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Abstract: Transparent films of cellulose nanocrystals (CNC) are prepared by dip-coating on glass
substrates from aqueous suspensions of hydrolyzed filter paper. Dragging forces acting during films’
deposition promote a preferential alignment of the rod-shaped CNC. Films that are 2.8 and 6.0 µm
in thickness show retardance effects, as evidenced by placing them between a linearly polarized
light source and a linear polarizer sheet in the extinction configuration. Transmission Mueller matrix
spectroscopic ellipsometry measurements at normal incidence as a function of sample rotation were
used to characterize polarization properties. A differential decomposition of the Mueller matrix
reveals linear birefringence as the unique polarization parameter. These results show a promising
way for obtaining CNC birefringent films by a simple and controllable method.
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1. Introduction

Cellulose is the most abundant renewable biopolymer on earth. Its polymeric chain of
D-anhydroglucopyranose units, through a hierarchical arrangement, leads to a fibrous macroscopic
structure with a semicrystalline character [1]. The extraction of cellulose nanocrystals (CNC) from
cellulose fibrils through controlled, sulfuric acid-catalyzed degradation was reported more than half
a century ago [2]. Since then, the needle-shaped CNC and their functionalization capabilities have
found applications in diverse fields [3–5]. Besides removal of the amorphous regions, the sulfuric acid
hydrolysis of cellulose fibrils functionalizes the CNC surface, resulting in negatively charged sulphate
groups. The electrostatic interaction between charged CNC leads to stable aqueous suspensions.
Decades ago, it was discovered that above a critical concentration, the CNC self-assemble in a chiral
nematic liquid crystalline phase [6]. The slow drying of these aqueous suspensions produces films
with helicoidal ordering that reflect left-handed polarized light [7,8]. Circular dichroism and circular
birefringence are the characteristic polarization properties of chiral CNC films [8]. The spectral location
and strength of this so-called circular Bragg reflection depend on the value and distribution of the
helicoidal pitch, as well as on the birefringence of CNC.

The linear birefringence of cellulose-based fibers is known only at some wavelengths [9,10]. On the
other hand, the birefringence of cellulose derivatives in film form has been studied extensively [11].
In recent times, interest in investigating the birefringence of CNC has increased [12–20]. Particularly,
methods for the fabrication of birefringent CNC films have been focused on producing an effective
alignment of CNC along a preferential direction. Spin-coating [15] and shear-ordering [16–20] methods
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have been reported. The development of new methods to fabricate birefringent CNC films will
contribute to a better understanding of their fundamental properties and open new opportunities
for novel applications. Specifically, thinking in optical biomimetics, they could be used as retarders
sandwiched between chiral layers also made from cellulose nanocrystals. With an adequate thickness,
the retardation could be tuned to manipulate left- and right-handed circular polarization in a specific
spectral range.

In this work, we show that a simple and non-expensive dip-coating technique is suitable to prepare
transparent and birefringent CNC films from aqueous suspensions. For a complete characterization
of the polarization properties of the films, Mueller-matrix transmission spectroscopic ellipsometry
is used. A unique capability of this approach is that the depolarization introduced by the sample,
that is, how much the sample affects the degree of polarization of incident light, is also provided.
Furthermore, as CNC in aqueous suspension tend to self-assemble in a chiral nematic liquid crystal
phase, circular dichroism and circular birefringence could be expected. Therefore, a differential
(logarithmic) decomposition of the Mueller matrix data was performed to determine the basic
polarization properties of the dip-coated CNC films, including both linear and circular birefringence,
as well as dichroism.

2. Materials and Methods

Aqueous suspensions of CNC were obtained following procedures as reported in the literature,
but with slight variations [17,21,22]. Filter paper (Whatman 40) was grinded in a coffee mill by four
cycles, 35 s each. The milled paper was hydrolyzed at 60 ◦C for 50 min under vigorous stirring using
64 wt% sulfuric acid at a ratio of 8.75 mL per 1 g of filter paper. To stop the hydrolysis, the CNC
suspension was diluted with cold water (10 times the volume of the acid solution) and allowed
to settle for two weeks. The clear top layer was decanted, and the remaining cloudy layer was
subject to three cycles of centrifugation (9000 rpm for 10 min) and washing with water to remove
water-soluble cellulose materials. The thick white suspension was dialyzed against water for three
days. The initial concentration of the CNC suspension was 6.5 wt%, and it was diluted with water
to attain a concentration of 5.7 wt%, suitable for dip-coating. Ultrasonic dispersion was not applied.
Glass slides 25 × 75 mm (Corning 2947) washed with detergent were used as substrates. CNC films
were then produced by dip-coating at withdrawal speeds of 10 and 20 cm/min by using a home-made
apparatus. Subsequently, the samples were vertically placed and allowed to dry at room temperature
for about 3–4 h.

