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Sparse-sampling is an important methodological advance in functional magnetic resonance
imaging (fMRI), in which silent delays are introduced between MR volume acquisitions,
allowing for the presentation of auditory stimuli without contamination by acoustic scan-
ner noise and for overt vocal responses without motion-induced artifacts in the functional
time series. As such, the sparse-sampling technique has become a mainstay of princi-
pled fMRI research into the cognitive and systems neuroscience of speech, language,
hearing, and music. Despite being in use for over a decade, there has been little sys-
tematic investigation of the acquisition parameters, experimental design considerations,
and statistical analysis approaches that bear on the results and interpretation of sparse-
sampling fMRI experiments. In this report, we examined how design and analysis choices
related to the duration of repetition time (TR) delay (an acquisition parameter), stimulation
rate (an experimental design parameter), and model basis function (an analysis parame-
ter) act independently and interactively to affect the neural activation profiles observed in
fMRI. First, we conducted a series of computational simulations to explore the parameter
space of sparse design and analysis with respect to these variables; second, we validated
the results of these simulations in a series of sparse-sampling fMRI experiments. Overall,
these experiments suggest the employment of three methodological approaches that can,
in many situations, substantially improve the detection of neurophysiological response in
sparse fMRI: (1) Sparse analyses should utilize a physiologically informed model that incor-
porates hemodynamic response convolution to reduce model error. (2)The design of sparse
fMRI experiments should maintain a high rate of stimulus presentation to maximize effect
size. (3) TR delays of short to intermediate length can be used between acquisitions of
sparse-sampled functional image volumes to increase the number of samples and improve
statistical power.

Keywords: sparse-sampling, fMRI, hemodynamic response, auditory neuroscience, HRF, speech perception, speech
production

INTRODUCTION
The brain bases of speech, hearing, language, and music are
increasingly well-understood after two decades of functional neu-
roimaging research (Price, 2012), despite how inhospitable the
magnetic resonance (MR) scanning environment is to the study
of these abilities. Acquiring MR images of the entire brain at a
timescale conducive to studying physiological function requires
rapidly adjusting the scanner’s magnetic gradients, which results in
acoustic noise of more than 110 dB (Ravicz et al., 2000). Although
the risk to participants’ hearing from such levels is effectively mit-
igated through passive attenuation, the amount of unattenuated
noise remains sufficient to mask auditory stimuli presented at eco-
logical levels. Acoustic noise is rivaled only by participant head
motion as the greatest impediment to fMRI studies of speech per-
ception, audition, or music, and head motion poses an additional
serious limitation on understanding the brain bases of speech and
language, as such motion is inherent to speech production. In an

effort to accommodate the MR environment to the study of speech
and hearing, no technical advance has had a greater impact on the
field than sparse-sampling (Scheffler et al., 1998; Edmister et al.,
1999; Hall et al., 1999; Talavage and Hall, 2012).

Sparse-sampling is a technique in which a delay is introduced
following each functional volume acquisition, during which the
scanner gradients are turned off and the MR environment is effec-
tively silent. In this way, sparse-sampling involves acquisition of
the same rapid, whole-brain functional volumes available in con-
tinuous fMRI, while the silent delays between image acquisitions
not only allow auditory stimuli to be presented without the mask-
ing effect of the gradients, but also enable participants to produce
overt spoken responses without motion-induced noise artifacts in
the functional images. Numerous studies have demonstrated that
primary and association auditory cortex respond robustly to the
acoustic noise generated by the MR scanner. This has been demon-
strated by measuring the response to recorded scanner noise (Hall
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et al., 2000; Gaab et al., 2006b) and by modifying scanner pulse
sequences to engage gradient selection without excitation or acqui-
sition during the typically “silent” delay period of sparse-sampling
(Hu et al., 2010). The consequence of this functional response to
acoustic scanner noise is the “saturation” of physiological signal
from auditory cortices, effectively reducing the dynamic range in
which a task-evoked neurophysiological response can be measured
(Scarff et al., 2004) – an effect that is exacerbated for auditory stim-
uli sharing frequency components with broadband scanner noise
(Langers et al., 2004).

A number of variations on sparse-sampling’s core idea of insert-
ing silent delays between acquisitions have been proposed over the
years. In the original introduction of sparse-sampling, silent delays
were used to accompany classic block-designs for stimulus presen-
tation (Scheffler et al., 1998; Hall et al., 1999). Sparse-sampling
has also been used to facilitate event-related fMRI, enabling
researchers to determine the evoked hemodynamic response func-
tion for auditory stimuli (Belin et al., 1999). This classical approach
to event-related sparse fMRI is time-consuming – only one stim-
ulus can be presented per volume acquisition (TR) – and does not
take advantage of statistical improvements giving rise to “rapid”
event-related fMRI (Dale, 1999). [The implications for sparse-
sampling on other classical experimental design approaches are
considered by Amaro et al. (2002)]. Another early description of
sparse-sampling termed this technique “clustered volume acquisi-
tion” (Edmister et al., 1999), because all slice acquisitions occurred
in a “cluster” at the beginning of each TR, rather than distributed
evenly throughout the TR as is usual for continuous imaging. This
choice of terminology has resulted in an unfortunate methodolog-
ical ambiguity in the field, given a later permutation of sparse-
sampling involving the collection of multiple functional volumes
subsequent to a single silent delay, which has been similarly termed
“clustered temporal acquisition” (Bandettini et al., 1998; Zaehle
et al., 2007)1. A major limitation of clustered temporal acquisi-
tion for sparse designs is that temporally adjacent volumes will
differ in T1 contrast due to a failure to reach a stable longitudinal
magnetization. Schwarzbauer et al. (2006) developed a refinement
of clustered temporal acquisition to address this problem called
“interleaved silent steady state” (ISSS) imaging, in which slice exci-
tation is maintained even during silent delay periods, allowing
stable longitudinal magnetization to be achieved and image con-
trast to remain consistent across adjacent volumes. However, the
ISSS technique does not appear to be in wide use (see Current
Practices in Sparse fMRI Design and Analysis, below).

The effectiveness of sparse-sampling in improving the
detectability of auditory-evoked neurophysiological response in
fMRI has been repeatedly demonstrated. Compared to continuous
acquisition, increased response in auditory cortices has been found
for sparse-sampling with both short and long silent delays between

1In our view, the term “sparse-sampling” should be used to describe any acqui-
sition paradigm involving a silent delay between functional volume acquisitions
and should mean, by implication, that a single functional volume was collected for
each delay. The modifier “clustered” should, in contemporary and future usage, be
reserved for acquisition paradigms involving the collection of multiple contiguous
functional volumes between silent delays. We maintain this distinction henceforth
in this report.

acquisitions (Gaab et al., 2006a; Blackman and Hall, 2011), and
a more extensive cortical network related to speech comprehen-
sion is observed in studies using sparse than continuous sampling
(Adank, 2012). Similar improvements have been found for clus-
tered sparse acquisitions versus continuous ones (Schmidt et al.,
2008). In addition to research on humans, sparse-sampling has
been shown to offer compelling improvements over continu-
ous imaging for auditory fMRI in non-human primates (Petkov
et al., 2009). Additionally, sparse-sampling has been able to reveal
the effects of acoustic noise on neurophysiological brain activ-
ity unrelated to auditory tasks. Acoustic scanner noise suppresses
the default-mode network, suggesting that such noise impairs the
brain’s ability to reach a true “resting state” (Gaab et al., 2008;
Langers and van Dijk, 2011). Differential cortical activation in
frontal and parietal areas during a visual working memory task
reveals that continuous acoustic scanner noise has a significant
effect on even non-auditory attentional and working memory
processes (Tomasi et al., 2005). However, sparse-sampling is not
without its drawbacks: if volume acquisition time (TA) is 2.0 s,
then in a sparse-sampling experiment employing a 12 s TR, a 5 min
functional run will collect only 25 volumes, compared to the 150
volumes that would have been collected during continuous scan-
ning. This difference in sample size is a non-trivial detriment to
the power of sparse-sampling fMRI studies and can result in Type
II errors for experimental effects, which may manifest as reduced
areal activation (Nebel et al., 2005).

