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Abstract

SPECT imaging has been identified as an effective medical modality for diagnosis, treat-

ment, evaluation and prevention of a range of serious diseases and medical conditions.

Bone SPECT scan has the potential to provide more accurate assessment of disease stage

and severity. Segmenting hotspot in bone SPECT images plays a crucial role to calculate

metrics like tumor uptake and metabolic tumor burden. Deep learning techniques especially

the convolutional neural networks have been widely exploited for reliable segmentation of

hotspots or lesions, organs and tissues in the traditional structural medical images (i.e., CT

and MRI) due to their ability of automatically learning the features from images in an optimal

way. In order to segment hotspots in bone SPECT images for automatic assessment of

metastasis, in this work, we develop several deep learning based segmentation models.

Specifically, each original whole-body bone SPECT image is processed to extract the thorax

area, followed by image mirror, translation and rotation operations, which augments the

original dataset. We then build segmentation models based on two commonly-used famous

deep networks including U-Net and Mask R-CNN by fine-tuning their structures. Experimen-

tal evaluation conducted on a group of real-world bone SEPCT images reveals that the built

segmentation models are workable on identifying and segmenting hotspots of metastasis in

bone SEPCT images, achieving a value of 0.9920, 0.7721, 0.6788 and 0.6103 for PA (accu-

racy), CPA (precision), Rec (recall) and IoU, respectively. Finally, we conclude that the deep

learning technology have the huge potential to identify and segment hotspots in bone

SPECT images.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0243253 December 3, 2020 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Lin Q, Luo M, Gao R, Li T, Man Z, Cao Y,

et al. (2020) Deep learning based automatic

segmentation of metastasis hotspots in thorax

bone SPECT images. PLoS ONE 15(12): e0243253.

https://doi.org/10.1371/journal.pone.0243253

Editor: Xiaodi Huang, Charles Sturt University,

AUSTRALIA

Received: October 15, 2020

Accepted: November 17, 2020

Published: December 3, 2020

Copyright: © 2020 Lin et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The dataset is

available only upon request by emailing Ms. Rong

Wang (1160023677@qq.com) due to the ethical

restrictions on sharing the de-identified data of

SPECT bone scan images. The Ethics Committee of

Gansu Provincial Hospital has imposed ethical

restrictions on the de-identified data because the

SPECT bone scan images contain potentially

sensitive information of patients.

Funding: This study was funded by the National

Natural Science Foundation of China (61562075),

the Gansu Provincial First-class Discipline Program

https://orcid.org/0000-0002-3842-2634
https://doi.org/10.1371/journal.pone.0243253
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243253&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243253&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243253&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243253&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243253&domain=pdf&date_stamp=2020-12-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0243253&domain=pdf&date_stamp=2020-12-03
https://doi.org/10.1371/journal.pone.0243253
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:1160023677@qq.com


Introduction

Nuclear medicine imaging (also called radionuclide scanning) has been identified as an effec-

tive medical modality for diagnosis, treatment, evaluation and prevention of a range of various

serious diseases and medical conditions since the early 1990s. Differing from the conventional

structural imaging, e.g., Computed Tomography (CT), Magnetic Resonance Imaging (MRI),

and Ultrasound imaging, which provides only the structural information about an organ or

body part, nuclear medicine imaging allows to reveal both the structural and functional vari-

ants in organs and tissues of the body. Thus, nuclear medicine is now an integral part of mod-

ern medicine and is extremely prevalent in neurology, oncology and cardiology.

Single Photon Emission Computed Tomography (SPECT) is one of the most commonly

used techniques of nuclear medicine imaging which, like Positron Emission Tomography

(PET), provides an insight into the physiological processes of the areas of concerns by detect-

ing trace concentrations of radioactively-labeled compounds. In SPECT examination, imaging

equipment captures, in a non-invasive manner, the emitted gamma rays from radionuclides

that were injected into a patient’s body in advance to generate a map of the inside of a body.

The commonly used radiotracers for SPECT imaging include [99mTc] HMPAO (exameta-

zime) for blood flow in the brain, [99mTc] Sestamibi for myocardial perfusion, and [99mTc]

MDP (methylene diphosphonate) for bone scanning.