Transmission Mueller-matrix measurements were performed with a dual rotating compensator
ellipsometer (RC2, J. A. Woollam Co., Inc., Lincoln, NE, USA) at normal incidence in the wavelength
(λ) range 210–1690 nm. Data are here presented versus photon energy given by E = hc/λ, where h is
Planck’s constant and c the vacuum speed of light. A motorized sample rotator was used to measure
at rotation angles between 0◦ and 360◦ in steps of 5◦. Transmittance irradiance measurements at
normal incidence in the spectral range of 250–840 nm were performed with a FilmTek 3000 system
(SCI, Inc., Carlsbad, CA, USA). Atomic force microscopy (AFM) images in tapping mode were
acquired with an Innova system (Bruker, Madison, WI, USA). Complementary characterization
included X-ray diffraction data (Rigaku/Dmax2100, Austin, TX, USA), attenuated total reflection
(ATR) infrared spectroscopy measurements (Spectrum GX system/Perkin Elmer Inc., Waltham, MA,
USA), and cross-sectional scanning electron microscopy (SEM) (Phillips XL 30 system, North Billerica,
MA, USA). To avoid charging during acquisition of SEM images, a thin layer of gold was deposited on
the sample using Ar as carrier gas, 20 µA, 5 × 10−2 torr for 30 s (Denton Vacuum desk V, Moorestown,
NJ, USA).
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3. Results and Discussion

3.1. Formation of Nanostructured Films and Optical Performance

At the concentration of the CNC which was used (5.7 wt%), the coexistence of isotropic and
anisotropic phases in the suspension was expected, as reported for hydrolyzed filter paper at similar
conditions [21,22]. Therefore, we hypothesized that by using the dip-coating technique, the drag of
draining forces acting during the removal of the substrate could align the nanocrystals in the isotropic
phase and partially unwind the cholesteric order. As the substrate leaves the suspension, the draining
of water produces an increase of CNC concentration in the entrained suspension, which limits the
mobility of CNC. At the withdrawal speeds used, the coating process took about 15–30 s. During the
drying stage, the draining of remaining water in the films promoted further alignment of CNC for
about 30 min. The film then reached a gel-like state, where the CNC were frozen in a partial nematic
ordering. At this stage, the film loses water by evaporation for about 2–3 h. Notice the difference in
time scale between the dip-coating process and the evaporation-induced self-assembly of chiral films,
as the latter takes a few days.

Figure 1 shows AFM images of the surfaces of the dip-coated CNC films. A preferential alignment
of the CNC is observed, and thus, our hypothesis is confirmed. X-ray diffraction data (see Figure A1
in Appendix A) corroborated that the films retain the monoclinic crystalline structure of cellulose Iβ.
ATR infrared spectroscopy measurements (see Figure A2 in Appendix A) evidenced that the molecular
integrity of the cellulose was retained as well. The thicknesses determined from cross-sectional
SEM images (see Figure A3 in Appendix A) were 2.8 ± 0.1 and 6.0 ± 0.5 µm for 10 and 20 cm/min
withdrawal speeds, respectively.
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Figure 1. Atomic force microscopy (AFM) images of dip-coated cellulose nanocrystal (CNC) films on
glass substrates produced at withdrawal speeds of (a) 10 and (b) 20 cm/min. The arrows illustrate the
preferential ordering of CNC.

The transmittance (T) spectra at normal incidence of unpolarized light from the cellulose side
of the dip-coated CNC films are shown in Figure 2. The spectra correspond to the average of three
measurements performed at different regions on the films. The standard deviation of the three
measurements were plotted as error bars. As can be seen, the films show good transparency with T
values above 80% in the visible spectral range. Interference oscillations are missing due to the low
optical contrast at the cellulose–glass interface because the refractive indices of cellulose ~1.54 [10] and
the glass substrate ~1.52 are similar. The decrease in T at wavelengths shorter than 350 nm is due to
absorption of the glass substrate.
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Figure 2. Average transmittance of unpolarized light of dip-coated CNC films on glass substrates at
withdrawal speeds of (a) 10 and (b) 20 cm/min. Error bars are the standard deviation of three spectra.