In addition to sparse-sampling, other attempts have been made
at reducing the functional consequences of acoustic noise dur-
ing auditory fMRI, including passive attenuation of noise via
ear plugs, ear muffs, and even whole head-encompassing helmets
(Ravicz and Melcher, 2001); imaging sequences specially designed
to reduce gradient-related acoustic noise (Seifritz et al., 2005;
Peelle et al., 2010); and even active attenuation of acoustic noise
with MRI-compatible noise-canceling headphones (Hall et al.,
2009; Blackman and Hall, 2011). Of all these techniques, sparse-
sampling remains the most effective and least technically convo-
luted way of reducing the effect of acoustic scanner noise. More-
over, despite offering limited improvement for auditory fMRI,
none of these other noise-attenuation techniques can simultane-
ously reduce the impact of head motion-induced noise associated
with speech production (although other approaches have been
suggested: Birn et al., 2004; Gracco et al., 2005).

CURRENT PRACTICES IN SPARSE fMRI DESIGN AND ANALYSIS
Given limited prior work exploring the parameterization of sparse
design and analysis techniques, we were curious to see when and
how sparse-sampling fMRI was currently being used to investi-
gate the neural bases of speech and audition. We conducted a
query of the Thompson Reuter’s Web of Science database for all
papers published in the year 2011 matching the following terms
in the Topic field: (“auditory” or “speech” or “spoken language”
or “voice” or “vocal” or “music” or “sound” or “acoustic”) and
(“fMRI” or “functional MR” or “functional MRI”). We limited the
search to indexed journals that have been principal outlets for
speech/auditory fMRI studies, resulting in 168 papers across the
following journals (N): Brain (4), Brain and Language (11), Cere-
bral Cortex (16), Human Brain Mapping (17), Journal of Cognitive
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Neuroscience (31), Journal of Neuroscience (20), Nature Neuro-
science (2), NeuroImage (64), and Neuron (3). (The references
for these articles, and their classification in our survey, are avail-
able in this project’s online supplementary materials). Of these
168 papers, 146 reported novel fMRI experiments (as opposed
to meta-analyses, tests of new methods on previously published
data, or reporting no fMRI experiment), of which 107 used audio
stimuli, 13 involved overt speech production, and 6 involved both
speech production and audio stimuli.

Of the 114 papers investigating speech or audition, 43 used
some variant of a sparse-sampling technique (8 of 13 speech
papers; 40 of 107 auditory papers). A wide range of sparse design
choices were attested: repetition times (TR) ranged from 2.0
to 20.0 s; silent delays from 0.5 to 16.5 s; and acquisition times
(TA) from 0.5 to 3.5 s. A majority of studies adopted either of
two approaches to sparse design (Figure 1): short TRs (<5 s)
with short silent delays (<3 s), or long TRs (9–12 s) with long

FIGURE 1 | Survey of contemporary sparse-sampling fMRI design and
analysis methods. Top panel: of papers published in 2011, two principal
modes of sparse design were observed – those involving short TRs (≤4 s),
and those involving long TRs (9–12 s), with comparatively fewer using
intermediate values. Bottom panel: choice of sparse analysis model across
designs. Red outlined circles=Models employing HRF convolution; Blue
outlined circles=Boxcar (FIR) models; Filled gray circles= studies with no
description of the model basis functions. Smaller circles are N =1 study at
that point, larger circles are N = 2 studies. Continuous sampling studies
would lie on the line y = x. The silent delay cannot exceed the TR (shaded
region; TR=TA+ silent delay).

silent delays (5–10 s). The majority of sparse designs involved the
acquisition of a single functional volume followed by a delay in
which the gradient magnetic fields were turned off and no signal
was acquired (N = 38). Three papers utilized clustered temporal
acquisition, in which multiple volumes (2–5) were acquired con-
secutively between each silent delay, of which two papers reported
the use of the ISSS technique (Schwarzbauer et al., 2006). There
was considerable heterogeneity in the reported analysis techniques
for sparse designs, with 8 papers reporting the use of FIR (boxcar)
model designs, 16 papers reporting model designs incorporat-
ing HRF convolution, and 19 papers not reporting their models’
basis functions (Figure 1, bottom panel). None of the papers
incorporating hemodynamic response convolution explained how
the design matrix accounted for temporal discontinuity in the
measured signal.

THE PRESENT STUDY
Despite the considerable benefit afforded by the sparse-sampling
technique, and despite its ubiquitous use in auditory cognitive
neuroscience over the last decade, there has been little systematic
investigation of the optimal acquisition parameters, experimental
design considerations, and statistical analysis approaches that bear
on the results and interpretation of sparse-sampling fMRI experi-
ments. Although classic sparse designs call for very long TRs with
long silent delays (which allow the physiological response to scan-
ner noise to return to baseline before the next volume is sampled),
a recent report that tested delays between 7.5 and 15.0 s during
clustered temporal acquisition found that shorter delays may be
advantageous (Liem et al., 2012). As surveyed above, contempo-
rary studies are using silent delays anywhere between 0.5 and 16.5 s,
although quantitative work has not previously examined the rela-
tive efficacy of delays in this range. Similarly, classical event-related
sparse designs call for a single stimulus to be played per silent
delay to facilitate mapping the hemodynamic response (Belin et al.,
1999). However, slow event-related designs do not make optimal
use of expensive scanner time, and statistical techniques have been
known for some time that allow for rapid event-related fMRI
(Dale, 1999). Employing rapid event-related designs for sparse
fMRI requires a change in how sparse-sampled datasets are ana-
lyzed: current analysis practices typically utilize a boxcar model
design, especially for acquisitions with long silent delays. However,
boxcar model designs are unable to distinguish between overlap-
ping responses to different stimulus types measured during a single
volume acquisition (Figure 2). To ameliorate this problem, and to
facilitate the use of rapid event-related designs in sparse-sampling
fMRI, the efficacy of models incorporating information about the
physiological response (HRF) must also be assessed.

In this report, we examine how design and analysis choices
related to the duration of the sparse delay, rate of stimulus
presentation, and model basis functions act independently and
interactively to affect the neural activation profiles observed in
fMRI. First, we conducted a series of computational simulations
to explore the parameter space of sparse design and analysis with
respect to these variables. Second, we validated the results of these
simulations in a series of sparse-sampling fMRI experiments. Fol-
lowing these results, we offer a set of suggestions for the design
and analysis of sparse-sampling fMRI experiments that will allow
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FIGURE 2 | Sparse-sampling captures only fractions of (overlapping)
hemodynamic responses to stimulus events. A simulated experimental
design with two event types is shown. Stimuli are presented during the silent
delay between acquisitions. Events of both types occur during the delay
period of a single TR, such that the MR signal sampled during the TA contains
information about both event types. Classical approaches to sparse analysis
are unable to disentangle signal from different event types, consequently

limiting sparse experiments block or slow event-related designs. The
HRF-convolution approach we advocate in this paper allows for rapid
event-related sparse-sampling fMRI experiments. Legend: red/blue
distinguish event types; colored vertical bars denote stimulation events; red
and blue curves show the canonical hemodynamic response to these events;
the black curve shows the aggregate response across event types; vertical
gray bars indicate time of MR signal acquisition; TR=12 s; TA=2 s; ISI=4 s.

researchers to take advantage of these optimizations when they
might be appropriate.

COMPUTATIONAL EXPLORATION OF SPARSE-SAMPLING
fMRI DESIGN AND ANALYSIS PARAMETER SPACE
We developed a computational simulation of the fMRI time series
of an auditory experiment in order to explore the parameter space
of sparse design and analysis. In particular, we were interested in
the effects of sparse delay (effective acquisition rate, TR) and stim-
ulation rate (inter-stimulus interval, ISI) as design parameters,
and the effects of a physiologically informed model (including
convolution of the canonical HRF) as an analysis parameter. By
developing a computational simulation of the effects of, and inter-
actions among, these parameters, we sought to identify possible
optimizations on current sparse designs without the time and
expense of exploring their full parameterization in the scanner
with actual human subjects. Subsequently, we sought to validate
the results of these simulations through comparative analysis of
real fMRI data.