Bones are clinically accepted as the most common sites of metastasis in large number of

malignant tumors including prostate and breast cancer. These occupying lesions are seen as

areas of increased radioactivity called hotspots in bone SPECT scans. Quantitative bone

SPECT scanning has the potential to provide more accurate assessment of disease stage and

severity. Specifically, segmenting hotspot plays a crucial role to calculate metrics like tumor

uptake and metabolic tumor burden. In the medical image analysis field, image segmentation

refers to delineate the boundary of lesions, organs and tissues in the medical images for identi-

fying the target lesion and avoiding normal structures during treatment. Medical image seg-

mentation has been extensively studied in the domains of the traditional machine learning [1–

3] and the current deep learning [4–15]. Segmentation of SPECT images has also been a hot

research topic in medical image analysis, focusing on the automatic delineation of organs like

kidney [16], liver [17, 18], cardiac ventricle [19–21], lung [22–24], tumor like lymphoma [25],

and part of body like bladder [26].

However, bone SPECT image segmentation is still in its infancy due to the poor spatial res-

olution, low signal to noise, and low contrast properties that the bone SPECT imaging has.

The size of a whole-body bone SPECT image is 256 × 1024. Currently, only few work has been

done on segmenting whole- or partial-body bone structure by utilizing the region growing

scheme [27], traditional neural network [28], convolutional neural network combined with

active contour model [29], and clustering-based technique [30]. However, active contour

model may suffer from edge leakage and high sensitivity to contour initialization [30]. Both

clustering and level-set based techniques solely rely on the statistics of intensities in the given

image, bringing a significant computation burden [30]. The traditional machine learning

based segmentation methods often suffers from insufficient capability and unsatisfied perfor-

mance for clinical tasks [6].

Deep learning as an emerging machine learning branch has been widely applied in the field

of machine vision, speech recognition, natural language processing and other related domains

in recent years. Marvelous innovations in deep learning have promoted a variety of popular

deep architectures, ranging from the convolutional neural networks (CNNs) [31], recurrent

neural networks (RNNs) [32] and deep belief networks (DBNs) [33] to generative adversarial

networks (GANs) [34]. Specifically, CNNs are trained end-to-end in a supervised fashion,
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which extract image features at different abstraction levels by using convolution operators.

CNNs are now becoming far more ubiquitous in medical image analysis due to their weight

sharing that exploits the intuition of similar structures occurring in various locations in an

image. The CNNs-based segmentation models have the potential to automatically learn the

features from images in an optimal way. This makes deep learning techniques more popular

than those who are built on the traditional machine learning techniques where handcrafted

features were extracted by human researchers.

Currently, segmenting metastatic lesions in bone SPECT imaging has not been studies yet.

The possible reasons are triple-fold:

First, SPECT imaging especially the whole-body SPECT bone scan is often limited by its

poor spatial resolution and low signal-to-noise ratio. It is therefore challenging to display the

precise location of a hotspot and its adjacent structures although an abnormal area of increased

uptake is noted.

Second, more than one lesion of the same or different primary diseases frequently presents

in whole-body bone SPECT images, bringing significant difficulty for correct diagnosis and

proper estimation of various diseases.

Last, it is often difficult to build big datasets of bone SPECT scans since the rarity of diseases

and patient privacy. Furthermore, imbalanced samples are commonly seen in the bone SPECT

imaging because the distribution of bone SPECT images heavily depends on the patients in

terms of the type of diseases.

In order to provide a reliable assessment of metastasis in thorax bone SPECT scan, in this

work, we propose to develop deep learning based segmentation models that are able to auto-

matically delineate boundary of hotspots in bone SPECT images. Specifically, each of the origi-

nal DICOM files obtained by SPECT imaging will be first processed to extract the thorax area,

followed by image mirror, transition and rotation operations, which contribute to augmenting

the original dataset. The famous deep networks including U-Net [35] and Mask R-CNN [36]

are then exploited to develop automatic segmentation models by taking advantage of the abil-

ity on automatically learning a representation of thorax bone SPECT images that deep learning

techniques have. Last, a group of real-world samples of bone SPECT imaging was used to eval-

uate the developed segmentation models. Experimental results demonstrate that our deep seg-

mentation models are workable and feasible on segmenting hotspots in thorax bone SPECT

images, achieving a value of 0.9920, 0.7721, 0.6788 and 0.6103 for PA (accuracy), CPA (preci-

sion), Rec (recall) and IoU, respectively.

The main contributions of this work can be concluded as follows.

First, we identify the research problem of automatically delineating metastasis hotspots in

bone SPECT images. To the best of our knowledge, this is the first work in deep learning based

medical image analysis domain.

Second, we transform the problem into semantic segmentation of thorax bone SPECT

images and develop CNNs based segmentation models by taking advantage of the ability of

automatically learning the feature representations from images in an optimal way that the

deep networks have.

Last, we evaluate the developed deep segmentation models by utilizing a group of real-

world bone SPECT images. Experimental results indicate that our models are effective and

workable on identifying and segmenting metastasis SPECT images.