Qualitative and simple evidence of the birefringence of a sample is to place it between crossed
polarizers. This can be done by using a liquid crystal display (LCD) as a source of linearly polarized
light and a linear polarizer sheet. Figure 3 shows pictures of the assembly used. The plane of
polarization of light coming from the LCD screen was at about +45◦ from the horizontal direction,
and the polarizer sheet was set in the extinction configuration (see dark regions around the samples).
As can be seen, when the polarization plane of the light coming from the LCD is perpendicular to
the withdrawal direction (indicated with the arrows), the sample looks dark (sample orientation
−45◦). This means that the linear polarization is not affected by the sample, and the outcoming
light is cancelled out by the polarizer sheet. On the other hand, by rotating the samples to the
horizontal (H) and vertical (V) orientations, the image on the LCD screen can clearly be seen. In these
configurations, which are the so-called maximum transmittance, the polarization state of the linearly
polarized incident light is altered and, in general, exits the sample with elliptical polarization. Thus,
the in-plane anisotropy in the films is evident, and its origin resides in the preferential ordering of
CNC and in the intrinsic anisotropy of cellulose, as discussed in Section 3.4. Another salient feature is
the homogeneity over large areas of the samples. However, some inhomogeneities can be seen at the
edges of the substrates due to accumulated material by border effects. The draining also accumulates
material at the bottom part of the substrates.
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Figure 3. Pictures of dip-coated CNC films on glass substrates at withdrawal speeds of (a) 10 and (b)
20 cm/min placed between an LCD monitor and a polarizer in the extinction configuration without a
sample. The arrows indicate the withdrawal direction. Sample orientation at +45◦ looks like −45◦.

3.2. Mueller Matrix Data Analysis

The 4 × 4 Mueller matrix (M) with elements mij (i, j = 1 . . . 4) provides a full description of the
polarizing and depolarizing properties of a sample [23]. It relates the Stokes vectors of the incident (Si)
and transmitted (St) light beams by:

St = MSi. (1)
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In Equation (1), the Stokes vectors of the incident and transmitted light beams
(assuming propagation along the z-axis) are expressed in terms of a set of six irradiances:

S =


Ix + Iy

Ix − Iy

I+45◦ − I−45◦

IR − IL

, (2)

where Ix, Iy, I+45◦ , and I−45◦ correspond to linear polarization along the coordinate axes x and y, and at
+45◦ and at −45◦ from the x-axis, whereas IR and IL correspond to right- and left-handed circularly
polarized light, respectively. In this work we used Mueller matrices, which were normalized to total
transmittance for unpolarized light, i.e., the first element in the first row of M. Thus, we have m11 = 1,
and other elements have values in the range [−1,1]. For the measurements, the samples were placed
with the withdrawal direction nearly parallel to the y-axis.

Figure 4 shows polar contour maps of the normal-incidence Mueller matrix transmission data
of dip-coated CNC films. The radial and angular coordinates correspond to the photon energy
(in eV) and sample rotation angle (φ), respectively. Data above 3.75 eV (below λ = 330 nm) were
omitted because the glass substrate strongly absorbs the ultraviolet range (T lower than 50% in
Figure 2). First, we observed that the elements of the first row and first column were close to
zero, whereas the other elements show a richer structure. Second, we found that M was not block
diagonal, which it would be for an isotropic sample or for uniaxially samples with the optic axis
aligned with the z-direction. In Figure 4, the non-zero off-diagonal elements m42 and m24 thus
provide evidence of in-plane anisotropy. Other characteristics of M are related to the φ-dependence:
(i) m44 is invariant; (ii) m24, m42, m34, and m43 are periodic with period 180◦; (iii) a 90◦ periodicity is
observed in m22, m23, m32, and m33; (iv) rotational shift relationships noted are m22(φ) = m33(φ − ±45◦),
m34(φ)=m24(φ − 45◦), and m43(φ) = m42(φ + 45◦). Other symmetries are also observed: m23 ∼= m32,
m24 = −m42, and m34 = −m43. Furthermore, we noticed that increases in film thickness resulted in
larger variations of the mij values. As an example, the diagonal elements vary between 0 and 1 for
the 2.8 µm-thick film, whereas the variation is between −1 and 1 in the case of the 6 µm-thick film.
Indeed, the contour maps in Figure 4a look like a zoom of the central part of the corresponding ones in
Figure 4b.