METHODS
Simulations were conducted in R (version 2.15.2)2 on a Dell Opti-
plex 760 running Fedora Linux 17 (kernel 3.7.9-104.fc17.x86_64).
Multiple iterations of the simulation were conducted, and the
results of the models (parameter estimates, t -statistics, and resid-
uals) were recorded to determine how the mean and range of these
values varied according to simulation parameters. Each iteration
of the simulation can be thought of as a separate fMRI session,
and the observed differences in design or analysis choices can
be thought of as differences in the results of first-level (within-
subject) fMRI results. The parameters that were varied across
iterations of the simulations included the length of the sparse delay
(effective TR), stimulation rate (ISI), the times of event onsets,
and the temporal noise profile. The parameters that were varied
within a single iteration of the simulation included the tempo-
ral signal-to-noise ratio (tSNR) and model type (HRF or boxcar).

2R: http://www.r-project.org/
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The parameters that were held constant across iterations included
event duration (1.0 s), acquisition time (TA, 2.0 s), delay between
the onset of an event, and the offset of the previous TA (0.5 s),
canonical HRF shape, proportion of “rest” TRs (33%), temporal
resolution of the simulated time series (100 ms), and the total run
length (360 s)3.

On each iteration, a list of random event onset times was gen-
erated, such that event onsets were separated by the ISI, the first
event of a TR began after a fixed delay, the full duration of each
event occurred only during the simulated silent portion of each
TR, and rest trials lasted the full duration of a TR (because of the
limitations of the boxcar model, as shown in Figure 2). The list of
event onsets was converted into a high-temporal resolution vector
of delta functions occurring at event onsets (Figure 3A). Each delta
function was convolved with a square wave whose width equaled
the duration of the event associated with the delta function, result-
ing in a stimulation timeline (Figure 3B). The stimulation timeline
was convolved with a canonical HRF to produce a high-temporal
resolution vector of simulated physiological response to stimula-
tion (Figure 3C). (The amplitude of the canonical HRF used in
this convolution was scaled so that the peak of this HRF when con-
volved with a solitary 1.0 s event would equal 1.0, corresponding to
a canonical percent signal change of 1% for a 1 s stimulation). The
mean value of the high-temporal resolution response vector was
computed over each time window corresponding to the TAs when
“actual” scanner data would be acquired, and the resulting val-
ues were concatenated into a resampled time series whose length
equaled the number of TAs (Figure 3D). A corresponding “box-
car”vector was generated such that every TA in which an event had
occurred was encoded with a “1,” and every TA in which no events
had occurred was encoded with a “0” (Figure 3E). (For TRs of 4 s
or less, the TA associated with an event was delayed by one TR to
better simulate capturing the peak of the hemodynamic response).
The resampled response time series was de-meaned and scaled so
that its peak-to-peak height equaled 1.0, insuring that a parameter
estimate of 1.0 would signify a 1% percent signal change in physi-
ological response. The resampled and scaled HRF response vector
is designated xhrf . The boxcar vector, already having a peak-to-
peak height of 1.0, was only de-meaned; this response vector is
designated xbox.

The resampled HRF time series was considered the “ideal phys-
iological response” and was used as the basis for the response
vector y in the linear models. To simulate the measurement noise
associated with fMRI data, a random vector of Gaussian noise
(µ= 0; σ= 1) was generated. The Gaussian distribution has been
shown to effectively capture physiological noise in fMRI time
series (Wink and Roerdink, 2006).The root-mean-square (RMS)
amplitude of the noise vector was scaled so that the tSNR of the

3The principal real-world constraint on the amount of fMRI data available for any
particular experiment is the limited availability of MRI scanner time, both because
of its substantial expense for an individual investigator and because of its high
demand within a shared imaging center. As such, in our simulations we sought to
approximate real-world design considerations by limiting our analysis to runs of
a consistent and constrained length across variations in parameters. We selected a
constant run duration of 360 s, both because this is typical of real-world experiments
and, importantly, because the large number of divisors of this number allowed the
simulation of a wide variety of realistic TR lengths.

combined ideal response plus noise vector was of a fixed value:
RMS(ANoise)=RMS(ASignal)÷ 10tSNR÷20. The scaled noise vec-
tor was then added to the resampled HRF time series to produce
the simulated fMRI time series y. For each time series design and
noise profile, we estimated models with tSNR values between−20
and 10 dB (in integer steps) to simulate the range of potential
noise profiles found across experiment designs and scanner hard-
ware. The linear models y = βx + ε were then estimated separately
for both xhrf and xbox (see Figure 4 for a comparison of these
design matrices), and the parameter estimate, t -statistic of the
parameter estimate, and residuals for each model were recorded
for comparison across the various permutations of simulation
parameters. (The full simulation code is available in this project’s
supplementary materials online.)

Following, we report the results of simulations of the fol-
lowing sparse delay× stimulation rate permutations (TR× ISI),
in seconds: 4× 4, 8× 4, 12× 4, 4× 8, 8× 8, 3× 3, 6× 3, 9× 3,
6× 6, 9× 9. The results describe the values obtained after 100
simulations of each TR× ISI permutation.

RESULTS
Differences between HRF and Boxcar models
Compared to the HRF model, the classic boxcar model consistently
underestimated the magnitude (percent signal change) of the sim-
ulated physiological response, as encoded in the model parameter
estimate (Figure 5, upper panels). This difference was especially
pronounced for short TRs (<8 s), where the effect size reported
by the boxcar model could underestimate the true response by
a factor of 2. Even for longer TRs (≥8 s), when the simulated
time series had moderate (≥−10 dB) or high tSNR, the boxcar
model consistently underestimated the response magnitude. For
both models, the variability associated with the parameter estimate
across simulations decreased as a function of tSNR, such that high
signal-to-noise ratio allowed more consistent response estimation.

In addition to improved estimation of effect size and increased
statistical reliability, sparse models incorporating the hemody-
namic response were also associated with reduced model residuals
(Figure 6). Acquisition rate and stimulation rate made interact-
ing contributions to the difference in residuals between models.
In general, more frequent acquisition rates were associated with
smaller residuals in HRF models, and this difference was generally,
though not always, emphasized by slower stimulation rates. Over-
all, more frequent acquisitions made a bigger difference between
models than differences in stimulation rate, with shorter acquisi-
tions resulting in substantially smaller residuals when estimated
by HRF models.

Effects of acquisition rate and stimulation rate on HRF models
Given the marked, consistent improvement in time series model-
ing when incorporating the physiological response, we ran simu-
lations to investigate how varying the acquisition rate and stim-
ulation rate affected the estimate and reliability of HRF models
(Figure 6). More frequent stimulation was associated with larger
parameter estimates (i.e., larger effect size, larger percent signal
change) independent of acquisition rate – likely the result of
additivity of overlapping BOLD responses to subsequent stimulus
events (Dale and Buckner, 1997). Acquisition rate had modest, if
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FIGURE 3 | Procedure for convolving HRF with sparse-sampled time
series. (A) A high temporal resolution vector of event onsets is convolved
with a function of their durations. (B) The resulting time series is convolved
with the canonical hemodynamic response function. (C) The ideal
physiological response is resampled (without filtering) at the time points
when actual MR signal was acquired. (D) The resulting resampled time

series can be scaled and demeaned for use in the design matrix of the
general linear model. (E) The same sparse time series is shown with
classical boxcar (FIR) modeling, illustrating the greater information in the
HRF-convolved time series. Figure legend: colored traces (red, green, blue)
depict different event types; vertical gray bars indicate time of MR signal
acquisition; TR=4 s; TA=2 s; ISI=4 s.
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FIGURE 4 | Example design matrices for convolved-HRF or classic
boxcar (FIR) sparse models. Design matrices modeling event types of the
simulated time series shown in Figure 2. Design matrix parameters that do
not differ between models (overall mean, nuisance variables, etc.) are not
shown.

any, effect on the magnitude of the parameter estimate, and these
non-linear differences were likely the result of sampling different
regions of the hemodynamic response.