The rest of this paper is organized as follows. The utilized data of bone SPECT imaging and

the developed deep segmentation models will be detailed in Section 2. Experimental evaluation

conducted on real-world SPECT imaging data will be presented in Section 3. And in Section 4,

we conclude this work and point out the future research directions.
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Materials and methods

Bone SPECT image

The used bone SPECT images were collected in the process of diagnosing bone metastases

using a Siemens SPECT ECAM imaging equipment in Gansu Provincial Hospital from Jan.

2017 to Dec. 2018. In SPECT examination, the distribution of the intravenous administration

of a radiotracer (i.e., 925/740 MBq Tc-99m) to the patient was collected by the equipment.

Patients from different departments were involved in the collected bone SPECT images,

including respiratory, thoracic surgery, rheumatology, radiology, oncology, orthopedics, and

breast. Inpatients account for the majority of the patients without exclusion of a few of the out-

patients. A total of 76 patients aged from 43 to 87 years were clinically diagnosed with

metastasis.

Generally, two images, i.e., the anterior and posterior, will be recorded in a SPECT exami-

nation if there are no damaged or lost samples. Each bone SPECT image was stored in a

DICOM file (.dcm), which is in essence a matrix of radiation dosage that is represented by a

16-bit unsigned integer. The radiation in a wide dosage range makes SPECT images signifi-

cantly different from the natural images in which the pixel values range from 0 to 255. The size

of a whole-body bone SPECT image is 256 (width) × 1024 (height), enabling it to show most of

the body of a patient.

Formally, we represent a whole-body bone SPECT image as a matrix BSI:

BSI ¼

rd11 rd12 . . . rd1m

rd21 rd22 . . . rd2m

⋮ ⋮ ⋱ ⋮

rdn1 rdn2 ⋯ rdnm

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð1Þ

where rdij (1� i�m, 1� j� n) represents the radiation dosage, and m = 256, n = 1024 for

the whole-body bone SPECT image.

Finally, a total of 112 samples (i.e., the anterior and posterior) of whole-body bone SPECT

images from 76 patients was collected in our dataset.

Since this work focuses solely on automatic segmentation of metastasis hotspots in the tho-

rax area, we need to separate thorax area from a 256 × 1024 whole-body bone SPECT image,

followed by image mirror, translation and rotation. These preprocessing operations contribute

to augmenting the original dataset simultaneously.

Thorax cropping. Cropping thorax aims to separate the areas of spine and ribs from the

others in a 256 × 1024 whole-body bone SPECT image, to finally extract the thorax area. How-

ever, it is often challenging to accurately separate parts of body in a low-resolution bone

SPECT image full of noise. Traditional separation methods relying only on information of

skeleton structure performs poorly for bone SPECT imaging. The distribution of radiation

dosage, on the contrary, should be exploited for adaptively cropping thorax area. Fig 1 depicts

the cropping process from an original 256 × 1024 whole-body bone SPECT image to a

256 × 256 thorax bone SPECT image.

Noise removing. For a given 256 × 1024 whole-body SPECT image, we globally sweep this

image to identify the maximum of radiation dosage outside the body area. The identified maxi-

mum is unique for each image and is regarded as the threshold of noise, thrN. Those elements

in BSI which have radiation dosage of less than thrN will be set to 0 (i.e., image background).

The maximum differs from image to image. This adaptive thresholding based noise removing

mechanism is able to remove noise while retaining the information of hotspots.
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Extracting body area. The SPECT image after removing noise will be further processed to

discard those areas above the top of the head and below the toes. On the contrary, other areas

(i.e., the left and right of the body) will be left. We call the extracted body area valid area in this

paper.

Removing head and legs. For the extracted valid area, we count the elements (pixels) from

the top down. The generated curve illustrates the presence and intensity of radiation dosage,

enabling it to reveal parts of body. For instance, the first three peak points of the fitted curve as

illustrated in Fig 2A indicate the beginnings of the head, the right shoulder blades and the

right elbow; and the third valley point shows the beginning of the right leg.

Removing arms and pelvis. The first and second derivatives plotted in Fig 2B indicate the

areas of thorax, arms and pelvis. The area of thorax can then be extracted based on the fact that

Fig 1. The process of cropping a 256 × 256 thorax bone SPECT image from the original 256 × 1024 whole-body

bone SPECT image.

https://doi.org/10.1371/journal.pone.0243253.g001

Fig 2. Curve fitting based technique for identifying thorax area. a) The original curve and its fitted one; and b) The

curves of the first and second derivatives.

https://doi.org/10.1371/journal.pone.0243253.g002
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the width of the trunk is approximately same to the one of area of legs as well as the ratio of

height of spine and pelvis is 3: 2.