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 12 

 

Figure 4 shows polar contour maps of the normal-incidence Mueller matrix transmission data 

of dip-coated CNC films. The radial and angular coordinates correspond to the photon energy (in 

eV) and sample rotation angle (ϕ), respectively. Data above 3.75 eV (below λ = 330 nm) were omitted 

because the glass substrate strongly absorbs the ultraviolet range (T lower than 50% in Figure 2). First, 

we observed that the elements of the first row and first column were close to zero, whereas the other 

elements show a richer structure. Second, we found that M was not block diagonal, which it would 

be for an isotropic sample or for uniaxially samples with the optic axis aligned with the z-direction. 

In Figure 4, the non-zero off-diagonal elements m42 and m24 thus provide evidence of in-plane 

anisotropy. Other characteristics of M are related to the ϕ-dependence: (i) m44 is invariant; (ii) m24, 

m42, m34, and m43 are periodic with period 180°; (iii) a 90° periodicity is observed in m22, m23, m32, and 

m33; (iv) rotational shift relationships noted are m22(ϕ) = m33(ϕ − ±45°), m34(ϕ)=m24(ϕ − 45°), and m43(ϕ) 

= m42(ϕ + 45°). Other symmetries are also observed: m23  m32, m24 = −m42, and m34 = −m43. Furthermore, 

we noticed that increases in film thickness resulted in larger variations of the mij values. As an 

example, the diagonal elements vary between 0 and 1 for the 2.8 µm-thick film, whereas the variation 

is between −1 and 1 in the case of the 6 µm-thick film. Indeed, the contour maps in Figure 4a look like 

a zoom of the central part of the corresponding ones in Figure 4b. 

 
(a) 

 
(b) 

Figure 4. Polar contour maps of normal-incidence Mueller matrix transmission measurements for dip-

coated films produced at withdrawal speeds of (a) 10 cm/min and (b) 20 cm/min. 

All the observations listed in the previous paragraph on the structure of M in Figure 4 come 

from the CNC films, because the Mueller matrix of the glass substrate measured at different rotation 

angles corresponds to the 4 × 4 unity matrix (see Figure A4 in Appendix A). Furthermore, M in Figure 

4 qualitatively agrees with the Mueller matrix MR of an ideal linear retarder plate in which the fast 

axis is horizontal, and is given by [23]: 

( )

( )

2 2

R 2 2

1 0 0 0

0 cos 2 cos sin 2 sin 2 cos 2 1 cos sin sin 2

0 sin 2 cos 2 1 cos sin 2 cos cos 2 sin cos 2

0 sin sin 2 sin cos 2 cos

       

       

    

 
 

+ − − 
=  

− +
 
 − 

M , (3) 

where ( )2
y x

n n d  = −  is the retardance, d the sample thickness, and nx and ny are the refractive 

indices for polarization along the x- and y-axes, respectively. However, as the matrices in Figure 4 

were experimentally determined, it is necessary to investigate how much they deviate from those of 

ideal polarizing systems. This can be done by determining the depolarizance (D) of the system, which 

is given by [24]: 

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

 

0

1

2

3

4

0

1

2

3

4

 

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

  

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

45

90

135

180

225

270

315

0

1

2

3

4

 

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
11

0 1 2 3 4
 (eV)

m
ij

 (deg)

m
44

m
34

m
24

m
14

m
43

m
33

m
23

m
13

m
42

m
32

m
22

m
12

m
41

m
31

m
21

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

 

0

1

2

3

4

0

1

2

3

4

 

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

  