The reliability of HRF models, as measured by the t -statistic on
the parameter estimate, varied principally as a function of acqui-
sition rate, such that a more rapid acquisition rate was associated
with greater model reliability. This difference in model reliabil-
ity as a function of acquisition rate is likely due primarily to a
reduction in standard error as a function of increased sample
size, reducing the denominator of the test statistic in the con-
text of a constant numerator (given the observation of relative
independence between acquisition rate and measured effect size).

DISCUSSION
The results of the simulations suggest three principal optimiza-
tions of sparse-sampling fMRI data acquisition and analysis: (1)
More frequent stimulus presentation (shorter ISIs) increases phys-
iological response and thereby effect size; (2) more frequent
acquisition (shorter TRs, less TR delay) reduces error related to
measurement noise and increases model reliability; and (3) a phys-
iologically informed model incorporating the canonical hemody-
namic response not only provides a more accurate measure of
effect size (percent signal change), but also affords greater model
reliability and therefore statistical significance, than classical sparse
modeling via boxcar design.

The notion that more frequent stimulation is desirable for max-
imizing BOLD effects is not new to these results: sparse-sampling
fMRI experiments have often been designed with numerous
stimulation events during a long (8–12 s) delay in TR. This is in
contrast to slow, “event-related” sparse imaging, in which a single

event is presented during a TR, with jittered presentation time
with respect to the TA to allow deconvolution of the shape of the
hemodynamic response (Belin et al., 1999). These simulations do
suggest, however, that the benefit from more frequent stimulation
is not fully realized when the TR is very long, as in classic sparse
designs, and when the modeled design does not take into account
physiological realities such as the hemodynamic response.

Perhaps the greatest departure of the recommended optimiza-
tions from classic sparse designs is the notion that shorter TRs
are actually more desirable because of the increased statistical
reliability they afford. In classic sparse designs, very long TR
delays are used not only to allow auditory stimuli to be presented
during silence, but also to allow the hemodynamic response to
acoustic noise associated with image acquisition to return to base-
line prior to acquiring the next image. Although such an approach
appears warranted for reducing contamination of the task-evoked
response, it may ultimately be counter-productive because hav-
ing fewer sample volumes results in greater model error, and
therefore both reduced model reliability (t ) and reduced statis-
tical significance (p). Instead, the simulated results suggest that
maximal statistical reliability can be achieved by increasing the
acquisition rate. However, because the simulations were unable
to capture physiological non-linearities leading to saturation or
attenuation of task-evoked response magnitude as a function of
acoustic noise (with increasing sampling rate), this conclusion
in particular demands verification from experiments acquiring
actual fMRI data (see below).

Reducing the TR not only allows for the collection of more vol-
umes and the reduction of model error, it also has the added benefit
of increasing the model’s degrees of freedom, thereby increasing
its statistical significance. That is, in a given scanning session of
fixed duration, a sparse design with longer TRs will not only have
reduced t -statistics due to greater model error, each t -statistic
value will be associated with lower statistical significance than it
would with shorter TRs due to reduced degrees of freedom in the
long TR design. Even small differences in the p-value of a given
voxel are non-trivial in light of current practices in fMRI analy-
sis, where multiple comparisons corrections and activation map
thresholds are based on arbitrary p-values, and Type II error for
individual voxels may thus contribute to Type II error for entire
clusters.

A final suggestion based on the simulations is the importance of
constructing physiologically informed models for design matrices,
even for analysis of sparse-sampling fMRI experiments. Compared
to classical boxcar models, models that incorporated a convolved
hemodynamic response afforded enhanced statistical reliability
across all tSNRs. For moderate tSNR values, differences in the
t-statistic between models often easily represented an order of
magnitude difference in statistical significance – an important
discrepancy given the consequences of arbitrary p-value cutoffs
in fMRI analysis. Additionally, the benefit of the HRF models
was most apparent for shorter TRs (namely, those <8 s), which
is particularly important given the added benefit of short TRs for
improving statistical reliability. Experiments seeking to improve
their statistical ability to detect signal by using shorter TRs are
exactly those that will additionally benefit most from the use of a
physiologically informed approach to model design.
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FIGURE 5 | Comparison of HRF and boxcar models from simulated
designs for various acquisition (TR) and stimulation (ISI) rates. Red traces
illustrate mean values for the HRF model; blue traces, boxcar model. Colored
shaded regions accompanying traces indicate the 95% confidence interval of
the mean over 100 simulations (see text). The accuracy and precision of the
parameter estimate improves with increasing tSNR. Classical boxcar models
are likely to substantially underestimate the effect size (percent signal change)
of a stimulus at all TR lengths. For shorter TRs, the HRF model results in a

substantially more statistically reliable model than a classic boxcar model, an
effect that is enhanced with increasing tSNR. The range of actual tSNR values
observed in the experimental validation of these results are illustrated in the
shaded gray domains: left domain, mean and 95% confidence interval across
participants of the mean tSNR within left Heschl’s gyrus; right domain, mean
and 95% confidence interval across participants of the maximum tSNR in left
Heschl’s gyrus. Note that the plots showing t -statistics are effectively
log–log plots.
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FIGURE 6 | Comparison of acquisition (TR) and stimulation (ISI) rates.
Colored traces indicate different TR/ISI permutations; colored shading depicts
the 95% confidence interval over 100 simulations (see text). More frequent
stimulation designs result in larger parameter estimates (percent signal
change) due to additivity of the BOLD response. Shorter TRs afford increased
model reliability compared to longer TRs. Stimulation and acquisition rates
interact in affecting the relative benefit of the HRF model (as assessed by
lower model residuals), such that the HRF model results in less error for short

TRs with rapid stimulation, and long TRs with infrequent stimulation, again
likely due to the additivity of the BOLD response. The range of actual tSNR
values observed in the experimental validation of these results is illustrated in
the shaded gray domains: left domain, mean and 95% confidence interval
across participants of the mean tSNR within left Heschl’s gyrus; right domain,
mean, and 95% confidence interval across participants of the maximum tSNR
in left Heschl’s gyrus. Note that the plots showing model reliability are
effectively log–log plots.
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In addition to the increased statistical reliability of a physiolog-
ically informed model, there were marked differences in the mag-
nitude of the parameter estimates of the HRF and boxcar models,
such that the boxcar model sometimes drastically underestimated
the stimulation-related effect size. This difference is likely due to
the unique ability of the HRF model to capture two known prop-
erties of the hemodynamic response: scaling (increased response
with increased stimulus magnitude) and additivity (summation of
response to multiple stimuli). Although the height of the boxcar
model is fixed for every sampling point regardless of the dynamics
of the actual physiological response at that point (Figure 3E), the
height of the HRF model can encode differences in the sample-by-
sample expected magnitudes (Figures 3C,D). This difference sug-
gests that, in analyses of fMRI experiments modeled with boxcar
design, reports of percent signal change based on model parameter
estimates may drastically underestimate the true magnitude of the
physiological effect.