Filling with background. The cropped area of thorax will be enlarged to a size of 256 × 256

by filling the rest areas with background. We call the cropped area of SPECT thorax image or

thorax bone SPECT imaging in the sections that follow.

Thorax SPECT image augmentation. Deep learning often performs well on the big data-

set. We therefore need to augment our dataset by leveraging a series of preprocessing opera-

tions on the thorax bone SPECT images based on the following considerations.

• Change in a patient’s position and orientation during the long-time SPECT scan that may

take up to 3 hours is inevitable since, for example, the patient is often startled when the bed

shifts to the next scanning position. Segmentation models should be robust enough to deal

with displacement and tilt in SPECT images.

• The phenomenon of images being not successfully recorded is common in the used dataset.

A medical examination has only anterior image, and vice versa, reveals why there are 112

images from 76 patients. Technical approaches need to be applied to handle the missing of

bone SPECT images.

Preprocessing techniques including mirror, translation, and rotation are used to cope with

the problems above, which extends the dataset simultaneously.

Image mirror: Horizontal mirror is used to reverse a SPECT thorax image right-to-left

along the vertical center line of the image. Given an input point (xi, yi), its output (xo, yo) after

mirroring can be mathematically represented as follows.

xo

yo

1

2

6
6
4

3

7
7
5 ¼

� 1 0 w

0 1 0

0 0 1

2

6
6
4

3

7
7
5
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2

6
6
4

3

7
7
5 ð2Þ

Image translation. A SPECT image is translated by +t or -t pixels in either horizontal or ver-

tical direction. For each SPECT image, t is randomly assigned with an integer within the range

[0, tT]. By contrary, tT is statistically determined according to the distribution of radiation dos-

age in all images. A value of 10 (4) for tT is workable in the experiments for horizontal (vertical)

translation. Formally, for an input point (xi, yi), its output (xo, yo) of the horizontal or vertical

translation can be mathematically represented in Eq 3.

xo

yo

" #

¼
1 0

0 1

" #
xi

yi

" #

þ
Dx

Dy

" #

ð3Þ

We can see from Fig 3 that the information of hotspots in the translated images keep perfectly.

Image rotation. A SPECT image is rotated by r degrees in either left or right direction

around its geometric center. For each SPECT image, r is randomly assigned with an integer

within the range [0, rT]. Similarly, tT is statistically determined according to the distribution of

radiation dosage in all images. Similarly, the output (xo, yo) after rotating an input point (xi, yi)

can be mathematically represented as follows.

xo

yo

" #

¼
cosy siny

� siny cosy

" #
xi

yi

" #

ð4Þ

A value of 5˚ for rT is workable in the experiments for both left and right rotation. An example

of rotating a given image to the right direction by 5o is depicted in Fig 3D.
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The generated images obtained by applying the pre-processing operations above will be

added to the original dataset of bone SPECT images. Finally, a total of 2 280 samples are con-

tained in the augmented dataset. Table 1 outlines the used data in this work.

The subsequent section describes the process of labelling bone SPECT images for obtaining

ground truth in the experiments for each image.

SPECT image labelling. In supervised learning domain, image labelling plays crucial role

for training a reliable deep learning based segmentation model. However, it is more time-con-

suming and laborious to label a SPECT image due to its low spatial resolution. Based on the

openly available tool LableMe released by MIT (http://labelme.csail.mit.edu/Release3.0/), we

develop a SPECT image annotation system in this work (see Fig 4).

As depicted in Fig 4, the DICOM file of a whole-body bone SPECT image and the diagnos-

tic report in text format were imported into LableMe in advance. Three nuclear medicine doc-

tors in our research group are then asked to manually label areas on the visual presentation of

DICOM file (RGB format is currently used but not limited to this) with a shape tool (e.g., poly-

gon and rectangle) in the toolbar. The labelled area will be annotated with a self-defined code

combined with the name of disease or body part. The results of manual annotation for all

SPECT images serve as ground truth in the experiments and form an annotation file together,

which will be fed into the segmentation models.

Specifically, the bone SPECT image annotation process is performed by three nuclear medi-

cine doctors independently according to the diagnosis report. If the majority of the doctors

(i.e., at least two of them) think that an image is abnormal (i.e., at least one lesion of a disease

presents in it), it is labeled as a malignant one; otherwise, it is labeled as a benign image. For

our augmented dataset consisting of 2 280 thorax bone SPECT images diagnosed with metas-

tasis, three doctors manually delineate hotspots using the polygon tool of the LabelMe annota-

tion system. It is worth noticing that in our dataset, an image may contain multiple lesions but

they belong to the same instead of different diseases.

