with cerebellar ataxias. Hum Genome Var. Nature Publishing Group; 2014;

1: 14018. https://doi.org/10.1038/hgv.2014.18 PMID: 27081508

13. Holmes G. A form of famlial degeneration of the cerebellum. Brain. 1908; 30: 466–89.

14. Margolin DH, Kousi M, Chan YM, Lim ET, Schmahmann JD, Hadjivassiliou M, et al. Ataxia, dementia,

and hypogonadotropism caused by disordered ubiquitination. N Engl J Med. 2013; 368: 1992–2003.

https://doi.org/10.1056/NEJMoa1215993 PMID: 23656588
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