FACTORS POTENTIALLY LIMITING THE EFFECTIVENESS OF THESE
APPROACHES
In real-world scanning situations there are a number of additional
factors that may diminish the ability of the three optimizations
suggested by the simulations to facilitate detection of task-related
fMRI effects: there may be differential deviation across subjects
with respect to the canonical hemodynamic response (Aguirre
et al., 1998), and the shape of the hemodynamic response may vary
depending on stimulation factors (Harms and Melcher, 2003),
potentially reducing the efficacy of the HRF model. Acoustic
noise related to image acquisition may contribute to saturation
of auditory cortex response and reduce the dynamic range avail-
able for detection of stimulus-elicited BOLD signal (Langers et al.,
2004; Scarff et al., 2004), potentially reducing the statistical benefit
from more frequent acquisitions. Shorter TRs reduce the con-
trast between tissue types in T2-weighted imaging, potentially
affecting the accuracy of fMRI data preprocessing algorithms
that depend on tissue contrast, such as motion correction and
anatomical coregistration, and reducing the statistical benefit from
shorter TRs. Although the hemodynamic response is convention-
ally treated as fully linear with respect to scaling and additivity,
there are known non-linearities, such as physiological adaptation
to stimulus repetition (Grill-Spector and Malach, 2001), that may
potentially reduce both the accuracy of the HRF model and the
effect size benefits of more frequent stimulation. Finally, there
may also be unpredictable differences relating to psychological
state under short versus long delays between acquisitions (Tomasi
et al., 2005; Gaab et al., 2008), or differential physiological response
properties across brain regions (e.g., sensory versus frontal cor-
tices) that may detract from (or contribute to) the relative benefit
of any of the three optimization techniques. As such, we sought
to validate these optimization techniques by assessing, in actual
fMRI experiments, experimental designs paralleling those from
the simulations.

VALIDATION OF COMPUTATIONAL MODELING FROM
ACTUAL fMRI DATA
METHODS
To evaluate choices related to the design and analysis of
sparse-sampling fMRI experiments, we scanned participants

under three different TR delays and with two different stimulation
rates while they performed a challenging Stroop task. We wanted
to assess these design and analysis choices across brain areas
involved in perception, cognition, and action. As such, the Stroop
task involved both auditory and visual stimulation, linguistic
processing, motor output, and a challenging cognitive go vs.
no-go decision on each trial, and it was expected to drive acti-
vation in an extensive neural network associated with these
functions.

Subjects
Healthy adult control participants (N = 13), age 21–31 years
(M = 25) gave informed, written consent overseen by the MIT
Committee on the Use of Humans as Experimental Subjects to
participate in this study. Participants self-reported being right-
handed native English speakers, free from neurological, psycho-
logical, visual, or hearing impairments. One additional participant
was recruited for this study but excluded from analysis for not
completing all experimental conditions.

Stimuli
Auditory stimuli consisted of the color words “red,”“green,”“blue,”
and “white,” spoken by a female native English-speaking adult and
digitally recorded using the software Praat4 via a Roland UA-25EX
sound card sampling at 44.1 kHz. Auditory stimuli were spectrally
filtered to attain frequency response equalization for binaural pre-
sentation via a pair of Sensimetrics (Malden, MA, USA) S-14
MRI-compatible insert earphones at a comfortable level for each
subject (∼70 dB SPL). Visual stimuli consisted of the color words
“red,”“green,”“blue,” and “white,” written in lower-case bold Arial
font in either red, green, blue, or white font color (permuted) at full
saturation on a dark gray background of ∼20% luminance. Visual
stimuli were projected onto a screen at the end of the scanner bore
and viewed via a head coil-mounted mirror.

Procedure
In the scanner, participants underwent a go/no-go variant of the
Stroop task designed to drive response in auditory, visual, cogni-
tive, and somatomotor regions. In this task, one of the four color
words was presented in one of the four font colors. Visual stimuli
remained on the screen for 750 ms. Simultaneous to the onset of
the visual stimulus, one of the four audio stimuli was also pre-
sented. Participants were instructed to respond immediately by
button press when the color word they heard matched the color
of the text (“go” trials), and not to respond when the color word
they heard matched the content of the text or when the content
of the text matched the color of the font (“no-go” trials). Half of
the stimulus events were “go” trials. All participants indicated the
task was challenging and maintained their attention throughout
the scanning session.

This task was used across five experimental conditions, in which
we parametrically varied the sparse delay (repetition time, TR) and
stimulation frequency (inter-stimulus interval, ISI). Sparse delays
were 2, 6, or 10 s (TR= 4, 8, 12 s, respectively), and stimulation
frequency was every 4 or 8 s. Participants completed two runs of

4Praat: http://www.fon.hum.uva.nl/praat/
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each TR× ISI permutation, except for TR= 12 s, ISI= 8 s, which
was not included in this study because stimulation would not have
occurred consistently with respect to acquisition in every TR. In
all conditions, the first stimulus of a TR occurred 500 ms follow-
ing the previous image acquisition to avoid forward masking as a
result of acquisition acoustic noise. The various time series designs
are illustrated in Figure 7. For runs with ISI= 4 s, 60 stimuli were
presented; for runs with ISI= 8 s, 30 stimuli were presented. One
third of the TRs in each run were rest, during which no stimuli
were presented and the screen remained dark gray. No stimuli were
presented during slice excitation and image acquisition. The task
lasted 360 s for each functional run.

fMRI data acquisition
Data were acquired on a Siemens Trio 3T scanner with a 32-
channel phased array head coil in a single imaging session. A whole
head, high-resolution T1-weighted, magnetization-prepared
rapid gradient echo (MPRAGE) anatomical volume (acquisi-
tion parameters: TR= 2350 ms, TE= 1.79 ms, flip angle= 7º,
TI= 1400 ms, voxel resolution= 1.0 mm× 1.0 mm× 1.0 mm,
FOV= 256× 256, 176 sagittal slices) was collected prior to the
functional runs.

Two functional runs were collected in each of the
five acquisition/stimulation rate conditions using sparse-
sampled T2∗-weighted gradient echo echo-planar imaging (EPI)
scans [acquisition parameters: TR= (4.0/8.0/12.0 s), TA= 2.0 s,
delay= (2.0, 6.0, 10.0 s), TE= 30 ms, flip angle= 90˚, voxel res-
olution= 3.125 mm× 3.125 mm× 4.0 mm, FOV= 64× 64, 32
transverse slices acquired parallel to the AC-PC plane, providing
whole-brain coverage, number of volumes= (92, 47, 32)]. Each
functional run was preceded by three additional TRs during which
no data were recorded to allow for stabilization of longitudinal
magnetization. (The full details of the MR acquisition parameters
are available in this project’s supplementary materials online.)

fMRI data analysis
Preprocessing, analysis, and presentation of fMRI data reported
here were achieved using the following software packages: Nipype

v0.5 (Gorgolewski et al., 2011)5 and standard processing pipelines
from BIPs6, FSL v4.1.6 (Smith et al., 2004)7,AFNI v7.18.1710 (Cox,
1996)8, FreeSurfer, v5.1.0 (Dale et al., 1999)9,ANTS v.1.9.y (Avants
et al., 2008)10, ART (as implemented in Nipype)11, and PySurfer12.
Analysis was conducted on a computer cluster running Ubuntu
Linux 12.04, 64-bit (kernel 3.2.0-29-generic). Preprocessing and
analysis procedures were the same across all TR× ISI permuta-
tions, with the exception of specifying the appropriate value for
TR when necessary and using the unique stimulus onset times
corresponding to each run.

Preprocessing. Functional and structural data were con-
verted from Siemens dicom format to nifti using mri_convert
in FreeSurfer. Cortical reconstruction and parcellation of the
anatomical images were performed using the default processing
stream in FreeSurfer, the accuracy of which was verified manually
via visual inspection.