The used bone SPECT images were de-identified before the authors received the data. The

fully anonymised image data was received by the authors on 28 August, 2020. A requirement for

informed consent was waived for this study because of the anonymous nature of the data. The

study was approved by the Ethics Committee of Gansu Provincial Hospital (Lot No.: 2020–199).

Fig 3. An example of preprocessing thorax bone SPECT image. a) The original thorax bone SPECT image; b) The

horizontally mirrored image; c) The horizontally translated image by + 6 pixels; and d) The rotated image by +5˚.

https://doi.org/10.1371/journal.pone.0243253.g003

Table 1. An overview of the used data of SPECT images.

Dataset Sample Training sample Testing sample

The original 112 – –

The augmented 2 280 1 830 450

https://doi.org/10.1371/journal.pone.0243253.t001
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Fig 4. Labelling SPECT image using the LableMe based annotation system.

https://doi.org/10.1371/journal.pone.0243253.g004

Fig 5. The architecture of the U-Net based segmentation network with shortcut module.

https://doi.org/10.1371/journal.pone.0243253.g005
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Segmentation models

In this work, we develop several deep segmentation models based on the mainstream CNN

networks, which will be detailed below. Furthermore, in order to provide a comparison of per-

formance on segmenting hotspots in bone SPECT images between the current deep learning

and traditional machine learning techniques, we also construct a clustering based segmenta-

tion model.

U-Net based segmentation. The U-Net [35] as a deep segmentation model was proposed

solely for biomedical image segmentation on very few images. As illustrated in Fig 5, the archi-

tecture of U-Net consists of a contraction path (i.e., downsampling) for capturing context and

a symmetric expansion path (i.e., upsampling) for precise localization.

• Contraction path: This path accounts for downsampling an imputed image, which consists

of the repeated application of two 3 × 3 convolutions, followed by a ReLU and a 2 × 2 max

pooling with stride 2. The number of feature channels at each downsampling step will be

doubled.

• Expansion path: This path consists of an upsampling of the feature map, followed by a 2 × 2

convolution that halves the number of feature channels, a concatenation with the corre-

spondingly cropped feature map from the contracting path, and two 3 × 3 convolutions,

each followed by a ReLU. At the final layer, a 1 × 1 convolution is used to map each 64-com-

ponent feature vector to the desired number of classes.

Based on U-Net network, we develop two segmentation models in this work. Specifically,

the first one is built by directly using the standard U-Net. The second one is developed by add-

ing a 1 × 1 residual module after the repeated two convolutions in U-Net (see shortcut in Fig

5), aiming to reduce the training parameters and training time. Fig 6 depicts the structure of

residual module. For the feature F(x) of an input x, it residual mapping y can be mathemati-

cally represented as follows:

y ¼ f Fðx;wÞ þHðxÞð Þ ð5Þ

where w is a parameter and f is the ReLU function.

Specifically, F(x) = x denotes the identify mapping in the residual module.

The U-Net network with residual module has the potential to deal with the degradation and

gradient vanishing problem. In this paper, the improved U-Net after adding residual module

is named U-Net-Res.

Fig 6. The structure of a residual module.

https://doi.org/10.1371/journal.pone.0243253.g006
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Mask R-CNN based segmentation. Mask R-CNN [36] is an object instance segmentation

network, which is proposed by adding a branch for predicting an object mask into the Faster

R-CNN [37]. Mask R-CNN is able to detect objects in an image while simultaneously generat-

ing a high-quality segmentation mask for each instance. The network architecture of Mask

R-CNN is depicted in Fig 7, where the backbone is used for feature extraction and the network

head comprises of object detection and segmentation parts.

Based on Mask R-CNN, we develop two segmentation models in this work. Specifically, the

first one is built by directly using the standard Mask R-CNN network, where a 50-layer ResNet

network is used in the backbone. The second one is developed by adding the spatial attention

mechanism into the standard Mask R-CNN network. The structure of the added spatial atten-

tion mechanism is depicted in Fig 8, consisting of a 1 × 1 average pooling layer, a 1 × 1 max

pooling layer, a 7 × 7 convolutional layer, and a Sigmoid non-linearity operation.