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

m
44

m
34

m
24

m
14

m
43

m
33

m
23

m
13

m
42

m
32

m
22

m
12

m
41

m
31

m
21

Figure 4. Polar contour maps of normal-incidence Mueller matrix transmission measurements for
dip-coated films produced at withdrawal speeds of (a) 10 cm/min and (b) 20 cm/min.
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All the observations listed in the previous paragraph on the structure of M in Figure 4 come from
the CNC films, because the Mueller matrix of the glass substrate measured at different rotation angles
corresponds to the 4 × 4 unity matrix (see Figure A4 in Appendix A). Furthermore, M in Figure 4
qualitatively agrees with the Mueller matrix MR of an ideal linear retarder plate in which the fast axis
is horizontal, and is given by [23]:

MR =


1 0 0 0
0 cos2 2φ + cos δ sin2 2φ sin 2φ cos 2φ(1− cos δ) − sin δ sin 2φ

0 sin 2φ cos 2φ(1− cos δ) sin2 2φ + cos δ cos2 2φ sin δ cos 2φ

0 sin δ sin 2φ − sin δ cos 2φ cos δ

 , (3)

where δ = 2π
(
ny − nx

)
d/λ is the retardance, d the sample thickness, and nx and ny are the refractive

indices for polarization along the x- and y-axes, respectively. However, as the matrices in Figure 4 were
experimentally determined, it is necessary to investigate how much they deviate from those of ideal
polarizing systems. This can be done by determining the depolarizance (D) of the system, which is
given by [24]:

D = 1−
[

1
3

(
tr
(
MTM

)
m2

11
− 1

)]1/2

, (4)

where tr and T stand for trace and transpose, respectively. It holds that D = 0 corresponds to the
Mueller matrix of an ideal non-depolarizing system, and D = 1 to an ideal depolarizer. In Figure 5, D is
shown for selected values of φ. As can be seen, the experimental Mueller matrices of the CNC films
correspond very closely to those of ideal systems. This means that for totally polarized incident light,
the transmitted beam emerges completely polarized.
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Figure 5. Depolarizance of normal-incidence Mueller matrices for dip-coated films produced at
withdrawal speeds of (a) 10 cm/min and (b) 20 cm/min at selected rotation angles.

3.3. Differential Decomposition of Mueller Matrices

To quantitatively determine the polarization properties of the dip-coated CNC films, we used
differential (logarithmic) decomposition of the measured Mueller matrices. This decomposition
establishes that M and its spatial variation along the direction of wave propagation z are related as
dM/dz = mM, where m is the differential matrix [25–28]. For homogeneous media, m is independent
of z and direct integration gives L = lnM, where L = md with d the sample thickness. The matrix L is
split into L = Lm + Lu, where Lm and Lu are G-antisymmetric and G-symmetric matrices, respectively,
given by Lm =

(
L−GLTG

)
/2 and Lu =

(
L + GLTG

)
/2, where G = diag[1,−1,−1,−1]. Since the

dip-coated CNC films are non-depolarizing, it holds Lu = 0. Lm contains the six elementary polarization
properties, which are given by [26]:
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Lm =


0 LD LD′ CD

LD 0 CB −LB′

LD′ −CB 0 LB
CD LB′ −LB 0

 , (5)

where LB (LD) and LB′ (LD′) are the linear birefringence (dichroism) along the x-y and ±45◦ axes,
respectively, whereas CD is the circular dichroism and CB is the circular birefringence.

Figure 6 shows Lm corresponding to the experimental Mueller matrices in Figure 4. For the sake
of clarity, data are only shown for 0◦ ≤ φ ≤ 180◦ in steps of 10◦. For both samples, only LB and LB′

differ from zero, and both show a nearly linear dependence with photon energy. The small deviation
from linearity implies a small dispersion in birefringence, as will be discussed later. Furthermore,
LB increases with withdrawal speed (i.e., film thickness). The variation with rotation angle is illustrated
in LB and LB′ panels in Figure 6b, and is analyzed in more detail in Section 3.4. The fact that CD and
CB are zero indicates the absence of the chiral phase in the films.