Correction for participant head motion was achieved by
realigning (via six degree of freedom affine transformation) every
functional volume to the first functional volume of the first run
using the Nipy motion correction algorithm (Roche, 2011). Func-
tional time series did not undergo slice-timing correction due to
the discontinuous nature of sparse-sampling. Voxel-wise intensity
aberrations in the fMRI time series were reduced using AFNI’s
3dDespike with default parameters; no other temporal filtering of
the functional time series was conducted. To reduce the effects of
uncorrelated thermal noise, functional volumes were spatially fil-
tered achieved using FSL’s SUSAN algorithm with a 6 mm FWHM
3D Gaussian kernel – an intermediate value chosen to optimize

5NiPype: http://nipy.sourceforge.net/nipype/
6BIPs: https://github.com/INCF/BrainImagingPipelines
7FSL: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
8AFNI: http://afni.nimh.nih.gov/afni/
9FreeSurfer: http://surfer.nmr.mgh.harvard.edu/
10ANTS: http://www.picsl.upenn.edu/ANTS/
11ART: http://www.nitrc.org/projects/artifact_detect/
12PySurfer: http://pysurfer.github.com/

FIGURE 7 | Design of validation fMRI experiment. Neurophysiological
responses to two stimulation rates (ISI=4 and 8 s) were measured during
three acquisition rates (TR=4, 8, and 12 s). Gray bars depict acquisition
times; colored boxes depict stimulation events. For boxcar models, the event
was modeled at the acquisition ∼6 s after stimulation in order to capture the
peak of the hemodynamic response. For the TR=8 and 12 s acquisitions, this

was the TA immediately following the event; for TR=4 s acquisition, this was
the subsequent TA (as indicated by the black dashed arrow). The task design
is illustrated at right. In a modified Stroop task, a color word was displayed in
a colored font. Concurrently, participants heard the name of a color spoken
over the headphones. Participants pressed a button (illustrated by the pointing
finger) whenever the spoken color word matched the text color.
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both localization specificity and uncorrelated noise mitigation.
Volumes with global intensity differing from the time series mean
by more than three standard deviations, or those in which a par-
ticipant’s composite head motion (the Euclidian combination of
head translations and rotations) exceeded 1 mm, were identified
by ART and flagged as outliers to be regressed out of the first-level
design matrix (one column per outlier).

The coregistration matrix between participants’ mean func-
tional image and their high-resolution anatomy was calculated
using FreeSurfer’s bbregister with FSL affine initialization and
optimization for T2-weighted images. An anatomical mask for
constraining the first-level analysis to only intracranial voxels was
created using the FreeSurfer aparc+aseg.mgz volume. This volume
was binarized, dilated by one voxel, and then transformed from
participants’ high-resolution anatomical space to their functional
space via FreeSurfer’s mri_vol2vol using the inverse of the coregis-
tration matrix calculated by bbregister and nearest-neighbor inter-
polation. The anatomical mask, in native high-resolution space,
was used to extract a volume consisting of only brain voxels. This
volume was then normalized to the MNI152 1 mm T1 template
from FSL via the non-linear symmetric diffeomorphic mapping
implemented in ANTS, using the default parameters specified in
the antsIntroduction.sh script.

Model design and estimation. For each participant, for each
run, the first-level model was estimated for the preprocessed func-
tional volumes using FSL’s film_gls. The design matrix included
the task regressor (either the boxcar model of event TAs, or the
model incorporating HRF convolution as described in the simu-
lations above (Figures 3 and 4), with a scaled peak-to-peak height
of 1.0), as well as the six motion parameters (x, y, z translations;
pitch, roll, yaw rotations), the first three Legendre polynomials
to account for low-frequency components of the fMRI time series
(such as scanner drift), and any nuisance regressors corresponding
to outlier volumes identified in ART. The only contrast of interest
was task versus rest (implicit baseline).

For each participant, the effect size and variance files for the
task vs. rest contrast were merged into 4D files and the second-
level, within-participant effect was estimated using FSL’s flameo
using a weighted fixed-effects model. The resulting second-level
effect size and variance files were then transformed into partici-
pants’ high-resolution anatomical space via mri_vol2vol using the
coregistration matrix calculated during preprocessing by bbreg-
ister and trilinear interpolation. The coregistered files were then
normalized via WarpImageMultiTransform using the transforma-
tion matrix and deformation field between participants’ anatomy
and the template space, calculated by ANTS during preprocessing.

Combined results across participants. To allow for compari-
son between the boxcar and HRF model, the pairwise differences
between participants’ second-level effect size and t -statistic vol-
umes (in normalized space) from each model were calculated
using fslmaths (i.e., βHRF – βBox and t HRF – t Box). These differ-
ence volumes were merged into 4D files, and a mean volume
was calculated using fslmaths. Group-level statistical parametric
(“activation”) maps were computed by estimating an ordinary
least squares mixed effects general linear model on participants’

effect size and variance images in normalized space using FSL’s
flameo. The results of the average pairwise model differences and
group-level results were projected to the cortical surface of the
MNI template for visualization using FreeSurfer’s mri_vol2surf via
PySurfer, using intensity values averaged 1mm outward from the
white matter surface.

RESULTS
In-scanner behavior
Analysis of in-scanner behavior was conducted in R (version
2.15.0); the linear mixed effects model implemented in the “nlme”
package was used for statistics with repeated measures. Sensi-
tivity scores (as d ′) were calculated for each participant in each
condition. All participants exhibited very high accuracy dur-
ing the task (all d ′> 2.98, mean d ′= 4.13). Sensitivity scores
were analyzed using a univariate linear mixed effects model with
TR and ISI as fixed factors and participant as a random fac-
tor. There was no effect of TR [F 1,49= 2.96, p= 0.092] nor
ISI [F 1,49= 1.56, p= 0.217], and no interaction [F 1,49= 0.34,
p= 0.562]. Full behavioral data and their summary statistics are
available as supplementary material online.

Task-evoked response
As designed, the present go/no-go variant of the Stroop task effec-
tively elicited response in an extensive and diverse network of
cortical and subcortical regions (Figure 8). The regional pattern
of elicited response was largely consistent across variations in TR
and ISI, and included the desired suite of auditory (superior tem-
poral gyrus, Heschl’s gyrus), visual (pericalcarine cortex, fusiform
gyrus, lingual gyrus), and cognitive (middle frontal gyrus, inferior
frontal gyrus (pars opercularis), supplementary motor area, insula,
supramarginal gyrus, superior parietal lobe) cortical areas, as well
as basal ganglia, thalamus, brainstem, and cerebellum. Regions
of deactivation (negative task-related response) were composed
of the stereotypical default-mode network, including superior
frontal gyrus, anterior middle temporal gyrus, inferior parietal
lobe, medial prefrontal cortex, and posterior cingulate.

Differences by TR and ISI. All TR× ISI permutations elicited
a similar network of brain regions; however, both qualitative
and quantitative differences in the magnitude of response were
observed. Despite the preponderance of long-delay TR designs in
sparse imaging, we observed significantly diminished response in
the TR= 12 s design compared to most of the TR= 4 or TR= 8
permutations. For this longest TR, the magnitude of positive
response in task-activated sensory and cognitive areas was compar-
atively small, and the absolute magnitude of response in default-
mode areas was comparatively large. The statistical reliability of
task-related response in the TR= 12 s design, as determined by the
t -statistic on the task contrast, was lowest in magnitude and most
restricted in volume compared to all other designs.

Unlike the simulations, which showed no systematic difference
between the TR= 4 s and TR= 8 s designs in terms of effect size,
the results of the actual fMRI experiment demonstrated that the
response measured during both TR= 8 s designs was of signifi-
cantly greater magnitude than the corresponding TR= 4 s design.
However, this difference was limited primarily to the superior
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FIGURE 8 | Group effect of task-related response – as estimated by the
HRF model – across stimulation (ISI) and acquisition (TR) rates. The top
panels show the statistical reliability (t ) and significance (p, uncorrected) of
the group effect, the bottom panels show the effect size (parameter
estimate). A parameter estimate of 50 corresponds to a 5% signal change.
The lateral and medial surfaces of the left hemisphere are shown. Shorter
acquisition rates and more frequent stimulus presentation tended to produce
the most reliable response profile across temporal, frontal, parietal, and
occipital cortices. Differences in observed response magnitude in superior

temporal cortex between TR=4 s and TR=8 s acquisition rates may indicate
physiological saturation (reduced stimulus-evoked dynamic range of the
BOLD signal) due to differences in the overall amount of acquisition-related
scanner noise. However, both the estimated response magnitude and its
statistical reliability tended to be dramatically reduced at very long acquisition
rates (TR=12 s) compared to shorter rates (TR=4 s). Supplementary Figure
1 provides a volume-based depiction (axial slices) of these data.
Supplementary Figure 5 illustrates these data for only clusters that survive
correction for multiple comparisons.

temporal gyrus and Heschl’s gyrus – areas responsive to audi-
tory stimulation and, therefore, susceptible to saturation from
increased acoustic noise as a function of more frequent image vol-
ume acquisition during TR= 4 s sampling. This difference in effect
size between the TR= 8 s and TR= 4 s designs was reflected in the
model reliability: improved model reliability, as measured by the t -
statistic, was observed for TR= 8 s in auditory regions, indicating
that increasing the value of the numerator of the test statistic (the
contrast on the parameter estimate) by reducing response conta-
mination from acoustic noise could compensate for larger values
in the denominator of the test statistic (greater model error due to
smaller sample size). It is worth noting, though, that acoustic noise
may not be the only factor affecting differences between TR and

ISI permutations. For instance, TR and ISI appear to interact with
respect to the effect size observed in visual and superior parietal
areas, and response magnitude in the supplementary motor area,
despite not being an auditory sensory area, appears to follow the
same trend as the STG.