The spatial attention module is used to help Mask R-CNN focus on those more important

areas on the feature maps by considering the spatial importance information. For the inputted

feature map F, the output of spatial attention module is a 1 × H × W feature matrix Ms(F):

MsðFÞ ¼ s
�

f 7�7
�
½AvgPoolðFÞ; MaxPoolðFÞ

��
ð6Þ

where σ is the Sigmoid function, f 7×7 is the 7 × 7 convolutional operation; and AverPool and

MaxPool denotes the average pooling and max pooling, respectively.

The improved Mask R-CNN after adding spatial attention mechanism is named Mask
R-CNN-Att in this paper. The input to the networks above is a fixed-size 256 × 256 thorax

bone SPECT image and the output is a (group of) hotspot(s) described by the category, coordi-

nates, and mask.

Clustering based segmentation. Clustering has been seen as the first technique for seg-

mentation of natural images since 1990s due to its simplicity and efficiency [38]. K-means

clustering is one of the most commonly utilized centroid-based clustering techniques, where K
that is manually specified refers to the number of clusters.

After randomly initializing the center of the K clusters, the K-means clustering algorithm

works by iteratively executing the following two steps until the stopping criteria is met [39]:

Step 1: Attribute the closest cluster to each data point

Step 2: Set the position of each cluster to the mean of all data points belonging to that

cluster

Fig 7. The architecture of the Mask-RCNN based segmentation network with spatial attention module.

https://doi.org/10.1371/journal.pone.0243253.g007
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Generally, there are three stopping criteria that can be adopted to stop the K-means

algorithm:

1) The points in the same cluster remain without adding and removing.

2) The centroids of the newly formed clusters do not change, which can be approximately

measured by the optimization objective function defined in Eq. 7.

arg min
S

Xk

i¼1

X

x2Si

‖x � mi‖
2

ð7Þ

where μi is the mean of points in the i-th cluster Si.

3) The maximum number of iterations are reached.

How to specify a proper K becomes the key for K-Means clustering algorithm. In this work,

we choose the different K and pick the one that makes the most sense for our hotspot segmen-

tation task. Fig 9 provides an example of K-Means clustering based hotspot segmentation of

thorax bone SPECT image, where the centroid (marked by the solid point) of each cluster

changes as the iterative execution of the algorithm.

Results

In this section, we provide an empirical evaluation of the developed deep learning based seg-

mentation models using a real-world dataset consisting of 2 280 thorax bone SPECT images,

i.e., 1 830 samples for training and 450 samples for testing the built segmentation models.

Fig 8. The structure of spatial attention module.

https://doi.org/10.1371/journal.pone.0243253.g008

Fig 9. An example of K-means clustering based hotspot segmentation with thorax bone SPECT image with K = 5.

https://doi.org/10.1371/journal.pone.0243253.g009
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Experimental setup

The evaluation metrics we utilize are PA (accuracy), CPA (class pixel accuracy), Rec (recall),

and IoU (intersection over onion). In practice, a classified pixel falls into one of the four

categories:

• True Positive (TP), which correctly identifies a malignant pixel as positive;

• False Positive (FP), which incorrectly identifies a benign pixel as positive;

• False Negative (FN), which incorrectly identifies a malignant pixel as negative; and

• True Negative (TN), which correctly identifies a benign pixel as negative.

Accordingly, we define PA, CPA, Rec, and IoU in Eqs 8–11.

PA ¼ Accuracy ¼
TP þ TN

TP þ TN þ FPþ FN
ð8Þ

CPA ¼ Precision ¼
TP

TP þ FP
ð9Þ

Rec ¼
TP

TP þ FN
ð10Þ

IoU ¼
TP

TP þ FP þ FN
ð11Þ

The parameter setting is: Optimizer = SGD (stochastic gradient descent), Learning

rate = 0.001, Batch size = 16, and Epoch = 100. We use 70% of the samples (i.e., 1 830 samples)

for training and the rest (i.e., 450 samples) for testing the developed segmentation models.

The experiments are run in Tensorflow 2.0 on an Inter Xeon(R) Silver 4110 PC with 16

Kernels 62GB RAM running Ubuntu 16.04 equipped with GeForce RTX2080 × 2.

Experimental results

Fig 10 demonstrates the training processes of the developed deep segmentation models on seg-

menting hotspots in thorax bone SPECT images, in terms of the PA (accuracy) and loss met-

rics. We can see from the accuracy and loss curves in Fig 10 that, the improved U-Net model

U-Net-Att achieves the best segmentation performance. This can be further proved by the

quantitative results of various evaluation metrics as shown in Table 2.

From the high PA we can see that our deep segmentation models are workable to identify

both the metastasis and background pixels in thorax bone SPECT images. However, relatively

low CPA and Rec have been obtained by the models, which in turn lead to the low IoU. The

possible reasons can be concluded as follows.