Nanomaterials 2019, 9, x FOR PEER REVIEW 7 of 12 

 

An insightful view of LB(ϕ) and LB′(ϕ) determined from the differential decomposition is 

provided when they are plotted in polar contour maps, as shown in Figure 7a where the radial 

coordinate corresponds to photon energy and the polar angle to sample azimuth ϕ. From Figure 7a, 

the obvious relationship LB′(ϕ) = LB(ϕ − 45°) is clear. Therefore, among the six basic polarization 

properties in Equation (5), only linear birefringence characterizes the dip-coated CNC films. The ϕ-

dependence of LB (and LB′) can be expressed as [29], ( ) 0
cos2( )LB LB  = −  and 

( ) 0
' sin2( )LB LB  = − , respectively, where ϕ0 is the azimuth offset between the y-axis and the optical 

axis of the sample. Values of ϕ0 = −2.2 and −1.9° were determined from the measurements at ϕ = 0° of 

the laboratory frame, as ( ) ( )0
tan2 ' 0 0LB LB = − . Since the sample birefringence 2

y x
LB n n d = − , 

due to the preferential ordering of CNC the effective birefringence y x
n n n = −  can be easily 

obtained and is shown in Figure 7b. The values determined for n  are about half of those reported 

for cotton fibers [9,10]. 

 
(a) 

 

 
(b) 

Figure 6. Differential decomposition of the Mueller matrices in Figure 4 for dip-coated films produced 

at withdrawal speeds of (a) 10 cm/min and (b) 20 cm/min. For clarity, data are presented only in the 

0° ≤ ϕ ≤ 180° range in steps of 10°. The ϕ-variation is indicated with the dashed arrows in panels LB 

and LB′ of (b). 

1 2 3 4
-3

-2

-1

0

1

2

3

1 2 3 4 1 2 3 4 1 2 3 4

  

LD LD'

 

CD

LD

  

CB

 

-LB'

 

LD'

 

-CB

  

LB

 

CD

 

Photon energy (eV)

LB'

 

Photon energy (eV)

-LB

 

Photon energy (eV)

 

Photon energy (eV)

1 2 3 4
-3

-2

-1

0

1

2

3

1 2 3 4 1 2 3 4 1 2 3 4

  

LD LD'

 

CD

LD

  

CB

 

-LB'

 

LD'

 

-CB

  

LB

 

CD

 

Photon energy (eV)

LB'

 

Photon energy (eV)

-LB

 

Photon energy (eV)

 

Photon energy (eV)

Figure 6. Differential decomposition of the Mueller matrices in Figure 4 for dip-coated films produced
at withdrawal speeds of (a) 10 cm/min and (b) 20 cm/min. For clarity, data are presented only in the
0◦ ≤ φ ≤ 180◦ range in steps of 10◦. The φ-variation is indicated with the dashed arrows in panels LB
and LB′ of (b).
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3.4. Birefringence of Dip-Coated CNC Films

An insightful view of LB(φ) and LB′(φ) determined from the differential decomposition is provided
when they are plotted in polar contour maps, as shown in Figure 7a where the radial coordinate
corresponds to photon energy and the polar angle to sample azimuth φ. From Figure 7a, the obvious
relationship LB′(φ) = LB(φ − 45◦) is clear. Therefore, among the six basic polarization properties in
Equation (5), only linear birefringence characterizes the dip-coated CNC films. The φ-dependence
of LB (and LB′) can be expressed as [29], LB(φ) = |LB| cos 2(φ− φ0) and LB′(φ) = |LB| sin 2(φ− φ0),
respectively, where φ0 is the azimuth offset between the y-axis and the optical axis of the sample.
Values of φ0 = −2.2 and −1.9◦ were determined from the measurements at φ = 0◦ of the laboratory
frame, as tan 2φ0 = −LB′(0)/LB(0). Since the sample birefringence |LB| = 2π

∣∣ny − nx
∣∣d/λ, due to

the preferential ordering of CNC the effective birefringence 〈∆n〉 =
〈
ny − nx

〉
can be easily obtained

and is shown in Figure 7b. The values determined for 〈∆n〉 are about half of those reported for cotton
fibers [9,10].
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Figure 7. (a) Polar contour maps of linear birefringence of dip-coated CNC films at withdrawal speeds
of 10 cm/min and 20 cm/min. The radial scale (photon energy) is the same as in Figure 4. (b) Effective
birefringence <∆n> = <ne − no> of the dip-coated CNC films.