In all cases in the measured fMRI data, more frequent stim-
ulation led to larger responses and more reliable activation in
task-responsive areas. For both TR= 4 s and TR= 8 s acquisition
rates, designs involving stimulation rates with ISI= 4 s tended to
produce larger effect sizes than those with less frequent stimu-
lus events (although in some regions, such as the medial occipital
lobe, these design choices appear to have interacted in a more
complicated way). These results are largely consistent with the
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simulations, and demonstrate the efficacy in sparse-sampled fMRI
data of the HRF model in capturing the additivity of overlapping
hemodynamic responses to repeated stimulation.

Differences between HRF and Boxcar models. The differences
in the statistical reliability of the classical boxcar model ver-
sus the physiologically informed model observed in the actual
fMRI data (Figure 9) largely corroborated the results of the sim-
ulations (Figure 5). For short TR lengths (here, TR= 4 s), the
HRF model afforded substantially increased statistical reliability
(∆t > 0.7; corresponding to an order of magnitude improvement
in statistical significance) across a wide range of task-responsive
regions, including, notably, dorsolateral prefrontal cortex, supple-
mentary motor area, auditory cortex, superior temporal gyrus,
and the superior parietal lobe. These effects were observed for
both faster (ISI= 4 s) and slower (ISI= 8 s) stimulation rates. For
longer TR lengths (TR≥ 8 s), no compelling pattern of whole-
brain differences between the models was observed; however, some
circumscribed regions did exhibit somewhat modest improvement
with HRF modeling.

Correspondingly, the actual fMRI data validated the results of
the simulation with respect to estimated effect size. The boxcar
model produced substantially lower estimates of the magnitude of
physiological percent signal change compared to the HRF model,
as determined by the difference between models’ parameter esti-
mates for the effect of task (Figure 10). In task-activated frontal,
temporal, parietal, and occipital regions, the boxcar model pro-
duced lower effect size estimates by up to 1 percentage point
for long TRs (TR≥ 8 s), and by up to 5 percentage points for
the shortest measured TR (4 s). In addition to lower estimates of
the magnitude of task-related activation, the boxcar model esti-
mated smaller task-related deactivations, as well. In Figure 10,
areas of apparently greater effect size under the boxcar model (e.g.,
medial prefrontal cortex, posterior cingulate, inferior parietal, etc.)

correspond exactly to those default-mode network regions exhibit-
ing task-related deactivations; that is, the HRF model estimated
negative responses of greater absolute magnitude than the boxcar
model did in these regions.

Disentanglement of “go” and “no-go” conditions in the HRF model
A major limitation of the classic boxcar model approach to sparse
analysis is its inherent inability to distinguish between multiple
event types presented or elicited during a single TR delay. As such,
this has effectively limited the types of fMRI experimental para-
digms available in sparse scanning to either block-designs or slow
event-related designs. Even if a rapid event-related design were
attempted using a boxcar model and short TR, its efficiency would
be compromised because of overlapping hemodynamic responses
to different event types sampled in a single TA (Figure 2). A major
advantage of the use of a physiologically informed model incorpo-
rating convolution of the canonical HRF in sparse imaging is that
it allows for the disentanglement of the overlapping hemodynamic
responses of different event types (following Dale, 1999), thereby
making available experimental designs (for any TR delay length)
in which stimuli of different event types can be presented during
a single TR delay.

We assessed the efficacy of this approach by repeating the
within-participant and group-level model design and estimation
described in the fMRI methods above, but this time including two
separate task regressors for the “go” (matching text color/spoken
color name) and “no-go” trials, respectively (Figure 7). The
contrast between these parameters was estimated in the within-
participant first-level analysis, and the contrast parameter esti-
mates and variance volumes were carried forward through the
second-level fixed-effects and group-level mixed effects models
described above.

In this analysis, regions showing a differential Go > No-Go
response included somatomotor cortex, insula, and posterior

FIGURE 9 | Increased statistical reliability of sparse models incorporating
the hemodynamic response compared to classic boxcar models. The
subject-wise difference between models in the t -statistic on the main effect
of task is shown, with warm colors indicating increased reliability of the HRF
model. The HRF model showed substantial improvement in statistical

reliability over the boxcar model in nearly all task-activated cortex. This
difference was most prominent for TR=4 s, but smaller differences were still
evident in temporal, parietal, and frontal regions even for TR=8 and 12 s. The
lateral and medial surfaces of the left hemisphere are shown. Supplementary
Figure 2 provides a volume-based depiction (axial slices) of these data.
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FIGURE 10 | Classical boxcar models estimate consistently and
substantially reduced magnitude of the physiological effect size across
acquisition (TR) and stimulation (ISI) rates. The subject-wise difference
between models in the main effect of task is shown. Warm colors indicate
regions where the effect size was larger in the HRF model; cool colors
indicate larger (more positive) effect sizes in the boxcar model. Note that
many of the regions exhibiting “larger” effect sizes under the boxcar model

are, in fact, areas corresponding to the default mode network with
corresponding task-related deactivation (Figure 7). Thus, for medial prefrontal,
posterior cingulate, inferior parietal, superior frontal, and temporal pole, the
HRF model estimated larger magnitude “deactivations” than the boxcar
model. A parameter estimate of 10 corresponds to a 1% signal change. The
lateral and medial surfaces of the left hemisphere are shown. Supplementary
Figure 3 provides a volume-based depiction (axial slices) of these data.

cingulate; a No-Go > Go response was observed in dorsolateral
prefrontal cortex and superior parietal lobe. This network of
regions was highly consistent across permutations of TR and ISI
length (Figure 11). Importantly, these regions could be reliably
discerned for both designs in which only a single event type con-
tributed to the hemodynamic response sampled by each TA (both
ISI= 8 s designs), and those in which the two event types both con-
tributed to the hemodynamic response sampled during a single TA
(all ISI= 4 s designs).

Open access dataset
The original data comprising this report are available
online via the MIT institutional repository DSpace at
http://dspace.mit.edu/handle/1721.1/68161. Files available for
download include, for each TR× ISI permutation and analysis
model: (1) individual subjects’ analyzed fMRI data (t -statistics,
variance, and effect size maps) in normalized space, (2) group-
level data (t -statistics and effect size maps), and (3) fMRI analysis
scripts.

DISCUSSION
The results of the fMRI experiment largely validated the results of
the computational simulations, while extending them by reveal-
ing a number of interactions between experiment design and the
nature of the MR scanning environment that were not included
in the simulations. First, we again observed the benefit to effect
size afforded by more frequent stimulus presentation. Second,
we also observed increased model reliability for more frequent
image volume acquisition (TR= 4, 8 s) than for longer TRs (12 s).
This difference in statistical reliability can be explained in part
by the larger number of sample volumes over which the model
is estimated, as seen in the simulations; however, the significantly

smaller parameter estimate for task activation in the TR= 12 s
design was not observed in the simulations. This suggests that
sparse models are less effectively estimated for the long TR
design, or that other psychophysiological interactions, brought
about by long delays between scanner acquisitions, may have
contributed to a reduction in task-related response. Correspond-
ingly, the disproportionately large magnitude of default-mode
network deactivation at TR= 12 s compared to the other condi-
tions was somewhat surprising. Although it has been shown that
the default-mode network is more reliably evoked during sparse
than continuous sampling (Gaab et al., 2008; Langers and van
Dijk, 2011), the effects of varying sparse delay in these regions
has not previously been examined. Although only speculation, it
may be the case that, because we constrained rest events to last
the full length of a TR, long periods of rest like those seen in
the TR= 12 s condition might be more efficacious at eliciting the
default-mode network than the briefer rest periods of the shorter
TR delays.