• The proportion of metastasis areas on the whole image is very low since there is often smaller

number of hotspots in most of the thorax bone SPECT images. Thus, the correctly classified

background pixels mainly contribute to the high PA.

• The low resolution of SPECT imaging brings a huge challenge for oncologists to precisely

delineate hotspots in bone SPECT images. The annotation errors mainly contribute to the

misclassification of metastasis pixels. As a result, all models achieve the high PA but the rela-

tively low CPA and Rec.
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On the whole, the improved model U-Net-Res outperforms the others. We can conclude

that the U-Net has the potential for hotspot segmentation task of bone SPECT images and the

residual operation is helpful for U-Net focusing on the important areas that may denote the

hotspots in bone SPECT images.

In order to provide a comparison between the developed deep models and the clustering

based method, Fig 11 shows the IoU obtained by K-means clustering based segmentation

where K is assigned with different values. We can see that higher values of IoU are achieved by

the K-means clustering algorithm than the deep models. In the best case of K = 9, the K-means

based segmentation obtains a value of 0.7421 for IoU.

However, the traditional clustering algorithm segments a hotspot by leveraging only the visual

features (i.e., brightness and color) of SPECT images. This may lead to two problems as follows.

• First, any local areas that have different visual features can be separated well from the back-

ground. But the categories that these areas belong to are still unknown. Therefore, the tradi-

tional clustering techniques are not suitable for multi-disease segmentation task. In contrast,

with the extracted semantic features from medical images, the deep learning techniques are able

to not only delineate the boundary of lesions but also to identify the categories of these lesions.

• Second, the clustering based segmentation often has high false alarm rate. For example, most

isolate points and some dense areas are incorrectly detected as lesion areas in Fig 12 because

of their high brightness. Actually, the deep models take the symmetric relation of bone struc-

ture into the semantic segmentation of bone SPECT image.

Fig 10. PA and loss curves of two segmentation models. a) U-Net; and b) Mask R-CNN.

https://doi.org/10.1371/journal.pone.0243253.g010

Table 2. Experimental results on evaluation metrics for 2 280 samples of thorax bone SPECT imaging.

Segmentation model PA CPA Rec IoU

U-Net 0.9920 0.7624 0.6726 0.5941

U-Net-Res 0.9818 0.7721 0.6788 0.6103

Mask R-CNN 0.9724 0.7292 0.6508 0.5544

Mask R-CNN-Att 0.9676 0.6958 0.6348 0.5427

https://doi.org/10.1371/journal.pone.0243253.t002
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Therefore, deep learning based approaches are more suitable for identifying and delineating

metastatic hotspots than the traditional machine learning algorithms due to their ability on

automatically learning feature representations from SPECT images in an optimal way.

From the visualization as depicted in Fig 13 we can see that: 1) for the best case, the U-Net-

Res model almost identifies all hotspots as well as the differences between the model seg-

mented areas and the manually delineated ones are mainly derived from the errors of the

oncologists’ manual delimitation; and 2) for the worst case, apart from the differences men-

tioned above, some manually labeled areas are not successfully identified by the deep segmen-

tation model. The possible reason is the insufficient samples in the sub-category of bone

SPECT images that these samples belong to.

Fig 11. The IoU values obtained by K-means based segmentation model for different K.

https://doi.org/10.1371/journal.pone.0243253.g011

Fig 12. A comparison of K-means based (green), U-Net based (blue) and the manually labelled (purple)

segmentation results.

https://doi.org/10.1371/journal.pone.0243253.g012
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In a nutshell, the developed deep segmentation models, especially the U-Net-Res model, are

workable for segmentation of hotspots in bone SPECT images. The deep learning technique

has the potential to be used as a type of emerging techniques for automated hotspot or lesion

segmentation task.

Conclusions and future work

Focusing on the automatic semantic segmentation of hotspots in bone SPECT images, in this

work, we have developed several deep learning based segmentation models. First, the original

whole-body bone SPECT images were processed to extract thorax areas and augment the size

of dataset by utilizing mirror, translation and rotation operations. Second, the famous deep

networks including U-Net and Mask R-CNN were chosen as the basis to develop our segmen-

tation models by adding new function modules. Last, a group of real-world samples of bone

SPECT images were used to evaluate the built models. The experimental results have demon-

strated that our models are workable for identify both the hotspot and background pixels.

In the future, we plan to extend our work in the following directions.

First, we intend to collect more real-world SPECT bone scan images to comprehensively

evaluate the developed deep segmentation models. Accordingly, optimization and improve-

ment will be done for developing more robust, effective, and efficient computer-aided diagno-

sis (CAD) system.