According to the monoclinic crystalline structure of cellulose Iβ, its dielectric tensor corresponds
to a biaxial crystal given as diag[ε1, ε2, ε3] in the principal axes frame. Considering that the
crystallographic c-axis corresponding to the polymer chain direction (crystallite length) is orthogonal
to a and b axes, we have ε3 = εc but ε1 and ε2 are not necessarily oriented along the a and b axes; besides,
their orientation might be wavelength-dependent. Therefore, ny = ne would be mainly related to εc

and nx = no to both ε1 and ε2, where ne and no are the extraordinary and ordinary refractive indices,
respectively. In the ideal case of perfect alignment and full packing, it is expected that ne

2 = εc and
no

2 = (ε1 + ε2)/2, and we obtain the effective birefringence ∆n = ny − nx = ne − no. In the present
case where the CNC comprising the films are not completely aligned, the structural birefringence
will also come into play. In this case, the films could be envisaged as a two-component composite of
aligned (anisotropic) and non-aligned (isotropic) phases. Thus, the effective birefringence would be a
function of the volume fraction of the anisotropic phase. For the films studied in this work, 0.4–0.5
is a rough estimate of the anisotropic phase volume fraction, assuming a linear variation. Of course,
the ordering of CNC crystals in the films depends on the various parameters intervening for their
fabrication. In this regard, two main stages are identified: Preparation of the CNC aqueous suspension
and films deposition. The physicochemical properties of the CNC suspension largely depend on
parameters like hydrolysis temperature, hydrolysis time, acid ionic strength, among others. On the
other hand, for films deposition, the withdrawal speed, CNC concentration, and drying conditions are
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of main importance. The large number of parameters open possibilities to fabricating CNC films with
tailored birefringence, and is subject to ongoing investigation which will be reported elsewhere.

4. Conclusions

Birefringent cellulose nanocrystal films were obtained from aqueous suspensions of hydrolyzed
filter paper at 60 ◦C for 50 min. The films prepared were transparent and non-depolarizing. The linear
birefringence (LB) of the films was determined by a differential decomposition of Mueller matrices,
and showed a nearly linear dependence with photon energy. The effective birefringence <∆n> was
due to the preferential ordering of CNC, and had average values in the visible range of 0.021 and 0.026
for two different film thicknesses. The absence of the chiral phase in the films was ascribed to the short
drying time. The dip-coating method is thus shown to be a suitable, non-expensive, and promising
way to fabricate birefringent films of cellulose nanocrystals.
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Appendix A

This Appendix contains additional figures supporting the results presented in the main text.
Figure A1 shows X-ray diffraction data of the filter paper used as the source of cellulose and the
dip-coated CNC films at withdrawal speeds of 10 and 20 cm/min. The Miller indices are those
corresponding to the monoclinic structure of cellulose Iβ, with lattice parameters a = 7.8 Å, b = 7.9 Å,
c = 10.1 Å, β = 95.15◦ and space group P21 [30–32]. The differences in peaks intensities of the data
in Figure A1a are due to film thickness as can be seen in Figure A1b when the data are normalized
with respect to the most intense (200) peak. It can be noticed that the processing does not affected the
crystalline quality of cellulose. The crystallite width evaluated with the Scherrer formula was 6 nm
which is typical of cotton cellulose [32].
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Figure A1. X-ray diffraction patterns of filter paper (FPW) and dip-coated CNC films at withdrawal
speeds of 10 and 20 cm/min: (a) raw data (b) normalized to the (200) peak.
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Figure A2 shows FTIR spectra of the filter paper used as the source of cellulose and dip-coated
CNC films at withdrawal speeds of 10 and 20 cm/min. The spectra were normalized respect to the
band at 1030 cm−1. As can be seen, the spectra of dip-coated CNC films and filter paper are similar
indicating that processing does not affect the molecular integrity. The bands of functional groups in
cellulose molecule are labeled as well as the characteristic bands identifying cellulose Iβ [32,33].Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 12 
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Figure A2. ATR infrared absorption spectra of filter paper (FPW) and dip-coated CNC films at
withdrawal speeds of 10 and 20 cm/min

SEM images used to determine the film thicknesses of the dip-coated CNC films at withdrawal
speeds of 10 and 20 cm/min are shown in Figure A3.
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Figure A3. Cross-section SEM images of dip-coated CNC films at (a) 10 and (b) 20 cm/min.

The normal incidence transmission Mueller matrices of a bare glass substrate measured at different
rotation angles are shown in Figure A4. It can be noticed that they correspond to the 4× 4 unity matrix.
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