Unlike the simulations, in the actual fMRI data we observed
a difference in estimated response magnitude in auditory areas
between TR= 4 s and TR= 8 s designs, with larger effect sizes
favoring less frequent image volume acquisition. This is likely the
result of increased auditory response contamination due to more
frequent acoustic noise associated with shorter TRs: response in
auditory cortex begins to saturate as a result of scanner gradient
noise during EPI acquisition, reducing the dynamic range available
for observing task-elicited response (Langers et al., 2004; Scarff
et al., 2004). This result suggests that, for TRs of an intermediate
delay, there exists a trade-off between reducing the denomina-
tor of the test statistic through shorter TRs that reduce model
error, and increasing the numerator of the test statistic through
longer TRs that permit auditory responses of larger magnitude.
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FIGURE 11 | A sparse model incorporating convolution of the canonical
HRF can distinguish among multiple event types occurring within a
single silent delay. The statistical reliability (t ) and significance (p,
uncorrected) of the group effect of the contrast “Go” > “No-Go” events is
shown. Warm colors correspond to greater activation during “Go” events;
cool colors, “No-Go” events. Stars (?) indicate those designs in which the
hemodynamic responses to different event types overlap during a single
image volume acquisition (TA), demonstrating the ability of the HRF model to

reliably and correctly estimate differential response to these events. Minor
variations in the pattern of activation across designs may be the result of
differences in the relative efficiency of the presentation order of “Go” and
“No-Go” events rather than specific effects of the TR or ISI. The lateral and
medial surfaces of the left hemisphere are shown. Supplementary Figure 4
provides a volume-based depiction (axial slices) of these data. Supplementary
Figure 6 illustrates these data for only clusters that survive correction for
multiple comparisons.

Although we did not have the opportunity to investigate further
parameterization of the TR delay in this study, based on the
results of our simulations (Figure 6), and other studies utiliz-
ing sparse design being conducted by our group, we suggest that
the “sweet spot” for maximizing the combined benefits of longer
TR delay and more frequent sampling might be in the vicinity of
TR= 6 s. Although one might expect the regions primarily affected
by this trade-off to be primary and association auditory cortex,
whereas other, non-auditory regions would not be sensitive to the
effects of acoustic noise, the patterns of activation observed in the
whole-brain (Figure 8) suggest there might be a more compli-
cated relationship between sampling frequency and physiological
response magnitude across regions.

Finally, and perhaps most importantly, the actual fMRI results
validated the substantial improvements to model reliability and
effect size estimation afforded by a physiologically informed model
incorporating the canonical HRF. As in the simulations, this
result was most apparent for short TRs. Moreover, the use of
the HRF model allowed for the reliable estimation of different
event types that co-occur in a single TR, and whose hemo-
dynamic responses overlap during a single TA. In the present
experiment, this allowed us to distinguish between “go” and “no-
go” trials, but one can easily envision the benefits afforded by
application of this technique to more scientifically interesting
questions in auditory cognitive neuroscience, such as voice selec-
tivity; mapping cortical representations of articulators; tonotopic
mapping, etc.

CONCLUSION
Through computational simulations and validation with actual
fMRI data, we explored the parameter space of sparse-sampling

fMRI design and analysis. Specifically, we investigated the effects
and interactions among the length of silent delay during the TR
(rate of image volume acquisition) and ISI (rate of stimulus pre-
sentation) as design parameters, and the use of classical boxcar or
physiologically informed models incorporating HRF convolution
as an analysis parameter. Based on a synthesis of these results, we
suggest that, in many (but certainly not all) situations, the follow-
ing methods may be employed to help optimize signal detection
in sparse-sampling fMRI experiments:

1. Utilize a model incorporating canonical hemodynamic
response convolution (Figure 2). This will generally afford
improved statistical significance (Figures 5 and 9), resulting in
part from more accurate estimation of physiological response
magnitude (percent signal change) (Figures 5 and 10). More-
over, sparse models that account for the hemodynamic response
enable the use of rapid event-related sparse designs that can
distinguish the effects of different event types whose hemody-
namic responses overlap during a single volume acquisition
(Figures 3D and 11). Note, however, that care needs to be
taken when there is reason to believe the canonical hemody-
namic response function may not accurately correspond to the
true physiological response (Aguirre et al., 1998; Harms and
Melcher, 2003).

2. Maintain a high rate of stimulus presentation (Figures 6 and
8). Presenting stimuli more frequently, when combined with
an HRF-convolved model, takes advantage of hemodynamic
response additivity and increases measured response magni-
tude. Although this approach suggests a departure from slow
event-related sparse designs (Belin et al., 1999), such designs –
although inherently less efficient (Dale, 1999) – will still serve
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effectively in certain situations, such as determining the shape
of auditory hemodynamic responses.

3. Acquire image volumes after a short or intermediate TR delay
(Figures 6 and 8). Whereas the classic approach in sparse
design has been to utilize very long TRs (>12 s) to completely
avoid acoustic contamination of the measured response, all
the present data suggest that such an approach is sub-optimal.
Shorter TR delays (2–4 s) allow for the collection of a larger
number of image volumes, which reduces model error and
improves both statistical reliability and significance. Intermedi-
ate TR delays (4–6 s) may compensate for reduced model power
by reducing acoustic contamination and increasing the mea-
surable effect of auditory stimulation – a benefit that may be
limited to primary and association auditory cortices. However,
it is important to note that in order to measure physiological
responses to auditory stimuli completely devoid of contamina-
tion by response to the acoustic noise of scanner acquisition,
very long TRs (>16 s) will still be required.

We hope these results serve as guidelines for the development
of more effective sparse-sampling fMRI experiments and facilitate
the effective application of these techniques in pursuit of discov-
eries in auditory cognitive and systems neuroscience. It is worth
pointing out that other technological or statistical advances may
be added to these optimizations to further enhance the reliability
of fMRI experimentation. For example, it is reasonable that the
HRF model could be further improved by the inclusion of addi-
tional parameters in the design matrix modeling the temporal and
spread derivatives of the hemodynamic response, reducing the
cost of variability in HRF across participants. Likewise, advances
in quieter acquisition sequences or better acoustic isolation may
also reduce the effect of acoustic contamination on the dynamic
range of auditory cortex, allowing further benefit to be derived
from shorter (versus intermediate) TRs. In addition to these data,
we have made the simulation code available. Prior to beginning
a new sparse experiment, researchers may find it advantageous

to utilize computational models simulating various experiment
designs – including acquisition rates, stimulus jitter with respect to
the TA, etc. – to determine a design that will optimize the detection
of an effect or contrast of interest. It should be noted, however, that
such simulations cannot capture complex interactions between
the acoustic noise of scanner acquisition and the reduced dynamic
range of physiological response in the auditory cortex.

Finally, we end with an appeal to the community of neuroim-
agers using sparse-sampling to be as descriptive as possible in
reporting model design and analysis parameters. At a minimum,
methods sections describing sparse imaging should indicate the
TA, delay length, stimulus jitter with respect to the TA, number
of volumes acquired during each acquisition, what basis func-
tions were used in the model, how discontinuity in the sparse time
series was handled in the model, whether any temporal filtering or
correction for temporal autocorrelation was done and how, how
the task regressors in the model were scaled, and, if percent sig-
nal change is reported, how it was calculated. These, in addition
to the standard parameters expected in methods sections (Pol-
drack et al., 2006; Carp, 2012) should improve the replicability
and generalizability of sparse-sampling fMRI results.
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