Second, we attempt to develop multi-class, multi-disease models to segment hotspots of a

great number of diseases in SPECT thorax images.

Last, we plan to build self-defined deep networks, targeting exclusively at segmentation of

bone SPECT images for enlarging the current research domain of medical image analysis.

Supporting information

S1 Fig. The process of cropping a 256 × 256 thorax bone SPECT image from the original

256 × 1024 whole-body bone SPECT image.

(TIF)

Fig 13. A visualization of hotspots segmented by U-Net-Res model for two thorax bone SPECT images (the model

segmented results marked with green and the manually labeled ones marked with red). a) The best case; and b) The

worst case.

https://doi.org/10.1371/journal.pone.0243253.g013
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S2 Fig. Curve fitting based technique for identifying thorax area. a) The original curve and

its fitted one; and b) The curves of the first and second derivatives.

(TIF)

S3 Fig. An example of preprocessing thorax bone SPECT image. a) The original thorax

bone SPECT image; b) The horizontally mirrored image; c) The horizontally translated image

by + 6 pixels; and d) The rotated image by +5˚.

(TIF)

S4 Fig. Labelling SPECT image using the LableMe based annotation system.

(TIF)

S5 Fig. The architecture of the U-Net based segmentation network with shortcut module.

(TIF)

S6 Fig. The structure of a residual module.
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S7 Fig. The architecture of the Mask-RCNN based segmentation network with spatial

attention module.

(TIF)

S8 Fig. The structure of spatial attention module.

(TIF)

S9 Fig. An example of K-means clustering based hotspot segmentation with thorax bone

SPECT image with K = 5.

(TIF)

S10 Fig. PA and loss curves of two segmentation models. a) U-Net; and b) Mask R-CNN.

(TIF)

S11 Fig. The IoU values obtained by K-means based segmentation model for different.

(TIF)

S12 Fig. A comparison of K-means based (green), U-Net based (blue) and the manually

labelled (purple) segmentation results.

(TIF)

S13 Fig. A visualization of hotspots segmented by U-Net-Res model for two thorax bone

SPECT images (the model segmented results marked with green and the manually labeled

ones marked with red). a) The best case; and b) The worst case.

(TIF)

S1 Table. An overview of the used data of SPECT images.
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SPECT imaging.

(DOCX)

Acknowledgments

The authors would like to thank all the anonymous reviewers and readers of this paper.

PLOS ONE Hotspot segmentation of SPECT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0243253 December 3, 2020 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0243253.s015
https://doi.org/10.1371/journal.pone.0243253


Author Contributions

Conceptualization: Qiang Lin, Zhengxing Man.

Data curation: Haijun Wang.

Formal analysis: Qiang Lin, Tongtong Li, Yongchun Cao.

Funding acquisition: Qiang Lin.

Investigation: Qiang Lin, Zhengxing Man.

Methodology: Qiang Lin, Tongtong Li, Zhengxing Man.

Software: Ruiting Gao.

Supervision: Qiang Lin.

Validation: Qiang Lin, Mingyang Luo, Haijun Wang.

Visualization: Mingyang Luo, Yongchun Cao.

Writing – original draft: Qiang Lin.

Writing – review & editing: Qiang Lin.

References
1. Pham D, Xu C, Prince J. A survey of current methods in medical image segmentation. Annual Review

of Biomedical Engineering. 2000; 2: 315–337. https://doi.org/10.1146/annurev.bioeng.2.1.315 PMID:

11701515

2. Heimann T, Meinzer H. Statistical shape models for 3D medical image segmentation: A review. Medical

image analysis. 2009; 13: 543–63. https://doi.org/10.1016/j.media.2009.05.004 PMID: 19525140

3. Roy K, Phadikar A. Automated medical image segmentation: a survey. Computing, Communication &

Manufacturing. 2014; 1: 1–5.

4. Minaee S, Boykov Y, Porikli F, et al. Image segmentation using deep learning: a survey. in

arXiv:2001.05566v4 [cs.CV] 10 Apr 2020.

5. Ghosh S, Das N, Das I, et al. Understanding deep learning techniques for image segmentation. ACM

Computing Surveys. 2019; Article No.: 73, https://doi.org/10.1145/3329784

6. Shan H, Jia X, Yan P, et al. Synergizing medical imaging and radiotherapy with deep learning. Machine

Learning: Science and Technology. 2020; Article No.: 021001.

7. Lai M. Deep learning for medical image segmentation. in arXiv:1505.02000v1 [cs.LG] 8 May 2015.
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